Araştırma Makalesi
BibTex RIS Kaynak Göster

Views Of Mathematics Teachers To Evaluate The Mathematical Understandings Of Students: SPUR Approach

Yıl 2020, Cilt: 14 Sayı: 2, 1474 - 1503, 31.12.2020
https://doi.org/10.17522/balikesirnef.700662

Öz

The aim of this study is to determine the views of mathematics teachers to evaluate students' mathematical understanding. For this purpose, holistic multi-case design, one of the qualitative research methods, was used in the study. In this context, the participants of the study consisted of 12 mathematics teachers who were determined by easily accessible sampling method. Research data were collected through a mathematical understanding evaluation form and semi-structured interviews prepared by the researchers. The analysis of the data was conducted using a directed content analysis method based on the SPUR (skills, properties, uses and representations) approach. The results of the study revealed that mathematics teachers partly consider the dimensions of the SPUR approach when evaluating students' mathematical understanding. Also, the results of the present study pointed out that mathematics teachers mostly included the “skill” dimension of the SPUR approach in their evaluations, and although they wanted to include other SPUR dimensions in their evaluations, they could not do this adequately. In addition, the results showed some problems that teachers encountered in evaluating their students' mathematical understanding.

Kaynakça

  • Alkan, H. & Altun, M. (1998). Matematik öğretmenliği matematik öğretimi. Açıköğretim Fakültesi Yayınları No: 591. ISBN 975 - 492 – 825-8.
  • Argat, A. (2012). Pirie-Kieren dinamik modeli ile öğrencilerde matematiksel anlamanın gelişiminin incelenmesi.(Yayınlanmamış yüksek lisans tezi). İstanbul: Marmara Üniversitesi Eğitim Bilimleri Enstitüsü.
  • Arslan, E. (2013). Ortaokul öğrencilerinin “Pirie ve Kieren modeli”ne göre matematiksel anlama seviyelerinin belirlenmesi (Yayınlanmamış yüksek lisans tezi). Erzincan: Erzincan Üniversitesi Fen Bilimleri Enstitüsü.
  • Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The elementary school journal, 90(4), 449-466.
  • Baltacı, A. (2018). Nitel araştırmalarda örnekleme yöntemleri ve örnek hacmi sorunsalı üzerine kavramsal bir inceleme. Bitlis Eren Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(1), 231-274.
  • Barmby, P., Harries, T., Higgins, S., & Suggate, J. (2007). How can we assess mathematical understanding. In Proc. 31st Conf. of the Int. Group for the Psychology of Mathematics Education. 2, 41-48.
  • Baştürk, S., & Dönmez, G. (2011). Matematik öğretmen adaylarının pedagojik alan bilgilerinin ölçme ve değerlendirme bilgisi bileşeni bağlamında incelenmesi. Journal of Kirsehir Education Faculty, 12(3).
  • Birinci, D. K., Delice, A., & Aydın, E. (2013). Anlamayı anlamak: matematik eğitimi lisansüstü öğrencile-rinin lineer cebir kavramlarını anlamalarının incelenmesi. VI. Ulusal Lisansüstü Eğitim Sempozyumu, 55.
  • Bogdan, R.C. & Biklen, S.K. (1992) Qualitative research for education: An introduction to theory and methods, Boston: Allyn and Bacon. Byers, V., & Herscovics, N. (1977). Understanding school mathematics. Mathematics Teaching, 81, 24-27.
  • Buxton, L. (1978). Four levels of understanding. Mathematics in School, 7(4), 36.
  • Cai, J. (2002). Assessing and understanding US and Chinese students' mathematical thinking. Zentralblatt für Didaktik der Mathematik, 34(6), 278-290. ISSN 1615-679X.
  • Cohen, L., Manion, L., &Morrison, K. (2000). Research methods in education (5th ed.). London: Routledge Falmer.
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46.
  • Colorado State University (2018). An Introduction to content analysis. 09.09.2018 tarihinde https://writing.colostate.edu/guides/pdfs/guide61.pdf adresinden erişilmiştir.
  • Common Core State Standards for Mathematics. (2010). 01.05.2017 tarihinde http://www.nctm.org/uploadedFiles/Standards_and_Positions/Common_Core_State_Standards/Math_Standards.pdf adresinden erişilmiştir.
  • Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among five traditions. Thousand Oaks, CA: Sage.
  • Creswell, J. W. (2012). Research design: Qualitative, quantitative, and mixed methods approaches. (4th Edition), Sage publications.
  • Desfitri, R., & Vermana, L. (2019, February). Identifying teachers’ approach in assessing students’ understanding on derivative: SPUR perspective. In Journal of Physics: Conference Series (Vol. 1157, No. 4, p. 042114). IOP Publishing.
  • Garegae, K. G. (2007). A quest for understanding understanding in mathematics learning: Examining theories of learning. In Proceedings from Ninth International Conference: The Mathematics Education into the 21st Century Project, (21).
  • Gravetter, J. F. ve Forzano, L. B. (2012). Research methods for the behavioral sciences (4th Edition).USA: Linda Schreiber-Ganster.
  • Güler, A., Halıcıoğlu, M. B., & Taşğın, S. (2015). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Harlen, W., & James, M. (1997). Assessment and learning: differences and relationships between formative and summative assessment. Assessment in Education: Principles, Policy & Practice, 4(3), 365-379.
  • Hiebert, J. ve Carpenter, T. P. (1992). Learning and teaching with understanding. Grouws, D. A. (Eds.) Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics, (pp.65-97).Virginia, United States of America.
  • Hiebert, J. ve Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. J. Hiebert (Eds.) Conceptual and procedural knowledge; The case of mathematics, (pp. 1-27). Hillsdale, N. Jersey.
  • Kaba, Y., & Şengül, S. (2015). Ortaokul öğrencilerinin matematiksel anlamaları ile matematiğe yönelik tutumları arasındaki ilişki. Eğitim ve Bilim, 40(180), 103-123.
  • Karakuş, M., & Yeşilpınar, M. (2013). İlköğretim altıncı sınıf matematik dersinde uygulanan etkinliklerin ve ölçme-değerlendirme sürecinin incelenmesi: Bir durum çalısması. Pegem Eğitim ve Öğretim Dergisi, 3(1), 35-54.
  • Kilpatrick, J., Swafford, J.& Findell, B. (Eds.) (2001). Adding it up: helping children learn mathematics. mathematics learning study committee, center for education, National Research Council. Washington DC: National Academy Press.
  • Krippendorff, K. (2004). Content analysis. an ıntroduction to ıts methodology.Sage Publication, USA-New York.
  • Landis, J, R., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174.
  • Lauritzen, P. (2012). Conceptual and procedural knowledge of mathematical functions. University of Eastern Finland, (Dissertations in Education, Humanities, and Theology).
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newburry Park, CA: Sage.
  • Lunt, J. (2009). The effects of teachers' knowledge and understanding of addition and subtraction word problems on student understanding. The Pennsylvania State University, (Doctor of Philosophy in College of Education) The USA.
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of Fundamental Mathematics in China and the United States. Mahwah, NJ: Lawrence Earlbaum Associates, Inc.
  • Milli Eğitim Bakanlığı [MEB]. (2013). İlkokul ve ortaokul matematik dersi (1-8. Sınıflar) öğretim programı. Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Matematik dersi öğretim programı (ilkokul ve ortaokul 11-8. Sınıflar), Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • National Council of the Teachers of Mathematics (NCTM) (2000). Principles standards and for school mathematics, The National Council of Teachers of Mathematics, Inc.
  • Perkins, D. (1993). Teaching for understanding. american educator: the professional journal of the american federation of teachers, 17(3), s. 8,28-35. 11.06.2017 tarihinde https://www.ghaea.org/files/IowaCoreCurriculum/Module2/Teaching_for_Understanding_Perkins_article.pdf adresinden erişilmiştir.
  • Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it?. Educational studies in Mathematics, 26(2-3), 165-190.
  • Pirie, S., & Martin, L. (2000). The role of collecting in the growth of mathematical understanding. Mathematics Education Research Journal, 12(2), 127-146.
  • Shafer, M. C. & Romberg, T. A. (1999). Assessment in classrooms that promote understanding. Fennema, E. & Romberg, T. A. (Eds.), Mathematics classrooms that promote understanding (pp. 159-184). Mahwah, New Jersey London. ISBN 0-8058-3027-8 (cloth: alk. paper).—ISBN 0-8058-3028-6 (pbk.: alk. paper)
  • Sierpinska, A. (1994). Understanding in Mathematics. The Falmer Press, London, ISBN: 0-7507-0334-2.
  • Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics teaching, 77(1), 20-26.
  • Skemp, R.R. (1971). The psychology of learning mathematics. Middlesex, UK: Pengium Boks Ltd. Bell Library QA11 S57.
  • Sparkes, J. J. (1999). NCTM's Vision of Mathematics Assessment in the Secondary School: Issues and Challenges. Master’s Thesis, Faculty of Education Memorial University of New foundland, Canada.
  • Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American educational research journal, 33(2), 455-488.
  • Şencan, H. (2005). Sosyal ve davranışsal ölçümlerde güvenilirlik ve geçerlilik, Seçkin Yayıncılık Sanayi ve Ticaret A. Ş., Ankara.
  • Şengül, Ş ve Kaba, Y. (2016). Ortaokul öğrencilerinin farklı değişkenlere göre matematiksel anlamaları. The Journal of Academic Social Science Studies, 42, 345-360. Doi number: http://dx.doi.org/10.9761/JASSS3109.
  • Tesch, R. (1990). Qualitative research: Analysis types and software tools. New York: Palmer.
  • Thompson, D. R., & Kaur, B. (2011). Using a Multi-Dimensional Approach to Understanding to Assess Students' Mathematical Knowledge. In Assessment In The Mathematics Classroom: Yearbook 2011, Association of Mathematics Educators (pp. 17-31).
  • Thompson, D. R., & Senk, S. L. (2008, July). A multi-dimensional approach to understanding in mathematics textbooks developed by UCSMP. Paper presented in Discussion Group 17 of the International Congress on Mathematics Education. Monterrey, Mexico.
  • Usiskin, Z. (2003). A personal history of the UCSMP secondary school curriculum: 1960-1999. In Stanic, G. M. A., & Kilpatrick, J. (Eds.), A history of school mathematics, Volume 1 (pp. 673-736). Reston, VA: National Council of Teachers of Mathematics.
  • Usiskin, Z. (2012). What does it mean to understand some mathematics?. In Selected regular lectures from the 12th international congress on mathematical education (pp. 821-841). Springer International Publishing.
  • Van de Walle, J.A., Karp, K.S. ve Bay-Williams J.M. (2010). Elementrary and Middle School Mathematics Teaching Developmentally. Pearson. USA. ISBN-10: 0-205-57352-5 ISBN-13: 978-0-205-57352-3.
  • Yıldız, İ., & Uyanık, N. (2004). Matematik eğitiminde ölçme-değerlendirme üzerine. Kastamonu Eğitim Dergisi, 12 (1), 97-104.
  • Yin, R. K. (2003). Case Study Research Design and Methods (3th Edition), London: Sage Publications.
  • Yoong, W, K. (1987). Aspects of mathematical understanding. Singapore Journal of Education, 8(2), 45-55.
  • Wong, L. F., & Kaur, B. (2015). A study of mathematics written assessment in Singapore secondary schools. The Mathematics Educator, 16(1), 19-44.

Matematik Öğretmenlerinin Öğrencilerin Matematiksel Anlamalarının Değerlendirilmesine Yönelik Görüşleri: SPUR Yaklaşımı

Yıl 2020, Cilt: 14 Sayı: 2, 1474 - 1503, 31.12.2020
https://doi.org/10.17522/balikesirnef.700662

Öz

Bu çalışmanın amacı, matematik öğretmenlerinin öğrencilerin matematiksel anlamalarını değerlendirmeye yönelik görüşlerini belirlemektir. Bu amaç doğrultusunda, çalışmada nitel araştırma desenlerinden bütüncül çoklu durum çalışması yöntemi kullanılmıştır. Bu bağlamda, çalışmanın katılımcıları, kolay ulaşılabilir örneklem yöntemiyle belirlenen 12 matematik öğretmeninden oluşmuştur. Araştırma verileri, araştırmacılar tarafından hazırlanan matematiksel anlamayı değerlendirme formu ve yarı-yapılandırılmış mülakatlar aracılığıyla toplanmıştır. Verilerin analizi ise SPUR (beceri, özellik, kullanma ve temsil) yaklaşımına dayalı olarak yönlendirilmiş içerik analizi yöntemi ile yapılmıştır. Çalışma sonuçları, matematik öğretmenlerinin öğrencilerin matematiksel anlamalarını değerlendirmelerinde SPUR yaklaşımının boyutlarına (beceri, özellik, kullanma ve temsil) kısmen dikkat ettiklerini ortaya koymaktadır. Ek olarak şimdiki çalışmanın sonuçları, öğretmenlerin değerlendirmelerinde en fazla SPUR yaklaşımının “beceri” boyutuna yer verdiklerini, değerlendirmelerinde diğer SPUR boyutlarına da yer vermek istemelerine rağmen bunu yeterince yapamadıklarını ortaya koymuştur. Ayrıca çalışma sonuçları, öğretmenlerin öğrencilerinin matematiksel anlamalarını değerlendirmelerinde karşılaştıkları bazı sorunlara da işaret etmektedir.

Kaynakça

  • Alkan, H. & Altun, M. (1998). Matematik öğretmenliği matematik öğretimi. Açıköğretim Fakültesi Yayınları No: 591. ISBN 975 - 492 – 825-8.
  • Argat, A. (2012). Pirie-Kieren dinamik modeli ile öğrencilerde matematiksel anlamanın gelişiminin incelenmesi.(Yayınlanmamış yüksek lisans tezi). İstanbul: Marmara Üniversitesi Eğitim Bilimleri Enstitüsü.
  • Arslan, E. (2013). Ortaokul öğrencilerinin “Pirie ve Kieren modeli”ne göre matematiksel anlama seviyelerinin belirlenmesi (Yayınlanmamış yüksek lisans tezi). Erzincan: Erzincan Üniversitesi Fen Bilimleri Enstitüsü.
  • Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The elementary school journal, 90(4), 449-466.
  • Baltacı, A. (2018). Nitel araştırmalarda örnekleme yöntemleri ve örnek hacmi sorunsalı üzerine kavramsal bir inceleme. Bitlis Eren Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(1), 231-274.
  • Barmby, P., Harries, T., Higgins, S., & Suggate, J. (2007). How can we assess mathematical understanding. In Proc. 31st Conf. of the Int. Group for the Psychology of Mathematics Education. 2, 41-48.
  • Baştürk, S., & Dönmez, G. (2011). Matematik öğretmen adaylarının pedagojik alan bilgilerinin ölçme ve değerlendirme bilgisi bileşeni bağlamında incelenmesi. Journal of Kirsehir Education Faculty, 12(3).
  • Birinci, D. K., Delice, A., & Aydın, E. (2013). Anlamayı anlamak: matematik eğitimi lisansüstü öğrencile-rinin lineer cebir kavramlarını anlamalarının incelenmesi. VI. Ulusal Lisansüstü Eğitim Sempozyumu, 55.
  • Bogdan, R.C. & Biklen, S.K. (1992) Qualitative research for education: An introduction to theory and methods, Boston: Allyn and Bacon. Byers, V., & Herscovics, N. (1977). Understanding school mathematics. Mathematics Teaching, 81, 24-27.
  • Buxton, L. (1978). Four levels of understanding. Mathematics in School, 7(4), 36.
  • Cai, J. (2002). Assessing and understanding US and Chinese students' mathematical thinking. Zentralblatt für Didaktik der Mathematik, 34(6), 278-290. ISSN 1615-679X.
  • Cohen, L., Manion, L., &Morrison, K. (2000). Research methods in education (5th ed.). London: Routledge Falmer.
  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46.
  • Colorado State University (2018). An Introduction to content analysis. 09.09.2018 tarihinde https://writing.colostate.edu/guides/pdfs/guide61.pdf adresinden erişilmiştir.
  • Common Core State Standards for Mathematics. (2010). 01.05.2017 tarihinde http://www.nctm.org/uploadedFiles/Standards_and_Positions/Common_Core_State_Standards/Math_Standards.pdf adresinden erişilmiştir.
  • Creswell, J. W. (1998). Qualitative inquiry and research design: Choosing among five traditions. Thousand Oaks, CA: Sage.
  • Creswell, J. W. (2012). Research design: Qualitative, quantitative, and mixed methods approaches. (4th Edition), Sage publications.
  • Desfitri, R., & Vermana, L. (2019, February). Identifying teachers’ approach in assessing students’ understanding on derivative: SPUR perspective. In Journal of Physics: Conference Series (Vol. 1157, No. 4, p. 042114). IOP Publishing.
  • Garegae, K. G. (2007). A quest for understanding understanding in mathematics learning: Examining theories of learning. In Proceedings from Ninth International Conference: The Mathematics Education into the 21st Century Project, (21).
  • Gravetter, J. F. ve Forzano, L. B. (2012). Research methods for the behavioral sciences (4th Edition).USA: Linda Schreiber-Ganster.
  • Güler, A., Halıcıoğlu, M. B., & Taşğın, S. (2015). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
  • Harlen, W., & James, M. (1997). Assessment and learning: differences and relationships between formative and summative assessment. Assessment in Education: Principles, Policy & Practice, 4(3), 365-379.
  • Hiebert, J. ve Carpenter, T. P. (1992). Learning and teaching with understanding. Grouws, D. A. (Eds.) Handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics, (pp.65-97).Virginia, United States of America.
  • Hiebert, J. ve Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. J. Hiebert (Eds.) Conceptual and procedural knowledge; The case of mathematics, (pp. 1-27). Hillsdale, N. Jersey.
  • Kaba, Y., & Şengül, S. (2015). Ortaokul öğrencilerinin matematiksel anlamaları ile matematiğe yönelik tutumları arasındaki ilişki. Eğitim ve Bilim, 40(180), 103-123.
  • Karakuş, M., & Yeşilpınar, M. (2013). İlköğretim altıncı sınıf matematik dersinde uygulanan etkinliklerin ve ölçme-değerlendirme sürecinin incelenmesi: Bir durum çalısması. Pegem Eğitim ve Öğretim Dergisi, 3(1), 35-54.
  • Kilpatrick, J., Swafford, J.& Findell, B. (Eds.) (2001). Adding it up: helping children learn mathematics. mathematics learning study committee, center for education, National Research Council. Washington DC: National Academy Press.
  • Krippendorff, K. (2004). Content analysis. an ıntroduction to ıts methodology.Sage Publication, USA-New York.
  • Landis, J, R., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174.
  • Lauritzen, P. (2012). Conceptual and procedural knowledge of mathematical functions. University of Eastern Finland, (Dissertations in Education, Humanities, and Theology).
  • Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newburry Park, CA: Sage.
  • Lunt, J. (2009). The effects of teachers' knowledge and understanding of addition and subtraction word problems on student understanding. The Pennsylvania State University, (Doctor of Philosophy in College of Education) The USA.
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of Fundamental Mathematics in China and the United States. Mahwah, NJ: Lawrence Earlbaum Associates, Inc.
  • Milli Eğitim Bakanlığı [MEB]. (2013). İlkokul ve ortaokul matematik dersi (1-8. Sınıflar) öğretim programı. Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • Milli Eğitim Bakanlığı [MEB]. (2018). Matematik dersi öğretim programı (ilkokul ve ortaokul 11-8. Sınıflar), Talim ve Terbiye Kurulu Başkanlığı, Ankara.
  • National Council of the Teachers of Mathematics (NCTM) (2000). Principles standards and for school mathematics, The National Council of Teachers of Mathematics, Inc.
  • Perkins, D. (1993). Teaching for understanding. american educator: the professional journal of the american federation of teachers, 17(3), s. 8,28-35. 11.06.2017 tarihinde https://www.ghaea.org/files/IowaCoreCurriculum/Module2/Teaching_for_Understanding_Perkins_article.pdf adresinden erişilmiştir.
  • Pirie, S., & Kieren, T. (1994). Growth in mathematical understanding: How can we characterise it and how can we represent it?. Educational studies in Mathematics, 26(2-3), 165-190.
  • Pirie, S., & Martin, L. (2000). The role of collecting in the growth of mathematical understanding. Mathematics Education Research Journal, 12(2), 127-146.
  • Shafer, M. C. & Romberg, T. A. (1999). Assessment in classrooms that promote understanding. Fennema, E. & Romberg, T. A. (Eds.), Mathematics classrooms that promote understanding (pp. 159-184). Mahwah, New Jersey London. ISBN 0-8058-3027-8 (cloth: alk. paper).—ISBN 0-8058-3028-6 (pbk.: alk. paper)
  • Sierpinska, A. (1994). Understanding in Mathematics. The Falmer Press, London, ISBN: 0-7507-0334-2.
  • Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics teaching, 77(1), 20-26.
  • Skemp, R.R. (1971). The psychology of learning mathematics. Middlesex, UK: Pengium Boks Ltd. Bell Library QA11 S57.
  • Sparkes, J. J. (1999). NCTM's Vision of Mathematics Assessment in the Secondary School: Issues and Challenges. Master’s Thesis, Faculty of Education Memorial University of New foundland, Canada.
  • Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American educational research journal, 33(2), 455-488.
  • Şencan, H. (2005). Sosyal ve davranışsal ölçümlerde güvenilirlik ve geçerlilik, Seçkin Yayıncılık Sanayi ve Ticaret A. Ş., Ankara.
  • Şengül, Ş ve Kaba, Y. (2016). Ortaokul öğrencilerinin farklı değişkenlere göre matematiksel anlamaları. The Journal of Academic Social Science Studies, 42, 345-360. Doi number: http://dx.doi.org/10.9761/JASSS3109.
  • Tesch, R. (1990). Qualitative research: Analysis types and software tools. New York: Palmer.
  • Thompson, D. R., & Kaur, B. (2011). Using a Multi-Dimensional Approach to Understanding to Assess Students' Mathematical Knowledge. In Assessment In The Mathematics Classroom: Yearbook 2011, Association of Mathematics Educators (pp. 17-31).
  • Thompson, D. R., & Senk, S. L. (2008, July). A multi-dimensional approach to understanding in mathematics textbooks developed by UCSMP. Paper presented in Discussion Group 17 of the International Congress on Mathematics Education. Monterrey, Mexico.
  • Usiskin, Z. (2003). A personal history of the UCSMP secondary school curriculum: 1960-1999. In Stanic, G. M. A., & Kilpatrick, J. (Eds.), A history of school mathematics, Volume 1 (pp. 673-736). Reston, VA: National Council of Teachers of Mathematics.
  • Usiskin, Z. (2012). What does it mean to understand some mathematics?. In Selected regular lectures from the 12th international congress on mathematical education (pp. 821-841). Springer International Publishing.
  • Van de Walle, J.A., Karp, K.S. ve Bay-Williams J.M. (2010). Elementrary and Middle School Mathematics Teaching Developmentally. Pearson. USA. ISBN-10: 0-205-57352-5 ISBN-13: 978-0-205-57352-3.
  • Yıldız, İ., & Uyanık, N. (2004). Matematik eğitiminde ölçme-değerlendirme üzerine. Kastamonu Eğitim Dergisi, 12 (1), 97-104.
  • Yin, R. K. (2003). Case Study Research Design and Methods (3th Edition), London: Sage Publications.
  • Yoong, W, K. (1987). Aspects of mathematical understanding. Singapore Journal of Education, 8(2), 45-55.
  • Wong, L. F., & Kaur, B. (2015). A study of mathematics written assessment in Singapore secondary schools. The Mathematics Educator, 16(1), 19-44.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Rahime Çelik Görgüt 0000-0001-8596-6207

Yüksel Ddde 0000-0001-7634-4908

Yayımlanma Tarihi 31 Aralık 2020
Gönderilme Tarihi 9 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 14 Sayı: 2

Kaynak Göster

APA Çelik Görgüt, R., & Ddde, Y. (2020). Matematik Öğretmenlerinin Öğrencilerin Matematiksel Anlamalarının Değerlendirilmesine Yönelik Görüşleri: SPUR Yaklaşımı. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 14(2), 1474-1503. https://doi.org/10.17522/balikesirnef.700662