Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of Total Antioxidant Capacities in Turkish and Filter Coffee Samples by Electrochemical Methods

Yıl 2020, Cilt: 7 Sayı: 1, 382 - 393, 28.06.2020
https://doi.org/10.35193/bseufbd.736123

Öz

In this study, cyclic (CV), square wave stripping (SWSV) and differential pulse stripping voltammetric (DPSV) methods were used to determine total antioxidant capacity (TAC) in Turkish and Filter coffees brewed with differently roasted coffee beans such as light, medium and dark. Voltammetric parameters were optimized in pH 4.0 Britton-Robinson buffer solution using carbon paste electrode (CPE). Electrochemical behavior of gallic acid and quercetin as standard antioxidant substances were investigated on CPE under optimum conditions by CV, SWSV and DPSV. With all three electrochemical techniques (CV, SWSV, DPSV), two oxidation peaks were observed for gallic acid approximately at 350 mV and 700 mV, while anodic peaks were obtained for quercetin at 340 mV, 725 mV and 1015 mV. However, anodic peak currents at 350 mV for both substances were preferred using CPE to determine total antioxidant capacities in coffee samples in terms of equivalent gallic acid and quercetin. It was found that coffee samples prepared by light roasted coffee beans showed maximum antioxidant capacity (TAC). TAC values for Turkish coffee prepared with less roasted coffee beans were calculated as 17.868±0.281 g/L and 65.165±1.024 g/L equivalent gallic acid and quercetin using CV method. Also, TAC values for filter coffee were 32.290±0.839 g/L and 118.471±3.529 g/L, respectively. Moreover, TAC values in all coffee samples were also analyzed with DPSV and SWSV as well as CV. As a result, TAC analysis is carried out directly on food samples with electrochemical methods, fast, cheap and without pre-treatment.

Teşekkür

This study is performed as a multidisciplinary Master of Science thesis study of Sevinç Yıldırım with the advisor Ilkay Gok and co-advisor Ersin Demir. Also, we would like to thank Kurukahveci Mehmet Efendi Mahdumları Ltd. Şti. for purchasing chemicals and some equipment used during analysis, Arzum Elektrikli Ev Aletleri San. ve Tic. A.Ş. for donation of Turkish coffee machine and Gastro Coffee Roastery Ltd. Şti. for preperation and donation of hand crafted specialty coffee samples and providing espresso coffee machine.

Kaynakça

  • Cemal, K., & Recep P. (2015). Doğal Antioksidanların Sınıflandırılması ve İnsan Sağlığına Etkileri. Turkish Journal of Agriculture - Food Science and Technology, 3(4), 226-234.
  • Michael, L., Klaudia, J., Patrik, P., Kamil, K., Kamil, M. & Marian V. (2018). Free Radicals and Antioxidants in Human Disease. Nutritional Antioxidant Therapies: Treatments and Perspectives. Springer,
  • Helmut, S., Carsten, B. & Dean P. J. (2017). Oxidative Stress. Annual Review of Biochemistry, 86, 715-748.
  • Helmut, S. & Enrique, C. (1985). Oxidative stress: damage to intact cells and organs. Philosophical Transactions of the Royal Society, 311, 617–631.
  • Enrique, C. & Kelvin, K. A. D. (2000). Mitochondrial Free Radical Generation, Oxidative Stress, and Aging. Free Radical Biology & Medicine, 29 (3/4), 222–230.
  • Hatice, T., İlhami, G., Ercan, Bursal, Ahmet, C. G., Saleh, H. A. & Ekrem, K. (2017). Antioxidant Activity and Phenolic Compounds of Ginger (Zingiber Officinale Rosc.) Determined by HPLC-MS/MS. Journal of Food Measurement and Characterization, 11, 556–566.
  • Geir, B. & Salvatore, C. (2017). Role of Oxidative Stress and Antioxidants in Daily Nutrition and Human Health. Nutrition, 33, 311–321.
  • Ergul, B. K. (2016). The Importance of Antioxidants Which Play the Role in Cellular Response Against Oxidative/Nitrosative Stress: Current State. Nutrition Journal, 15, 17.
  • Lien, A. P. H., Hua, H. & Chuong, P. H. (2008). Free Radicals, Antioxidants in Disease and Health. International Journal of Biomedical Science, 4(2), 89–96.
  • Emad S. & Ghada, M. A. (2018). Antioxidants in Foods and Its Applications. IntechOpen, London, United Kingdom.
  • Lobo, V., Patil, A., Phatak, A. & Chandra, A. (2010). Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacognosy Reviews, 4(8), 118–126.
  • A. R. Sen & P.K. Mandal, (2017). Use of Natural Antioxidants in Muscle Foods and their Benefits in Human Health: An Overview. International Journal of Meat Science, 7(1), 1–5.
  • Drazenka, K. & Arijana, B. (2014). Antioxidants in Coffee. Processing and Impact on Antioxidants in Beverages, 25-32
  • Pawel, G., Krzysztof, D., Aleksander, S., Jolanta, T. G., Michal, M. & Krzysztof, P. (2016). Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. European Food Research and Technology, 242, 641–653.
  • Daniel, B. R., Antonio, C., Jose, C. C., Amparo, A. T. & Jolanta, T. G. (2017). Evaluation of the Antioxidant Capacity, Furan Compounds and Cytoprotective/Cytotoxic Effects upon Caco-2 Cells of Commercial Colombian Coffee. Food Chemistry, 219, 364–372.
  • Birsen, Y., Nilüfer, A. T. & Saniye, S. (2017). Turkish cultural heritage: a cup of coffee. Journal of Ethnic Foods, 4(4), 213–220.
  • Solange, I. M., Ercilia, M. S. M., Silvia, M. & Jose, A. T. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, (4), Article number: 661.
  • Jane, V. H. & Balz, F. (2006). Coffee and Health: A Review of Recent Human Research. Critical Reviews in Food Science and Nutrition, 46, 101–123.
  • Adriana F. (2018). Nutritional and health effects of coffee. Burleigh Dodds Science Publishing, Cambridge, UK.
  • Prasun, B., Amit, K. G. & Chandrasekhar, G. (2012). Recent Developments on Polyphenol–Protein Interactions: Effects on Tea And Coffee Taste, Antioxidant Properties and The Digestive System. Food & Function, 6(3), 592–605.
  • Alessia, P., Antonio, Z., Roberto, L., Giancarlo, M. & Rita, P. (2013). Recovery of Natural Antioxidants from Spent Coffee Grounds. Journal of Agricultural and Food Chemistry, 61(17), 4162–4168.
  • Tena, N., Drazenka, K., Ana, B. C., Dunja, H. & Maja, B. (2012). Bioactive Composition and Antioxidant Potential of Different Commonly Consumed Coffee Brews Affected by Their Preparation Technique and Milk Addition. Food Chemistry, 134(4), 1870–1877.
  • Telma, A. F. C., Marcela, P. M., Thaise, P. M., Daniela, M. O., Marcelo, M. R., Cibelem, I. B., Carmen, G.C. V., Bruno, M. M., Daniela, T., Vera, L. T., Luiz, A. M. C., & Elizabeth, A. F. S. T. (2012). Medium Light and Medium Roast Paper-Filtered Coffee Increased Antioxidant Capacity in Healthy Volunteers: Results of a Randomized Trial. Plant Foods for Human Nutrition, 67, 277–282.
  • Tolgahan, K. & Vural, G. (2016). Effect of Roasting and Brewing On The Antioxidant Capacity of Espresso Brews Determined by the QUENCHER Procedure. Food Research International, 89(2), 976–981.
  • Irda, F. & Annisa, K. R. (2016). Antioxidant Activities of Arabica Green Coffee From Three Regions Using ABTS And DPPH Assays. Asian Journal of Pharmaceutical and Clinical Research, 9(2), 189-193.
  • Magdalena, J.S., Aleksandra, S., Krystyna, P. & Maria, P. D. P. (2016). Chlorogenic Acids, Caffeine Content and Antioxidant Properties of Green Coffee Extracts: Influence of Green Coffee Bean Preparation. European Food Research and Technology, 242, 1403–1409.
  • Vignoli, J. A., Bassoli, D. G. & Benassi, M. T. (2011). Antioxidant Activity, Polyphenols, Caffeine and Melanoidins in Soluble Coffee: The Influence of Processing Conditions and Raw Material. Food Chemistry, 124, 863–868.
  • Luis, M. M., Marcela, A. S., Salette, R., Jose, L. F. C. L. & Antonio, O. S. S. R. (2006). Automatic Method for the Determination of Folin−Ciocalteu Reducing Capacity in Food Products. Journal of Agricultural and Food Chemistry, 54(15), 5241−5246.
  • Ersin D. (2019). A Simple and Sensitive Square Wave Stripping Pathway for the Analysis of Desmedipham Herbicide by Modified Carbon Paste Electrode Based on Hematite (α‐Fe2O3 Nanoparticles). Electroanalysis, 31(8), 1545−1553.
  • Yongnian, N., Ping, Q. & Serge, K. (2005) Simultaneous Voltammetric Determination of Four Carbamate Pesticides with the Use of Chemometrics. Analytica Chimica Acta, 537(1-2), 321-330.
  • Burcu, D. T., Sibel, A. O. & Bengi U. (2010). The Analytical Applications of Square Wave Voltammetry on Pharmaceutical Analysis. The Open Chemical and Biomedical Methods Journal, 3, 56-73.
  • Ersin, D., Ahmet, S., Franck, M. T. K., Erhan, D. & Hassan, Y. A. E. (2020). Electrochemical Evaluation of the Total Antioxidant Capacity of Yam Food Samples on a Polyglycine-Glassy Carbon Modified Electrode. Current Analytical Chemistry, 16(2), 176-183.
  • Ersin, D (2019). Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry. Gazi University Journal of Science, 32(4), 1123 – 1136.
  • Ahmet, S., Tamara, B., Erhan, D. & Mahmut, D. (2019). Direct and Fast Electrochemical Determination of Catechin in Tea Extracts using SWCNT‐Subphthalocyanine Hybrid Material. Electroanalysis, 31(9), 1697 – 1707.
  • Ahmet, S., Alirez, K., Erhan, D. & Esmail, D. (2020). Ultrasensitive Detection of Rutin Antioxidant Through a Magnetic Micro-Mesoporous Graphitized Carbon Wrapped Co Nanoarchitecture. Sensors and Actuators B: Chemical, 312, 127939.
  • Ahmet, S., Baybars, K., Erhan, D., Tamara, B. & Mahmut, D. (2018). 3D SWCNTs-Coumarin Hybrid Material for Ultra-Sensitive Determination of Quercetin Antioxidant Capacity. Sensors and Actuators B: Chemical, 267, 165-173.

Türk ve Filtre Kahve Örneklerindeki Toplam Antioksidan Kapasitelerin Elektrokimyasal Yöntemlerle Belirlenmesi

Yıl 2020, Cilt: 7 Sayı: 1, 382 - 393, 28.06.2020
https://doi.org/10.35193/bseufbd.736123

Öz

Bu çalışmada, az, orta ve koyu gibi değişik derecelerde farklı kavrulmuş kahve çekirdekleriyle demlenen Türk ve Filtre kahvelerindeki toplam antioksidan kapasitesinin (TAC) belirlenmesi için dönüşümlü (CV), kare dalga sıyırma (SWSV) ve diferansiyel puls sıyırma (DPSV) voltametrik yöntemlerle kullanıldı. Voltametrik parametreleri, karbon pasta elektrotu (CPE) kullanılarak pH 4.0 Britton-Robinson tampon çözeltisinde optimize edildi. Standart antioksidan maddeleri olarak gallik asit ve kuersetin'in elektrokimyasal davranışı CPE üzerinde optimum koşullar altında CV, SWSV ve DPSV teknikleri ile incelendi. Her üç elektrokimyasal tekniklerle (CV, SWSV, DPSV) gallik asit için yaklaşık 350 mV ve 700 mV'ta olmak üzere iki oksidasyon piki görülürken, kuersetin için ise 340 mV, 725 mV ve 1015 mV'larda anodik pikleri elde edildi. Bununla birlikte, kahve örneklerindeki toplam antioksidan kapasitelerini eşdeğer gallik asit ve kuersetin cinsinden belirlemek için CPE kullanılarak pH 4.0'da her iki maddeye ait yaklaşık 350 mV'de anodik pik akımları tercih edildi. Az kavrulmuş kahve çekirdekleriyle hazırlanan kahve örneklerinde maksimum antioksidan kapasite (TAC) gösterdiği bulundu. Az kavrulmuş kahve çekirdekleri ile hazırlanan Türk kahvesi için TAC değeri, CV yöntemi kullanılarak 17.868 ± 0.281 g/L ve 65.165 ± 1.024 g/L eşdeğer gallik asit ve kersetin olarak hesaplandı. Ayrıca, Filtre kahvesi için, TAC değerleri sırasıyla 32.290 ± 0.839 g/L ve 118.471 ± 3.529 g/L olarak bulundu. Dahası, tüm kahve örneklerindeki TAC değerleri CV'nin yanı sıra DPSV ve SWSV ile analiz edildi. Sonuç olarak, elektrokimyasal yöntemlerle, hızlı, ucuz ve ön işlemlere tabi tutulmadan doğrudan gıda örneklerinde TAC analizi edilmektedir.

Kaynakça

  • Cemal, K., & Recep P. (2015). Doğal Antioksidanların Sınıflandırılması ve İnsan Sağlığına Etkileri. Turkish Journal of Agriculture - Food Science and Technology, 3(4), 226-234.
  • Michael, L., Klaudia, J., Patrik, P., Kamil, K., Kamil, M. & Marian V. (2018). Free Radicals and Antioxidants in Human Disease. Nutritional Antioxidant Therapies: Treatments and Perspectives. Springer,
  • Helmut, S., Carsten, B. & Dean P. J. (2017). Oxidative Stress. Annual Review of Biochemistry, 86, 715-748.
  • Helmut, S. & Enrique, C. (1985). Oxidative stress: damage to intact cells and organs. Philosophical Transactions of the Royal Society, 311, 617–631.
  • Enrique, C. & Kelvin, K. A. D. (2000). Mitochondrial Free Radical Generation, Oxidative Stress, and Aging. Free Radical Biology & Medicine, 29 (3/4), 222–230.
  • Hatice, T., İlhami, G., Ercan, Bursal, Ahmet, C. G., Saleh, H. A. & Ekrem, K. (2017). Antioxidant Activity and Phenolic Compounds of Ginger (Zingiber Officinale Rosc.) Determined by HPLC-MS/MS. Journal of Food Measurement and Characterization, 11, 556–566.
  • Geir, B. & Salvatore, C. (2017). Role of Oxidative Stress and Antioxidants in Daily Nutrition and Human Health. Nutrition, 33, 311–321.
  • Ergul, B. K. (2016). The Importance of Antioxidants Which Play the Role in Cellular Response Against Oxidative/Nitrosative Stress: Current State. Nutrition Journal, 15, 17.
  • Lien, A. P. H., Hua, H. & Chuong, P. H. (2008). Free Radicals, Antioxidants in Disease and Health. International Journal of Biomedical Science, 4(2), 89–96.
  • Emad S. & Ghada, M. A. (2018). Antioxidants in Foods and Its Applications. IntechOpen, London, United Kingdom.
  • Lobo, V., Patil, A., Phatak, A. & Chandra, A. (2010). Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacognosy Reviews, 4(8), 118–126.
  • A. R. Sen & P.K. Mandal, (2017). Use of Natural Antioxidants in Muscle Foods and their Benefits in Human Health: An Overview. International Journal of Meat Science, 7(1), 1–5.
  • Drazenka, K. & Arijana, B. (2014). Antioxidants in Coffee. Processing and Impact on Antioxidants in Beverages, 25-32
  • Pawel, G., Krzysztof, D., Aleksander, S., Jolanta, T. G., Michal, M. & Krzysztof, P. (2016). Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. European Food Research and Technology, 242, 641–653.
  • Daniel, B. R., Antonio, C., Jose, C. C., Amparo, A. T. & Jolanta, T. G. (2017). Evaluation of the Antioxidant Capacity, Furan Compounds and Cytoprotective/Cytotoxic Effects upon Caco-2 Cells of Commercial Colombian Coffee. Food Chemistry, 219, 364–372.
  • Birsen, Y., Nilüfer, A. T. & Saniye, S. (2017). Turkish cultural heritage: a cup of coffee. Journal of Ethnic Foods, 4(4), 213–220.
  • Solange, I. M., Ercilia, M. S. M., Silvia, M. & Jose, A. T. (2011). Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, (4), Article number: 661.
  • Jane, V. H. & Balz, F. (2006). Coffee and Health: A Review of Recent Human Research. Critical Reviews in Food Science and Nutrition, 46, 101–123.
  • Adriana F. (2018). Nutritional and health effects of coffee. Burleigh Dodds Science Publishing, Cambridge, UK.
  • Prasun, B., Amit, K. G. & Chandrasekhar, G. (2012). Recent Developments on Polyphenol–Protein Interactions: Effects on Tea And Coffee Taste, Antioxidant Properties and The Digestive System. Food & Function, 6(3), 592–605.
  • Alessia, P., Antonio, Z., Roberto, L., Giancarlo, M. & Rita, P. (2013). Recovery of Natural Antioxidants from Spent Coffee Grounds. Journal of Agricultural and Food Chemistry, 61(17), 4162–4168.
  • Tena, N., Drazenka, K., Ana, B. C., Dunja, H. & Maja, B. (2012). Bioactive Composition and Antioxidant Potential of Different Commonly Consumed Coffee Brews Affected by Their Preparation Technique and Milk Addition. Food Chemistry, 134(4), 1870–1877.
  • Telma, A. F. C., Marcela, P. M., Thaise, P. M., Daniela, M. O., Marcelo, M. R., Cibelem, I. B., Carmen, G.C. V., Bruno, M. M., Daniela, T., Vera, L. T., Luiz, A. M. C., & Elizabeth, A. F. S. T. (2012). Medium Light and Medium Roast Paper-Filtered Coffee Increased Antioxidant Capacity in Healthy Volunteers: Results of a Randomized Trial. Plant Foods for Human Nutrition, 67, 277–282.
  • Tolgahan, K. & Vural, G. (2016). Effect of Roasting and Brewing On The Antioxidant Capacity of Espresso Brews Determined by the QUENCHER Procedure. Food Research International, 89(2), 976–981.
  • Irda, F. & Annisa, K. R. (2016). Antioxidant Activities of Arabica Green Coffee From Three Regions Using ABTS And DPPH Assays. Asian Journal of Pharmaceutical and Clinical Research, 9(2), 189-193.
  • Magdalena, J.S., Aleksandra, S., Krystyna, P. & Maria, P. D. P. (2016). Chlorogenic Acids, Caffeine Content and Antioxidant Properties of Green Coffee Extracts: Influence of Green Coffee Bean Preparation. European Food Research and Technology, 242, 1403–1409.
  • Vignoli, J. A., Bassoli, D. G. & Benassi, M. T. (2011). Antioxidant Activity, Polyphenols, Caffeine and Melanoidins in Soluble Coffee: The Influence of Processing Conditions and Raw Material. Food Chemistry, 124, 863–868.
  • Luis, M. M., Marcela, A. S., Salette, R., Jose, L. F. C. L. & Antonio, O. S. S. R. (2006). Automatic Method for the Determination of Folin−Ciocalteu Reducing Capacity in Food Products. Journal of Agricultural and Food Chemistry, 54(15), 5241−5246.
  • Ersin D. (2019). A Simple and Sensitive Square Wave Stripping Pathway for the Analysis of Desmedipham Herbicide by Modified Carbon Paste Electrode Based on Hematite (α‐Fe2O3 Nanoparticles). Electroanalysis, 31(8), 1545−1553.
  • Yongnian, N., Ping, Q. & Serge, K. (2005) Simultaneous Voltammetric Determination of Four Carbamate Pesticides with the Use of Chemometrics. Analytica Chimica Acta, 537(1-2), 321-330.
  • Burcu, D. T., Sibel, A. O. & Bengi U. (2010). The Analytical Applications of Square Wave Voltammetry on Pharmaceutical Analysis. The Open Chemical and Biomedical Methods Journal, 3, 56-73.
  • Ersin, D., Ahmet, S., Franck, M. T. K., Erhan, D. & Hassan, Y. A. E. (2020). Electrochemical Evaluation of the Total Antioxidant Capacity of Yam Food Samples on a Polyglycine-Glassy Carbon Modified Electrode. Current Analytical Chemistry, 16(2), 176-183.
  • Ersin, D (2019). Sensitive and Selective Pathway of Total Antioxidant Capacity in Commercially Lemon, Watermelon and Mango-pineapple Cold Teas by Square Wave Adsorptive Stripping Voltammetry. Gazi University Journal of Science, 32(4), 1123 – 1136.
  • Ahmet, S., Tamara, B., Erhan, D. & Mahmut, D. (2019). Direct and Fast Electrochemical Determination of Catechin in Tea Extracts using SWCNT‐Subphthalocyanine Hybrid Material. Electroanalysis, 31(9), 1697 – 1707.
  • Ahmet, S., Alirez, K., Erhan, D. & Esmail, D. (2020). Ultrasensitive Detection of Rutin Antioxidant Through a Magnetic Micro-Mesoporous Graphitized Carbon Wrapped Co Nanoarchitecture. Sensors and Actuators B: Chemical, 312, 127939.
  • Ahmet, S., Baybars, K., Erhan, D., Tamara, B. & Mahmut, D. (2018). 3D SWCNTs-Coumarin Hybrid Material for Ultra-Sensitive Determination of Quercetin Antioxidant Capacity. Sensors and Actuators B: Chemical, 267, 165-173.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Sevinç Yıldırım Bu kişi benim 0000-0002-4871-8981

Ersin Demir 0000-0001-9180-0609

İlkay Gök 0000-0002-4871-8981

Yayımlanma Tarihi 28 Haziran 2020
Gönderilme Tarihi 13 Mayıs 2020
Kabul Tarihi 3 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 1

Kaynak Göster

APA Yıldırım, S., Demir, E., & Gök, İ. (2020). Determination of Total Antioxidant Capacities in Turkish and Filter Coffee Samples by Electrochemical Methods. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(1), 382-393. https://doi.org/10.35193/bseufbd.736123