Araştırma Makalesi
BibTex RIS Kaynak Göster

Süperkapasitör Uygulamaları için Elektrodepolanmış Kobalt Temelli Filmin Nikel Köpük Elektrot Üzerine Sentezi

Yıl 2020, Cilt: 7 Sayı: 2, 638 - 648, 30.12.2020
https://doi.org/10.35193/bseufbd.586983

Öz

Bu çalışmada, kobalt temelli film, süperkapasitör uygulamaları için nikel köpük akım toplayıcıları üzerine elektrodepolanmıştır. Kobalt temelli film, -1,5 V'luk sabit bir voltaj uygulanarak doğrudan pirofosfat elektrolitinden nikel köpük üzerine büyütüldü. Kobalt birikiminin döngüsel voltamogram ve kronoamperometrik verileri sunuldu. Elde edilen kobalt temelli modifiye nikel köpük elektrot daha sonra KOH elektrolitine aktarıldı. Kaplanmamış ve kaplanmış nikel köpük elektrotun elektrokimyasal davranışı bazik ortamda karakterize edildi. Kaplanmamış nikel köpük elektrodun elektroaktivitesi, kobalt film ile kaplandığında önemli ölçüde artığı gözlendi. Kobaltla modifiye edilmiş nikel köpük elektrotu KOH elektrolitinde yüksek çevrim kararlılığına sahipti. Kaplanmamış ve kaplanmış nikel köpük elektrotun morfolojisi SEM ile karakterize edildi. Elektrotun 5 ve 100 mV s-1 tarama hızlarındaki spesifik kapasitansı, sırasıyla 538 F g-1 ve 261 F g-1 olarak ölçüldü. Elde edilen kobalt temelli elektrotun hız sınırlayıcı adımı, yüzey kontrollü bir mekanizmaya sahip olduğu gözlendi.

Teşekkür

Perihan Yilmaz Erdogan ve Naime Ozdemir doktora bursu için YÖK 100-2000 programına teşekkür ederler. Yazarlar, Gaziantep Üniversitesi BAP birimine FEF.DT.19.40 kodlu proje desteği için teşekkür ederler.

Kaynakça

  • S. R. Sharvini, Z. Z. Noor, C. S. Chong, L. C. Stringer, and R. O. Yusuf, “Energy consumption trends and their linkages with renewable energy policies in East and Southeast Asian countries: Challenges and opportunities,” Sustain. Environ. Res., vol. 28, no. 6, pp. 257–266, 2018.
  • S. Najib and E. Erdem, “Current progress achieved in novel materials for supercapacitor electrodes: mini review,” Nanoscale Adv., vol. 1, no. 8, pp. 2817–2827, 2019.
  • A. Noori, M. F. El-Kady, M. S. Rahmanifar, R. B. Kaner, and M. F. Mousavi, “Towards establishing standard performance metrics for batteries, supercapacitors and beyond,” Chem. Soc. Rev., vol. 48, no. 5, pp. 1272–1341, 2019.
  • L. H. Saw et al., “Numerical modeling of hybrid supercapacitor battery energy storage system for electric vehicles,” Energy Procedia, vol. 158, pp. 2750–2755, 2019.
  • Y. Chai, Z. Li, J. Wang, Z. Mo, and S. Yang, “Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors,” J. Alloys Compd., vol. 775, pp. 1206–1212, 2019.
  • Xian Jian et al., “Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions,” J. Electr. Eng., vol. 4, no. 2, pp. 75–87, 2016.
  • K. Wang, H. Wu, Y. Meng, and Z. Wei, “Conducting polymer nanowire arrays for high performance supercapacitors,” Small, vol. 10, no. 1, pp. 14–31, 2014.
  • R. S. Kate, S. A. Khalate, and R. J. Deokate, “Overview of nanostructured metal oxides and pure nickel oxide ( NiO ) electrodes for supercapacitors : A review,” J. Alloys Compd., vol. 734, pp. 89–111, 2018.
  • Y. Li et al., “Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors,” J. Mater. Chem. A, vol. 2, no. 18, pp. 6540–6548, 2014.
  • Y. Sui, Y. Zhang, H. Hu, Q. Xu, F. Yang, and Z. Li, “High energy density asymmetric supercapacitor based ZnS/NiCo2S4/Co9S8 nanotube composites materials,” Adv. Mater. Interfaces, vol. 5, no. 12, p. 1800018, 2018.
  • J. Mandapati, N. Materials, and T. Development, “Simple Capacitors to Supercapacitors-An Overview Simple Capacitors to Supercapacitors - An Overview,” no. November 2008, 2016.
  • X. Wang, A. Sumboja, M. Lin, J. Yan, and P. S. Lee, “Enhancing electrochemical reaction sites in nickel–cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device,” Nanoscale, vol. 4, no. 22, pp. 7266–7272, 2012.
  • I. Shakir, M. Shahid, U. A. Rana, I. M. Al Nashef, and R. Hussain, “Nickel–Cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices,” Electrochim. Acta, vol. 129, pp. 28–32, 2014.
  • D. Yang and M. I. Ionescu, Metal Oxide–Carbon Hybrid Materials for Application in Supercapacitors, no. December 2017. 2017.
  • Z. Xun, C. Cai, W. Xing, and T. Lu, “Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method,” J. Electroanal. Chem., vol. 545, pp. 19–27, 2003.
  • V. Gupta, S. Gupta, and N. Miura, “Potentiostatically deposited nanostructured CoxNi1− x layered double hydroxides as electrode materials for redox-supercapacitors,” J. Power Sources, vol. 175, no. 1, pp. 680–685, 2008.
  • C. Zhao and W. Zheng, “A review for aqueous electrochemical supercapacitors,” Front. Energy Res., vol. 3, p. 23, 2015.
  • C. Lupi, A. Dell’Era, and M. Pasquali, “Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media,” Int. J. Hydrogen Energy, vol. 34, no. 5, pp. 2101–2106, 2009.
  • Q. Li, J. Chen, L. Fan, X. Kong, and Y. Lu, “Progress in electrolytes for rechargeable Li-based batteries and beyond,” Green Energy Environ., vol. 1, no. 1, pp. 18–42, 2016.
  • G. Wang, L. Zhang, and J. Zhang, “A review of electrode materials for electrochemical supercapacitors,” Chem. Soc. Rev., vol. 41, no. 2, pp. 797–828, 2012.
  • Q. Hu et al., “Intracellular polymer substances induced conductive polyaniline for improved methane production from anaerobic wastewater treatment,” ACS Sustain. Chem. Eng., vol. 7, no. 6, pp. 5912–5920, 2019.
  • T. M. Masikhwa, M. J. Madito, D. Momodu, A. Bello, J. K. Dangbegnon, and N. Manyala, “High electrochemical performance of hybrid cobalt oxyhydroxide/nickel foam graphene,” J. Colloid Interface Sci., vol. 484, pp. 77–85, 2016.
  • S. R. Majid, “Green synthesis of in situ electrodeposited rGO/MnO 2 nanocomposite for high energy density supercapacitors,” Sci. Rep., vol. 5, p. 16195, 2015.
  • S. H. Kim, Y. Il Kim, J. H. Park, and J. M. Ko, “Cobalt-manganese oxide/carbon-nanofiber composite electrodes for supercapacitors,” Int. J. Electrochem. Sci, vol. 4, pp. 1489–1496, 2009.
  • Q. Mahmood et al., “Transition from Diffusion‐Controlled Intercalation into Extrinsically Pseudocapacitive Charge Storage of MoS2 by Nanoscale Heterostructuring,” Adv. Energy Mater., vol. 6, no. 1, p. 1501115, 2016.
  • L. Zhu, W. Wu, Y. Zhu, W. Tang, and Y. Wu, “Composite of CoOOH nanoplates with multiwalled carbon nanotubes as superior cathode material for supercapacitors,” J. Phys. Chem. C, vol. 119, no. 13, pp. 7069–7075, 2015.
  • C. J. Raj et al., “Rapid hydrothermal synthesis of cobalt oxyhydroxide nanorods for supercapacitor applications,” J. Electroanal. Chem., vol. 747, pp. 130–135, 2015.
  • B. Sarma, R. S. Ray, S. K. Mohanty, and M. Misra, “Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition,” Appl. Surf. Sci., vol. 300, pp. 29–36, 2014.
  • A. Yavuz, M. Y. Haciibrahimoǧlu, and M. Bedir, “Synthesis and characterisation of Co-Co(OH)2 composite anode material on Cu current collector for energy storage devices,” Mater. Res. Express, vol. 4, no. 4, 2017.
  • A. Yavuz, P. Y. Erdogan, N. Ozdemir, H. Zengin, G. Zengin, and M. Bedir, “Electrochemical synthesis of CoOOH–Co(OH)2 composite electrode on graphite current collector for supercapacitor applications,” J. Mater. Sci. Mater. Electron., vol. 30, no. 20, pp. 18413–18423, 2019.

Synthesis of Electrodeposition of Cobalt Based Film on a Nickel Foam Electrode for Supercapacitor Applications

Yıl 2020, Cilt: 7 Sayı: 2, 638 - 648, 30.12.2020
https://doi.org/10.35193/bseufbd.586983

Öz

In this study, cobalt-based film was electrodeposited on nickel foam current collectors for supercapacitor applications. The cobalt-based film was grown directly from pyrophosphate electrolyte to nickel foam by applying a constant voltage of -1.5 V. Cyclic voltamogram and chroamperometric data of cobalt deposition were presented. The resulting cobalt based modified nickel foam electrode was then transferred into the KOH electrolyte. Electrochemical behavior of uncoated and coated nickel foam electrode was characterized in alkaline media. Electroactivity of bare nickel foam increased significantly when it was coated with cobalt film. Cobalt modified nickel foam electrode had high cycle stability in KOH. The morphology of uncoated and coated nickel foam electrode was characterized by SEM. The specific capacitance of the electrode at the scan rates of 5 and 100 mV s-1 was measured as 538 F g-1 and 261 F g-1, respectively. The rate-limiting step of the obtained cobalt based electrode had a surface controlled mechanism.

Kaynakça

  • S. R. Sharvini, Z. Z. Noor, C. S. Chong, L. C. Stringer, and R. O. Yusuf, “Energy consumption trends and their linkages with renewable energy policies in East and Southeast Asian countries: Challenges and opportunities,” Sustain. Environ. Res., vol. 28, no. 6, pp. 257–266, 2018.
  • S. Najib and E. Erdem, “Current progress achieved in novel materials for supercapacitor electrodes: mini review,” Nanoscale Adv., vol. 1, no. 8, pp. 2817–2827, 2019.
  • A. Noori, M. F. El-Kady, M. S. Rahmanifar, R. B. Kaner, and M. F. Mousavi, “Towards establishing standard performance metrics for batteries, supercapacitors and beyond,” Chem. Soc. Rev., vol. 48, no. 5, pp. 1272–1341, 2019.
  • L. H. Saw et al., “Numerical modeling of hybrid supercapacitor battery energy storage system for electric vehicles,” Energy Procedia, vol. 158, pp. 2750–2755, 2019.
  • Y. Chai, Z. Li, J. Wang, Z. Mo, and S. Yang, “Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors,” J. Alloys Compd., vol. 775, pp. 1206–1212, 2019.
  • Xian Jian et al., “Carbon-Based Electrode Materials for Supercapacitor: Progress, Challenges and Prospective Solutions,” J. Electr. Eng., vol. 4, no. 2, pp. 75–87, 2016.
  • K. Wang, H. Wu, Y. Meng, and Z. Wei, “Conducting polymer nanowire arrays for high performance supercapacitors,” Small, vol. 10, no. 1, pp. 14–31, 2014.
  • R. S. Kate, S. A. Khalate, and R. J. Deokate, “Overview of nanostructured metal oxides and pure nickel oxide ( NiO ) electrodes for supercapacitors : A review,” J. Alloys Compd., vol. 734, pp. 89–111, 2018.
  • Y. Li et al., “Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors,” J. Mater. Chem. A, vol. 2, no. 18, pp. 6540–6548, 2014.
  • Y. Sui, Y. Zhang, H. Hu, Q. Xu, F. Yang, and Z. Li, “High energy density asymmetric supercapacitor based ZnS/NiCo2S4/Co9S8 nanotube composites materials,” Adv. Mater. Interfaces, vol. 5, no. 12, p. 1800018, 2018.
  • J. Mandapati, N. Materials, and T. Development, “Simple Capacitors to Supercapacitors-An Overview Simple Capacitors to Supercapacitors - An Overview,” no. November 2008, 2016.
  • X. Wang, A. Sumboja, M. Lin, J. Yan, and P. S. Lee, “Enhancing electrochemical reaction sites in nickel–cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device,” Nanoscale, vol. 4, no. 22, pp. 7266–7272, 2012.
  • I. Shakir, M. Shahid, U. A. Rana, I. M. Al Nashef, and R. Hussain, “Nickel–Cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices,” Electrochim. Acta, vol. 129, pp. 28–32, 2014.
  • D. Yang and M. I. Ionescu, Metal Oxide–Carbon Hybrid Materials for Application in Supercapacitors, no. December 2017. 2017.
  • Z. Xun, C. Cai, W. Xing, and T. Lu, “Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method,” J. Electroanal. Chem., vol. 545, pp. 19–27, 2003.
  • V. Gupta, S. Gupta, and N. Miura, “Potentiostatically deposited nanostructured CoxNi1− x layered double hydroxides as electrode materials for redox-supercapacitors,” J. Power Sources, vol. 175, no. 1, pp. 680–685, 2008.
  • C. Zhao and W. Zheng, “A review for aqueous electrochemical supercapacitors,” Front. Energy Res., vol. 3, p. 23, 2015.
  • C. Lupi, A. Dell’Era, and M. Pasquali, “Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media,” Int. J. Hydrogen Energy, vol. 34, no. 5, pp. 2101–2106, 2009.
  • Q. Li, J. Chen, L. Fan, X. Kong, and Y. Lu, “Progress in electrolytes for rechargeable Li-based batteries and beyond,” Green Energy Environ., vol. 1, no. 1, pp. 18–42, 2016.
  • G. Wang, L. Zhang, and J. Zhang, “A review of electrode materials for electrochemical supercapacitors,” Chem. Soc. Rev., vol. 41, no. 2, pp. 797–828, 2012.
  • Q. Hu et al., “Intracellular polymer substances induced conductive polyaniline for improved methane production from anaerobic wastewater treatment,” ACS Sustain. Chem. Eng., vol. 7, no. 6, pp. 5912–5920, 2019.
  • T. M. Masikhwa, M. J. Madito, D. Momodu, A. Bello, J. K. Dangbegnon, and N. Manyala, “High electrochemical performance of hybrid cobalt oxyhydroxide/nickel foam graphene,” J. Colloid Interface Sci., vol. 484, pp. 77–85, 2016.
  • S. R. Majid, “Green synthesis of in situ electrodeposited rGO/MnO 2 nanocomposite for high energy density supercapacitors,” Sci. Rep., vol. 5, p. 16195, 2015.
  • S. H. Kim, Y. Il Kim, J. H. Park, and J. M. Ko, “Cobalt-manganese oxide/carbon-nanofiber composite electrodes for supercapacitors,” Int. J. Electrochem. Sci, vol. 4, pp. 1489–1496, 2009.
  • Q. Mahmood et al., “Transition from Diffusion‐Controlled Intercalation into Extrinsically Pseudocapacitive Charge Storage of MoS2 by Nanoscale Heterostructuring,” Adv. Energy Mater., vol. 6, no. 1, p. 1501115, 2016.
  • L. Zhu, W. Wu, Y. Zhu, W. Tang, and Y. Wu, “Composite of CoOOH nanoplates with multiwalled carbon nanotubes as superior cathode material for supercapacitors,” J. Phys. Chem. C, vol. 119, no. 13, pp. 7069–7075, 2015.
  • C. J. Raj et al., “Rapid hydrothermal synthesis of cobalt oxyhydroxide nanorods for supercapacitor applications,” J. Electroanal. Chem., vol. 747, pp. 130–135, 2015.
  • B. Sarma, R. S. Ray, S. K. Mohanty, and M. Misra, “Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition,” Appl. Surf. Sci., vol. 300, pp. 29–36, 2014.
  • A. Yavuz, M. Y. Haciibrahimoǧlu, and M. Bedir, “Synthesis and characterisation of Co-Co(OH)2 composite anode material on Cu current collector for energy storage devices,” Mater. Res. Express, vol. 4, no. 4, 2017.
  • A. Yavuz, P. Y. Erdogan, N. Ozdemir, H. Zengin, G. Zengin, and M. Bedir, “Electrochemical synthesis of CoOOH–Co(OH)2 composite electrode on graphite current collector for supercapacitor applications,” J. Mater. Sci. Mater. Electron., vol. 30, no. 20, pp. 18413–18423, 2019.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Perihan Yilmaz Erdogan 0000-0002-1375-603X

Naime Özdemir Bu kişi benim 0000-0003-4744-1316

Hüseyin Zengin 0000-0002-5540-725X

Abdulcabbar Yavuz 0000-0002-7216-0586

Yayımlanma Tarihi 30 Aralık 2020
Gönderilme Tarihi 4 Temmuz 2019
Kabul Tarihi 6 Temmuz 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 2

Kaynak Göster

APA Yilmaz Erdogan, P., Özdemir, N., Zengin, H., Yavuz, A. (2020). Süperkapasitör Uygulamaları için Elektrodepolanmış Kobalt Temelli Filmin Nikel Köpük Elektrot Üzerine Sentezi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7(2), 638-648. https://doi.org/10.35193/bseufbd.586983