Derleme
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Gıda İşletmelerinde Biyofilm Sorunu ve Gümüş Nanopartikül Uygulamaları

Yıl 2022, Cilt 6, Sayı 1, 51 - 63, 16.01.2022

Öz

Mikroorganizma topluluklarının besine ulaşım ve savunma amaçlı ortak yaşam tarzını ifade eden biyofilmlerin dezenfektan ve antibiyotiklere karşı geliştirdiği direnç, bu mikrobiyal topluluklar ile savaşmak için farklı yöntemlerin uygulanması konusunda araştırmalar yapılmasını gerektirmiştir. Ürettikleri hücre dışı polimerik maddelerden oluşan matrise gömülü olarak yaşayan biyofilm toplulukları bulundukları yüzeye güçlü bir şekilde yapıştığından ortamdan uzaklaştırılmaları güçleşmektedir. Gıda kaynaklı hastalıklara sebep olan mikroorganizmalar biyofilm oluşturarak yüzeylerde yaşamlarını sürdürebilmektedirler. Boyutları 100 nm'den küçük olan gümüş nanopartiküller geniş yüzey alanı-hacim oranlarından kaynaklanan benzersiz fiziksel ve kimyasal özellikleriyle Gram pozitif ve Gram negatif bakterilere karşı geniş spektrumlu antibakteriyel aktiviteye sahiptirler ve direnç tetiklememektedirler. Bu çalışmada gıda işletmelerinde oluşan biyofilmlere karşı kullanılabilecek gümüş nanopartikül uygulamaları incelenmiştir.

Kaynakça

  • Abbaszadegan, A., Ghahramani, Y., Gholami, B., Hemmateenejad, A., Dorostkar, S., Nabavizadeh, M., Sharghi, H. (2015). The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative Bacteria: a preliminary study. Hindawi Publishing Corporation Journal of Nanomaterials 2015, 1-8. DDI:10.1155/2015/720654
  • Abdallah, M., Benoliel, C., Drider, D., Dhulster, P., Chihib, N. E. (2014). Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Archives of Microbiology, 196(7), 453–472.
  • Abebe, G. M. (2020). The role of bacterial biofilm in antibiotic aesistance and food contamination, Review Article. International Journal of Microbiology 2020(281). DOI:10.1155/2020/1705814
  • Alsayeqh, A. F. (2010). Possible factors for food safety infraction and fraud continuity in restaurants in Saudi Arabia. Assiut Veterinary Medical Journal, 61(146), 154-169.
  • Araújo, P.A., Lemos, M., Mergulhão, F., Melo, L., Simões, M. (2011). Antimicrobial resistance in biofilms to disinfectants. İçinde: Méndez-Vilas A, (Eds). Science against microbial pathogens: communicating current research and technological advances. Badajoz: Formatex; 826– 834.
  • Armon, R., Laot, N., Lev, O., Shuval H., Fattal B. (2000). Controlling biofilm formation by hydrogen peroxide and silver combined disinfectant. Water Science and Technology, 42, 187-92.
  • Beloin, C., Roux, A., Ghigo, J. M. (2008). Escherichia coli biofilms. Current Topics in Microbiology and Immunology, 322, 249–289.
  • Blana, V.A., Nychas, G. J. E. (2014). Presence of quorum sensing signal molecules in minced beef stored under various temperature and packaging conditions. International Journal of Food Microbiology, 173, 1-8.
  • Brooks, J.D., Flint, S.H. (2008). Biofilms in the food industry: problems and potential solutions. International Journal of Food Science and Technology, 43, 2163-2176.
  • Bower, C.K., McGuire, J., Daeschel, M.A. (1996). The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends in Food Science and Technology, 7, 152–157.
  • Camargo, A.C., Woodward, J.J., Call, D.R., Nero, L.A. (2017). Listeria monocytogenes in food-processing facilities, food contamination, and human listeriosis: the Brazilian scenario. Foodborne Pathogens and Disease, 14, 623-636.
  • Chmielewski, R. A. N., Frank, J. F. (2003). Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety, 2(1), 22-32.
  • Choudhary, P., Singh, S., Agarwal V. (2020). Microbial biofilms. In: Bacterial Biofilms, IntechOpen. DOI: 10.5772/intechopen.90790
  • Clutterbuck, A. L., Woods, E. J., Knottenbelt, D. C., Clegg, P. D., Cochrane, C. A., Percival, S. L. (2007). Biofilms and their relevance to veterinary medicine. Veterinary Microbiology, 121(1-2), 1-17.
  • Costerton, J.W. (1999). Introduction to biofilm, International Journal of Antimicrobial Agents, 11( 3–4), 217-221.
  • Çakıroğlu, F. P., Uçar, A. (2008). Employees’ perception of hygiene in the catering industry in Ankara (Turkey). Food Control, 19, 9-15.
  • Davoudi, M., Ehrampoush, M. H., Vakili, T., Absalan, A., Ebrahimi, A. (2012). Antibacterial effects of hydrogen peroxide and silver composition on selected pathogenic enterobacteriaceae. International Journal of Environmental Health Engineering 2012, 1-23. DOI: 10.4103/2277-9183.96148
  • Donlan, R. M. (2001). Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases, 33(8), 1387–1392. DOI10.1086/322972
  • Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases. 8(9), 881-90.
  • Donlan, R. M., Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167-193.
  • Dufour, D., Leung, V., Lévesque, C.M. (2012). Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Topics, 22(1), 2-16. DOI: (10.1111/j.1601-1546.2012.00277.x)
  • Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668.
  • Flemming, H.C., Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633. Galie, S., Garcia-Gutierrez, C., Miguelez, E. M., Villar, C. J., Lombo, F. (2018). Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology, 9, 898.
  • Ghosh, A., Jayaraman, N., Chatterji, D. (2020). Small-molecule inhibition of bacterial biofilm. ACS omega, 5(7), 3108–3115. DOI: 10.1021/acsomega.9b03695
  • Giaouris, E. E., Simões, M. V. (2018). Pathogenic biofilm formation in the food industry and alternative control strategies,. Içinde Holban, A. M., Grumezescu, A. M. (Eds): Handbook of Food Bioengineering, Foodborne Diseases, UK, Elsevier Academic Press: 309-377.
  • Gonçalves, R.C., da Silva D. P., Signini, R., Naves, P. L. F. (2017). Inhibition of bacterial biofilms by carboxymethyl chitosan combined with silver, zinc and copper salts. International Journal of Biological Macromolecules, 105, 385-392. DOI: 10.1016/j.ijbiomac.2017.07.048
  • Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., ve ark. (2007). Preparation and antibacterial activity of Fe3O4–Ag nanoparticles. Nanotechnology, 18, 285604–285610.
  • González‐Rivas, F., Ripolles‐Avila, C., Fontecha‐Umaña, F., Ríos‐Castillo, A. G., Rodríguez‐Jerez, J. J. (2018). Biofilms in the spotlight: Detection, quantification, and removal methods. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1261-1276.
  • Holah, J.T. (1995). Special needs for disinfectants in food-handling establishments. Revue Scientifique et Technique Office International des Épizooties, 14, 95-104.
  • Huang, R., Li, M., Gregory, R. L. (2011). Bacterial interactions in dental biofilm. Virulence, 2(5), 435-444.
  • Ishida, H., Ishida, Y., Kurosaka, T., Otani, K.S., Kobayashi, H. (1998). In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 42, 1641–1645.
  • Jones, T.F., Angulo, F.J. (2006). Eating in restaurants: A risk factor for foodborne disease? Clinical Infectious Diseases, 43, 1324-1328.
  • Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R., Deepak, V., Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces, 79(2), 340-344. DOI: 10.1016/j.colsurfb.2010.04.014.
  • Karatan, E., Watnick, P. (2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 73(2), 310-347.
  • Khan, I., Tango, C.N., Miskeen, S., Lee, B.H., Oh, D.H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety—A review. Food Control, 73, 1426–1444.
  • Kim J.S., Kuk, E., Yu, K., Kim, J. H., Park, S. J., Lee, H.J. ve ark. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95–101.
  • Kumar, C. G., Anand, S. K. (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology, 42(1-2), 9-27.
  • Malaeb, L., Katuri, K.P., Logan, B.E., Maab, H., Nunes, S.P., Saikaly, P. E. (2013). A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environmental Science and Technology, 47 (20), 11821-11828.
  • Marambio-Jones, C., Hoek, E. M. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551.
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353. DOI: 10.1088/0957-4484/16/10/059
  • Namasivayam, K. R., Allen Roy, E. (2013). Anti biofilm effect of edicinal plant extracts against clinical isolate of biofilm of Escherichia coli. International Journal of Pharmacy and Pharmaceutical Research, 5(2), 486-489.
  • Ohta, A., Fukumoto, A., Iizaka, Y., Kato, F., Koyama, Y., Anzai, Y. (2020). Quorum sensing inhibitors against Chromobacterium violaceum CV026 derived from an actinomycete metabolite library. Biological and Pharmaceutical Bulletin, 43(1), 179-183.
  • Palmer, J., Flint, S., Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology and Biotechnology, 34(9), 577-588.
  • Parsek, M. R., Singh, P. K. (2003). Bacterial biofilms: an emerging link to disease pathogenesis. Annual Review of Microbiology, 57, 677-701.
  • Patel, A., Patra, F., Shah, N., Khedkar, C. (2018). Application of nanotechnology in the food industry: Present status and future prospects. İçinde: Grumezescu,A., M., Holban A., M., (Eds.) Handbook of Food Bioengineering, Impact of Nanoscience in the Food Industry (pp. 1-27). London: Elsevier.
  • Pulit-Prociak J., Banach M. (2016). Silver nanoparticles–a material of the future..? Open Chemistry, 14, 76–91 . Rabin, N., Zheng, Y., Opoku-Temeng, ., Du, Y., Bonsu, E. & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493-512.
  • Reij, M.W., Den Aantrekker, E.D. (2004). Recontamination as a source of pathogens in processed foods. International Journal of Food Microbiology, 91 (1), 1-11.
  • SCENIHR, (2014). Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Scientific Committee on Emerging and Newly Identified. Health Risks. https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_039.pdf
  • Simões, M., Bennett, R. N., Rosa, E. A. S. (2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 26(6), 746-757.
  • Simões, M., Simões, L. C., Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT ‐ Food Science and Technology, 43(4), 573-583.
  • Shi, X., Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science and Technology, 20(9), 407-413.
  • Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18, 225103-225111.
  • Shruthi, G., Prasad, K. S., Vinod, T. P., Balamurugan, V., Shivamallu, C. (2017). Green synthesis of biologically active silver nanoparticles through a phytomediated approach using areca catechu leaf extract. ChemistrySelect, 2, 10354–10359, DOI:10.1002/slct.201702257.
  • Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177-182.
  • Taraszkiewicz, A., Fila, G., Grinholc, M., Nakonieczna, J. (2013). Innovative strategies to overcome biofilm resistance. BioMed Research International, 150653. DOI: 10.1155/2013/150653.
  • Téllez, S. (2010). Biofilms and their impact on food industry. VISAVET Outreach Journal. https://www.visavet.es/en/articles/biofilms-impact-food-industry.php
  • Ünlü, G. (2020). Bacterial biofilms: Formation, prevention and control, Food Safety And Quality. Food Technology Magazine, 74 (10). https://www.ift.org/news-and-publications/food-technology-magazine/issues/2020/october/columns/food-safety-and-quality-bacterial-biofilms-formation-prevention-and-control
  • Valero, A., Rodríguez, M.-Y., Posada-Izquierdo, G. D., Pérez-Rodríguez, F., Carrasco, E., García-Gimeno, R. M. (2016). Risk factors influencing microbial contamination in food service centers, İçinde: H. A. Makun (Ed), Significance, Prevention and Control of Food Related Diseases ( pp. 28-58). Intech Open press, Croatia.
  • Van Houdt, R., Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4), 1117-1131.
  • Vasudevan, R. (2014). Biofilms: microbial cities of scientific significance. Journal of Microbiology and Experimentation, 1(3), 84-98.
  • Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., Yang, D. C. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial Cells, Nanomedicine and Biotechnology, 44(4), 1127-32.
  • Wilson, D. J. (2012). Insights from Genomics into Bacterial Pathogen Populations. PLOS Pathogens, 8(9), e1002874. DOI: 10.1371/journal.ppat.1002874
  • Winkelströter, L. K., Teixeira, F. B., Silva, E. P., Alves, V. F., De Martinis, E. C. (2014). Unraveling microbial biofilms of importance for food microbiology. Microbial Ecology, 68(1), 35-46.
  • Yang L., Liu Y., Wu H., Hoiby N., Molin S., Song Z. J. (2011). Current understanding of multi-species biofilms. International Journal of Oral Science, 3, 74–81.
  • Zhao, X., Zhao, F., Wang, J., Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Advances, 7(58), 36670-36683.
  • Zottola, E.A. (1994). Scientific status, summary, microbial attachment and biofilm formation, a new problem for food industry. Food Technology, 48, 107–114.

Biofilm problem and silver nanoparticle applications in food processing facilities

Yıl 2022, Cilt 6, Sayı 1, 51 - 63, 16.01.2022

Öz

The resistance developed by biofilms against disinfectants and antibiotics, which express the lifestyle of microorganism communities for acces to food and defense, has required research on the application of different methods to combat these microbial communities. Biofilm communities that live embedded in the matrix consisting of the extracellular polymeric substances they produce are strongly adhered to the surface where they are located, making it difficult to remove them from the environment. Microorganisms caused foodborne diseases can survive on surfaces by forming biofilms. Silver nanoparticles, which are particles smaller than 100 nm, have broad spectrum antibacterial activities against Gram positive and Gram negative bacteria with their unique chemical and physical properties due to their large surface area volume ratio and do not cause resistance. In this study, silver nanoparticle applications which can be used against biofilms in food processing facilities were investigated.

Kaynakça

  • Abbaszadegan, A., Ghahramani, Y., Gholami, B., Hemmateenejad, A., Dorostkar, S., Nabavizadeh, M., Sharghi, H. (2015). The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative Bacteria: a preliminary study. Hindawi Publishing Corporation Journal of Nanomaterials 2015, 1-8. DDI:10.1155/2015/720654
  • Abdallah, M., Benoliel, C., Drider, D., Dhulster, P., Chihib, N. E. (2014). Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Archives of Microbiology, 196(7), 453–472.
  • Abebe, G. M. (2020). The role of bacterial biofilm in antibiotic aesistance and food contamination, Review Article. International Journal of Microbiology 2020(281). DOI:10.1155/2020/1705814
  • Alsayeqh, A. F. (2010). Possible factors for food safety infraction and fraud continuity in restaurants in Saudi Arabia. Assiut Veterinary Medical Journal, 61(146), 154-169.
  • Araújo, P.A., Lemos, M., Mergulhão, F., Melo, L., Simões, M. (2011). Antimicrobial resistance in biofilms to disinfectants. İçinde: Méndez-Vilas A, (Eds). Science against microbial pathogens: communicating current research and technological advances. Badajoz: Formatex; 826– 834.
  • Armon, R., Laot, N., Lev, O., Shuval H., Fattal B. (2000). Controlling biofilm formation by hydrogen peroxide and silver combined disinfectant. Water Science and Technology, 42, 187-92.
  • Beloin, C., Roux, A., Ghigo, J. M. (2008). Escherichia coli biofilms. Current Topics in Microbiology and Immunology, 322, 249–289.
  • Blana, V.A., Nychas, G. J. E. (2014). Presence of quorum sensing signal molecules in minced beef stored under various temperature and packaging conditions. International Journal of Food Microbiology, 173, 1-8.
  • Brooks, J.D., Flint, S.H. (2008). Biofilms in the food industry: problems and potential solutions. International Journal of Food Science and Technology, 43, 2163-2176.
  • Bower, C.K., McGuire, J., Daeschel, M.A. (1996). The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends in Food Science and Technology, 7, 152–157.
  • Camargo, A.C., Woodward, J.J., Call, D.R., Nero, L.A. (2017). Listeria monocytogenes in food-processing facilities, food contamination, and human listeriosis: the Brazilian scenario. Foodborne Pathogens and Disease, 14, 623-636.
  • Chmielewski, R. A. N., Frank, J. F. (2003). Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety, 2(1), 22-32.
  • Choudhary, P., Singh, S., Agarwal V. (2020). Microbial biofilms. In: Bacterial Biofilms, IntechOpen. DOI: 10.5772/intechopen.90790
  • Clutterbuck, A. L., Woods, E. J., Knottenbelt, D. C., Clegg, P. D., Cochrane, C. A., Percival, S. L. (2007). Biofilms and their relevance to veterinary medicine. Veterinary Microbiology, 121(1-2), 1-17.
  • Costerton, J.W. (1999). Introduction to biofilm, International Journal of Antimicrobial Agents, 11( 3–4), 217-221.
  • Çakıroğlu, F. P., Uçar, A. (2008). Employees’ perception of hygiene in the catering industry in Ankara (Turkey). Food Control, 19, 9-15.
  • Davoudi, M., Ehrampoush, M. H., Vakili, T., Absalan, A., Ebrahimi, A. (2012). Antibacterial effects of hydrogen peroxide and silver composition on selected pathogenic enterobacteriaceae. International Journal of Environmental Health Engineering 2012, 1-23. DOI: 10.4103/2277-9183.96148
  • Donlan, R. M. (2001). Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases, 33(8), 1387–1392. DOI10.1086/322972
  • Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases. 8(9), 881-90.
  • Donlan, R. M., Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167-193.
  • Dufour, D., Leung, V., Lévesque, C.M. (2012). Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Topics, 22(1), 2-16. DOI: (10.1111/j.1601-1546.2012.00277.x)
  • Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662-668.
  • Flemming, H.C., Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633. Galie, S., Garcia-Gutierrez, C., Miguelez, E. M., Villar, C. J., Lombo, F. (2018). Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology, 9, 898.
  • Ghosh, A., Jayaraman, N., Chatterji, D. (2020). Small-molecule inhibition of bacterial biofilm. ACS omega, 5(7), 3108–3115. DOI: 10.1021/acsomega.9b03695
  • Giaouris, E. E., Simões, M. V. (2018). Pathogenic biofilm formation in the food industry and alternative control strategies,. Içinde Holban, A. M., Grumezescu, A. M. (Eds): Handbook of Food Bioengineering, Foodborne Diseases, UK, Elsevier Academic Press: 309-377.
  • Gonçalves, R.C., da Silva D. P., Signini, R., Naves, P. L. F. (2017). Inhibition of bacterial biofilms by carboxymethyl chitosan combined with silver, zinc and copper salts. International Journal of Biological Macromolecules, 105, 385-392. DOI: 10.1016/j.ijbiomac.2017.07.048
  • Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., ve ark. (2007). Preparation and antibacterial activity of Fe3O4–Ag nanoparticles. Nanotechnology, 18, 285604–285610.
  • González‐Rivas, F., Ripolles‐Avila, C., Fontecha‐Umaña, F., Ríos‐Castillo, A. G., Rodríguez‐Jerez, J. J. (2018). Biofilms in the spotlight: Detection, quantification, and removal methods. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1261-1276.
  • Holah, J.T. (1995). Special needs for disinfectants in food-handling establishments. Revue Scientifique et Technique Office International des Épizooties, 14, 95-104.
  • Huang, R., Li, M., Gregory, R. L. (2011). Bacterial interactions in dental biofilm. Virulence, 2(5), 435-444.
  • Ishida, H., Ishida, Y., Kurosaka, T., Otani, K.S., Kobayashi, H. (1998). In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 42, 1641–1645.
  • Jones, T.F., Angulo, F.J. (2006). Eating in restaurants: A risk factor for foodborne disease? Clinical Infectious Diseases, 43, 1324-1328.
  • Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R., Deepak, V., Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces B: Biointerfaces, 79(2), 340-344. DOI: 10.1016/j.colsurfb.2010.04.014.
  • Karatan, E., Watnick, P. (2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 73(2), 310-347.
  • Khan, I., Tango, C.N., Miskeen, S., Lee, B.H., Oh, D.H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety—A review. Food Control, 73, 1426–1444.
  • Kim J.S., Kuk, E., Yu, K., Kim, J. H., Park, S. J., Lee, H.J. ve ark. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, 95–101.
  • Kumar, C. G., Anand, S. K. (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology, 42(1-2), 9-27.
  • Malaeb, L., Katuri, K.P., Logan, B.E., Maab, H., Nunes, S.P., Saikaly, P. E. (2013). A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment. Environmental Science and Technology, 47 (20), 11821-11828.
  • Marambio-Jones, C., Hoek, E. M. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551.
  • Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353. DOI: 10.1088/0957-4484/16/10/059
  • Namasivayam, K. R., Allen Roy, E. (2013). Anti biofilm effect of edicinal plant extracts against clinical isolate of biofilm of Escherichia coli. International Journal of Pharmacy and Pharmaceutical Research, 5(2), 486-489.
  • Ohta, A., Fukumoto, A., Iizaka, Y., Kato, F., Koyama, Y., Anzai, Y. (2020). Quorum sensing inhibitors against Chromobacterium violaceum CV026 derived from an actinomycete metabolite library. Biological and Pharmaceutical Bulletin, 43(1), 179-183.
  • Palmer, J., Flint, S., Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology and Biotechnology, 34(9), 577-588.
  • Parsek, M. R., Singh, P. K. (2003). Bacterial biofilms: an emerging link to disease pathogenesis. Annual Review of Microbiology, 57, 677-701.
  • Patel, A., Patra, F., Shah, N., Khedkar, C. (2018). Application of nanotechnology in the food industry: Present status and future prospects. İçinde: Grumezescu,A., M., Holban A., M., (Eds.) Handbook of Food Bioengineering, Impact of Nanoscience in the Food Industry (pp. 1-27). London: Elsevier.
  • Pulit-Prociak J., Banach M. (2016). Silver nanoparticles–a material of the future..? Open Chemistry, 14, 76–91 . Rabin, N., Zheng, Y., Opoku-Temeng, ., Du, Y., Bonsu, E. & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493-512.
  • Reij, M.W., Den Aantrekker, E.D. (2004). Recontamination as a source of pathogens in processed foods. International Journal of Food Microbiology, 91 (1), 1-11.
  • SCENIHR, (2014). Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Scientific Committee on Emerging and Newly Identified. Health Risks. https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_039.pdf
  • Simões, M., Bennett, R. N., Rosa, E. A. S. (2009). Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Natural Product Reports, 26(6), 746-757.
  • Simões, M., Simões, L. C., Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT ‐ Food Science and Technology, 43(4), 573-583.
  • Shi, X., Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science and Technology, 20(9), 407-413.
  • Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18, 225103-225111.
  • Shruthi, G., Prasad, K. S., Vinod, T. P., Balamurugan, V., Shivamallu, C. (2017). Green synthesis of biologically active silver nanoparticles through a phytomediated approach using areca catechu leaf extract. ChemistrySelect, 2, 10354–10359, DOI:10.1002/slct.201702257.
  • Sondi, I., Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177-182.
  • Taraszkiewicz, A., Fila, G., Grinholc, M., Nakonieczna, J. (2013). Innovative strategies to overcome biofilm resistance. BioMed Research International, 150653. DOI: 10.1155/2013/150653.
  • Téllez, S. (2010). Biofilms and their impact on food industry. VISAVET Outreach Journal. https://www.visavet.es/en/articles/biofilms-impact-food-industry.php
  • Ünlü, G. (2020). Bacterial biofilms: Formation, prevention and control, Food Safety And Quality. Food Technology Magazine, 74 (10). https://www.ift.org/news-and-publications/food-technology-magazine/issues/2020/october/columns/food-safety-and-quality-bacterial-biofilms-formation-prevention-and-control
  • Valero, A., Rodríguez, M.-Y., Posada-Izquierdo, G. D., Pérez-Rodríguez, F., Carrasco, E., García-Gimeno, R. M. (2016). Risk factors influencing microbial contamination in food service centers, İçinde: H. A. Makun (Ed), Significance, Prevention and Control of Food Related Diseases ( pp. 28-58). Intech Open press, Croatia.
  • Van Houdt, R., Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4), 1117-1131.
  • Vasudevan, R. (2014). Biofilms: microbial cities of scientific significance. Journal of Microbiology and Experimentation, 1(3), 84-98.
  • Wang, C., Kim, Y. J., Singh, P., Mathiyalagan, R., Jin, Y., Yang, D. C. (2016). Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial Cells, Nanomedicine and Biotechnology, 44(4), 1127-32.
  • Wilson, D. J. (2012). Insights from Genomics into Bacterial Pathogen Populations. PLOS Pathogens, 8(9), e1002874. DOI: 10.1371/journal.ppat.1002874
  • Winkelströter, L. K., Teixeira, F. B., Silva, E. P., Alves, V. F., De Martinis, E. C. (2014). Unraveling microbial biofilms of importance for food microbiology. Microbial Ecology, 68(1), 35-46.
  • Yang L., Liu Y., Wu H., Hoiby N., Molin S., Song Z. J. (2011). Current understanding of multi-species biofilms. International Journal of Oral Science, 3, 74–81.
  • Zhao, X., Zhao, F., Wang, J., Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Advances, 7(58), 36670-36683.
  • Zottola, E.A. (1994). Scientific status, summary, microbial attachment and biofilm formation, a new problem for food industry. Food Technology, 48, 107–114.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Bilimi ve Teknolojisi
Yayınlanma Tarihi 2022/01
Bölüm Derleme
Yazarlar

Nuray GÜRLÜK (Sorumlu Yazar)
İstanbul Üniversitesi - Cerrahpaşa
0000-0003-1268-6196
Türkiye


Ahmet KOLUMAN
PAMUKKALE UNIVERSITY
0000-0001-5308-8884
Türkiye


Tolga KAHRAMAN
İSTANBUL ÜNİVERSİTESİ - CERRAHPAŞA
0000-0003-4877-6951
Türkiye

Yayımlanma Tarihi 16 Ocak 2022
Yayınlandığı Sayı Yıl 2022, Cilt 6, Sayı 1

Kaynak Göster

APA Gürlük, N. , Koluman, A. & Kahraman, T. (2022). Gıda İşletmelerinde Biyofilm Sorunu ve Gümüş Nanopartikül Uygulamaları . Aydın Gastronomy , 6 (1) , 51-63 . Retrieved from https://dergipark.org.tr/tr/pub/aydingas/issue/68106/900686



Aksi belirtilmediği sürece, bu sitedeki içerik Creative Commons Attribution 4.0 International lisansı ile lisanslanmıştır. (CC-BY-NC 4.0)

by-nc.png