Araştırma Makalesi
BibTex RIS Kaynak Göster

Whole Cell Biotransformation of Fusel Oil into Banana Flavour by Lindnera saturnus

Yıl 2016, Cilt: 31 Sayı: ÖS2, 43 - 52, 15.10.2016
https://doi.org/10.21605/cukurovaummfd.315864

Öz

An efficient biotransformation of isoamyl alcohol obtained from fusel oil to isoamyl acetate in a molasses based medium via in situ product removal (ISPR) with macroporous adsorption resin was carried out with Lindnera saturnus. Nine types of macroporous adsorption resins with different polarities and surface areas were tested with synthetic medium and then in batch and fed-batch cultivations. H103 resin had the best adsorption capacity because of its large and nonpolar surface areas. The isoamyl acetate concentration was increased with 42 and 30 folds in batch and fed-batch cultivations, respectively, compared to the biotransformations without addition of adsorbent resin. When 1 g H103 resin (wet w/v) was added to 50 mL of the biotransformation medium, the total isoamyl acetate concentration achieved was 1.9 g/L, of which 123 mg/L remained in the aqueous phase and 1787 mg/L was adsorbed onto the resin, within 120 h in fed-batch system. This was the highest isoamyl acetate yield by biotransformation until now and was remarkable for making the process more feasible for industrial application.

Kaynakça

  • 1. Leffingwell & Associates, 2004. Leffingwell & Associates Flavor database, http://www.leffingwell.com/top_10.htm, consulted 07.03.2015.
  • 2. Soares, M., Christen, P., Pandey, A., Soccol, C.R., 2000. Fruity Flavour Production by Ceratocystis fimbriata Grown on Coffee Husk in Solid-state Fermentation, Process Biochemistry, 35(8): 857-861.
  • 3. Longo, M.A., Sanromán, M.A., 2006. Production of Food Aroma Compounds: Microbial and Enzymatic Methodologies, Food Technology and Biotechnology, 44(3): 335-353.
  • 4. Janssens, L., De Pooter, H.L., Schamp, N.M., Vandamme, E.J., 1992. Production of Flavours by Microorganisms, Process Biochemistry, 27(4): 195-215.
  • 5. Krings, U., Berger, R.G., 1998. Biotechnological Production of Flavours and Fragrances, Applied Microbiology and Biotechnology, 49(1): pp. 1-8.
  • 6. Reineccius, G., 2006. Flavor Chemistry and Technology, CRC Press.
  • 7. Yilmaztekin, M., Erten, H., Cabaroglu, T., 2009. Enhanced Production of Isoamyl Acetate from Beet Molasses with Addition of Fusel Oil by Williopsis saturnus var. saturnus, Food Chemistry, 112(2): 290-294.
  • 8. Iwase, T., Morikawa, T., Fukuda, H., Sasaki, K., Yoshitake, M., 1995. Production of Fruity Odor by Genus Williopsis, Journal of the Brewing Society of Japan, 90(5): pp. 394-396.
  • 9. Yilmaztekin, M., Erten, H., Cabaroglu, T., 2008. Production of Isoamyl Acetate from Sugar Beet Molasses by Williopsis saturnus var. Saturnus, Journal of the Institute of Brewing, 114(1): pp. 34-38.
  • 10. Janssens, L., 1991. Microbial Production of Fruity Flavours (Doctoral Dissertation, PhD Thesis).
  • 11. Vandamme, E.J., Soetaert, W., 2002. Bioflavours and Fragrances Via Fermentation and Biocatalysis. Journal of Chemical Technology and Biotechnology, 77(12): 1323-1332.
  • 12. Ezeji, T.C., Qureshi, N., Blaschek, H.P., 2004. Acetone Butanol Ethanol (ABE) Production from Concentrated Substrate: Reduction in Substrate Inhibition by Fed-batch Technique and Product Inhibition by Gas Stripping, Applied Microbiology and Biotechnology, 63(6): 653-658.
  • 13. Stark D., Jaquet A., von Stockar, U., 2003. Insitu Product Removal (ISPR) in Whole Cell Biotechnology During the Last 20 Years, Advanced Biochemical Engineering and Biotechnology, pp.149-175.
  • 14. Etschmann, M.M.W., Schrader, J., 2006. An Aqueous–organic Two-phase Bioprocess for Efficient Production of the Natural Aroma Chemicals 2-phenylethanol and 2-Phenylethylacetate with Yeast, Applied Microbiology and Biotechnology, 71(4): pp. 440-443.
  • 15. Sendovski, M., Nir, N., Fishman, A., 2010. Bioproduction of 2-phenylethanol in a Biphasic Ionic Liquid Aqueous System, Journal of Agricultural and Food Chemistry, 58(4): pp. 2260-2265.
  • 16. Mei, J., Min, H., Lü, Z., 2009. Enhanced Biotransformation of L-phenylalanine to 2-Phenylethanol using an in Situ Product Adsorption Technique, Process Biochemistry, 44(8): pp. 886-890.
  • 17. Fabre, C.E., Blanc, P.J., Marty, A., Goma, G., Souchon, I., Voilley, A., 1996. Extraction of 2-Phenylethyl Alcohol: By Techniques Such as Adsorption, Inclusion, Supercritical CO2, Liquid-liquid and Membrane Separations, Perfumer & Flavorist, 21(5): pp. 27-40.
  • 18. Serp, D., Von Stockar, U., Marison, I.W., 2003. Enhancement of 2‐phenylethanol Productivity by Saccharomyces cerevisiae in Two‐phase Fed‐batch Fermentations using Solvent Immobilization, Biotechnology and Bioengineering, 82(1): pp. 103-110.
  • 19. Etschmann, M.M., Sell, D., Schrader, J., 2005. Production of 2‐phenylethanol and 2‐phenylethylacetate from L‐phenylalanine by Coupling Whole‐cell Biocatalysis with Organophilic Pervaporation, Biotechnology and Bioengineering, 92(5): pp. 624-634.
  • 20. Stark, D., 2001. Extractive Bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Swiss Federal Institute of Technology; Ph.D. thesis.
  • 21. Jin, Q., Yue, J., Shan, L., Tao, G., Wang, X., Qiu, A., 2008. Process Research of Macroporous Resin Chromotography for Separation of N-(p-coumaroyl) Serotonin and N-feruloylserotonin from Chinese Safflower Seed Extracts, Separation and Purification Technology, 62(2): pp. 370-375.
  • 22. Gastaldo, L., Marinelli, F., Acquarella, C., Restelli, E., Quarta, C., 1996. Improvement of the Kirromycin Fermentation by Resin Addition, Journal of Industrial Microbiology, 16(5): pp. 305-308.
  • 23. Marshall, V.P., McWethy, S.J., Sirotti, J.M., Cialdella, J.I., 1990. The Effect of Neutral Resins on the Fermentation Production of Rubradirin, Journal of Industrial Microbiology, 5(5): pp. 283-287.
  • 24. Lomascolo, A., Lesage-Meessen, L., Labat, M., Navarro, D., Delattre, M., Asther, M., 1999. Enhanced Benzaldehyde Formation by a Monokaryotic Strain of Pycnoporus cinnabarinus Using a Selective Solid Adsorbent in the Culture Medium, Canadian Journal of Microbiology, 45(8): pp. 653-657.
  • 25. Lomascolo, A., Asther, M., Navarro, D., Antona, C., Delattre, M., Lesage‐Meessen, L., 2001. Shifting the Biotransformation Pathways of L‐phenylalanine into Benzaldehyde by Trametes suaveolens CBS 334.85 using HP20 Resin, Letters in Applied Microbiology, 32(4): pp. 262-267.
  • 26. Rito-Palomares, M., Negrete, A., Miranda, L., Flores, C., Galindo, E., Serrano-Carreón, L., 2001. The Potential Application of Aqueous Two-phase Systems for in Situ Recovery of 6-Pentyl-α-pyrone Produced by Trichoderma harzianum, Enzyme and Microbial Technology, 28(7): pp. 625-631.
  • 27. Miyazawa, M., Ohsawa, M., 2002. Biotransformation of α-terpineol by the Larvae of Common Cutworm (Spodoptera litura), Journal of Agricultural and Food Chemistry, 50(17): pp. 4916-4918.
  • 28. Ezeji, T.C., Qureshi, N., Blaschek, H.P., 2003. Production of Acetone, Butanol and Ethanol by Clostridium beijerinckii BA101 and in Situ Recovery by Gas Stripping, World Journal of Microbiology and Biotechnology, 19(6): pp. 595-603.
  • 29. Ribeiro, C.P., Lage, P.L., Borges, C.P., 2004. A Combined Gas-stripping Vapour Permeation Process for Aroma Recovery, Journal of Membrane Science, 238(1): pp. 9-19.
  • 30. Hua, D., Ma, C., Song, L., Lin, S., Zhang, Z., Deng, Z., Xu, P., 2007. Enhanced Vanillin Production from Ferulic Acid using Adsorbent resin, Applied Microbiology and Biotechnology, 74(4): pp. 783-790.
  • 31. Zhang, Q.F., Jiang, Z.T., Gao, H.J., Li, R., 2008. Recovery of Vanillin from Aqueous Solutions using Macroporous Adsorption Resins, European Food Research and Technology, 226(3): pp. 377-383.
  • 32. Hua, D., Lin, S., Li, Y., Chen, H., Zhang, Z., Du, Y., Xu, P., 2010. Enhanced 2-Phenylethanol Production from L-phenylalanine Via in Situ Product Adsorption, Biocatalysis and Biotransformation, 28(4): pp. 259-266.
  • 33. Wang, H., Dong, Q., Meng, C., Ai Shi, X., Guo, Y., 2011. A Continuous and Adsorptive Bioprocess for Efficient Production of the Natural Aroma Chemical 2-phenylethanol with Yeast, Enzyme and Microbial Technology, 48(4): pp. 404-407.
  • 34. Güvenç, A., Aydoğan, Ö., Kapucu, N., Mehmetoğlu, Ü., 2007. Fuzel Yağından İzoamil Asetat Üretimi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 22(4): pp. 801-808.

Lindnera saturnus Kullanılarak Hücresel Biyodönüşüm Yolu ile Fuzel Yağından Muz Aroması Eldesi

Yıl 2016, Cilt: 31 Sayı: ÖS2, 43 - 52, 15.10.2016
https://doi.org/10.21605/cukurovaummfd.315864

Öz

Bu çalışmada, fuzel yağından elde edilen izoamil alkolün şeker pancarı melası içeren ortamda izoamil asetata Lindnera saturnus mayası ile biyodönüşümü, makrogözenekli adsorpsiyon reçeineleri ile Yerinde Ürün Kazanımı tekniği kullanılarak etkin bir şekilde gerçekleştirilmiştir. Farklı polarite ve yüzey alanlarına sahip dokuz farklı makrogözenekli adsorpsiyon reçinesi sentetik ortamda test edilmiş ve daha sonar kesikli ve kesikli-beslemeli biyodönüşüm denemelerinde kullanılmıştır. H103 reçinesi nonpolar özelliği ve geniş yüzey alanına sahip oluşu nedeniyle adsorpsiyon kapasitesi en yüksek reçine olarak bulunmuştur. Kontrol denemesi ile karşılaştırıldığında, reçine ilevesi yapılan kesikli ve kesikli-beslemeli biyodönüşüm denemelerinde izoamil asetat konsantrasyonunda sırasıyla 42 ve 30 kat artış gözlemlenmiştir. 120 saatlik kesikli-beslemeli biyodönüşüm denemesinde, 1 g H103 reçinesi (ıslak w/v) 50 mL biyodönüşüm ortamına ilave edildiği zaman, elde edilen izoamil asetat miktarı 1,9 g/L (123 mg/L sulu ortamda + 1787 mg/L reçineye adsorplanmış vaziyette) bulunmuştur. Bu miktar, biyodönüşüm yoluyla şimdiye kadar elde edilmiş en yüksek izoamil asetat miktarı olup ve prosesin endüstriyel uygulamaya aktarılması açısından kayda değer veriler olarak değerlendirilebilir

Kaynakça

  • 1. Leffingwell & Associates, 2004. Leffingwell & Associates Flavor database, http://www.leffingwell.com/top_10.htm, consulted 07.03.2015.
  • 2. Soares, M., Christen, P., Pandey, A., Soccol, C.R., 2000. Fruity Flavour Production by Ceratocystis fimbriata Grown on Coffee Husk in Solid-state Fermentation, Process Biochemistry, 35(8): 857-861.
  • 3. Longo, M.A., Sanromán, M.A., 2006. Production of Food Aroma Compounds: Microbial and Enzymatic Methodologies, Food Technology and Biotechnology, 44(3): 335-353.
  • 4. Janssens, L., De Pooter, H.L., Schamp, N.M., Vandamme, E.J., 1992. Production of Flavours by Microorganisms, Process Biochemistry, 27(4): 195-215.
  • 5. Krings, U., Berger, R.G., 1998. Biotechnological Production of Flavours and Fragrances, Applied Microbiology and Biotechnology, 49(1): pp. 1-8.
  • 6. Reineccius, G., 2006. Flavor Chemistry and Technology, CRC Press.
  • 7. Yilmaztekin, M., Erten, H., Cabaroglu, T., 2009. Enhanced Production of Isoamyl Acetate from Beet Molasses with Addition of Fusel Oil by Williopsis saturnus var. saturnus, Food Chemistry, 112(2): 290-294.
  • 8. Iwase, T., Morikawa, T., Fukuda, H., Sasaki, K., Yoshitake, M., 1995. Production of Fruity Odor by Genus Williopsis, Journal of the Brewing Society of Japan, 90(5): pp. 394-396.
  • 9. Yilmaztekin, M., Erten, H., Cabaroglu, T., 2008. Production of Isoamyl Acetate from Sugar Beet Molasses by Williopsis saturnus var. Saturnus, Journal of the Institute of Brewing, 114(1): pp. 34-38.
  • 10. Janssens, L., 1991. Microbial Production of Fruity Flavours (Doctoral Dissertation, PhD Thesis).
  • 11. Vandamme, E.J., Soetaert, W., 2002. Bioflavours and Fragrances Via Fermentation and Biocatalysis. Journal of Chemical Technology and Biotechnology, 77(12): 1323-1332.
  • 12. Ezeji, T.C., Qureshi, N., Blaschek, H.P., 2004. Acetone Butanol Ethanol (ABE) Production from Concentrated Substrate: Reduction in Substrate Inhibition by Fed-batch Technique and Product Inhibition by Gas Stripping, Applied Microbiology and Biotechnology, 63(6): 653-658.
  • 13. Stark D., Jaquet A., von Stockar, U., 2003. Insitu Product Removal (ISPR) in Whole Cell Biotechnology During the Last 20 Years, Advanced Biochemical Engineering and Biotechnology, pp.149-175.
  • 14. Etschmann, M.M.W., Schrader, J., 2006. An Aqueous–organic Two-phase Bioprocess for Efficient Production of the Natural Aroma Chemicals 2-phenylethanol and 2-Phenylethylacetate with Yeast, Applied Microbiology and Biotechnology, 71(4): pp. 440-443.
  • 15. Sendovski, M., Nir, N., Fishman, A., 2010. Bioproduction of 2-phenylethanol in a Biphasic Ionic Liquid Aqueous System, Journal of Agricultural and Food Chemistry, 58(4): pp. 2260-2265.
  • 16. Mei, J., Min, H., Lü, Z., 2009. Enhanced Biotransformation of L-phenylalanine to 2-Phenylethanol using an in Situ Product Adsorption Technique, Process Biochemistry, 44(8): pp. 886-890.
  • 17. Fabre, C.E., Blanc, P.J., Marty, A., Goma, G., Souchon, I., Voilley, A., 1996. Extraction of 2-Phenylethyl Alcohol: By Techniques Such as Adsorption, Inclusion, Supercritical CO2, Liquid-liquid and Membrane Separations, Perfumer & Flavorist, 21(5): pp. 27-40.
  • 18. Serp, D., Von Stockar, U., Marison, I.W., 2003. Enhancement of 2‐phenylethanol Productivity by Saccharomyces cerevisiae in Two‐phase Fed‐batch Fermentations using Solvent Immobilization, Biotechnology and Bioengineering, 82(1): pp. 103-110.
  • 19. Etschmann, M.M., Sell, D., Schrader, J., 2005. Production of 2‐phenylethanol and 2‐phenylethylacetate from L‐phenylalanine by Coupling Whole‐cell Biocatalysis with Organophilic Pervaporation, Biotechnology and Bioengineering, 92(5): pp. 624-634.
  • 20. Stark, D., 2001. Extractive Bioconversion of 2-phenylethanol from L-phenylalanine by Saccharomyces cerevisiae. Swiss Federal Institute of Technology; Ph.D. thesis.
  • 21. Jin, Q., Yue, J., Shan, L., Tao, G., Wang, X., Qiu, A., 2008. Process Research of Macroporous Resin Chromotography for Separation of N-(p-coumaroyl) Serotonin and N-feruloylserotonin from Chinese Safflower Seed Extracts, Separation and Purification Technology, 62(2): pp. 370-375.
  • 22. Gastaldo, L., Marinelli, F., Acquarella, C., Restelli, E., Quarta, C., 1996. Improvement of the Kirromycin Fermentation by Resin Addition, Journal of Industrial Microbiology, 16(5): pp. 305-308.
  • 23. Marshall, V.P., McWethy, S.J., Sirotti, J.M., Cialdella, J.I., 1990. The Effect of Neutral Resins on the Fermentation Production of Rubradirin, Journal of Industrial Microbiology, 5(5): pp. 283-287.
  • 24. Lomascolo, A., Lesage-Meessen, L., Labat, M., Navarro, D., Delattre, M., Asther, M., 1999. Enhanced Benzaldehyde Formation by a Monokaryotic Strain of Pycnoporus cinnabarinus Using a Selective Solid Adsorbent in the Culture Medium, Canadian Journal of Microbiology, 45(8): pp. 653-657.
  • 25. Lomascolo, A., Asther, M., Navarro, D., Antona, C., Delattre, M., Lesage‐Meessen, L., 2001. Shifting the Biotransformation Pathways of L‐phenylalanine into Benzaldehyde by Trametes suaveolens CBS 334.85 using HP20 Resin, Letters in Applied Microbiology, 32(4): pp. 262-267.
  • 26. Rito-Palomares, M., Negrete, A., Miranda, L., Flores, C., Galindo, E., Serrano-Carreón, L., 2001. The Potential Application of Aqueous Two-phase Systems for in Situ Recovery of 6-Pentyl-α-pyrone Produced by Trichoderma harzianum, Enzyme and Microbial Technology, 28(7): pp. 625-631.
  • 27. Miyazawa, M., Ohsawa, M., 2002. Biotransformation of α-terpineol by the Larvae of Common Cutworm (Spodoptera litura), Journal of Agricultural and Food Chemistry, 50(17): pp. 4916-4918.
  • 28. Ezeji, T.C., Qureshi, N., Blaschek, H.P., 2003. Production of Acetone, Butanol and Ethanol by Clostridium beijerinckii BA101 and in Situ Recovery by Gas Stripping, World Journal of Microbiology and Biotechnology, 19(6): pp. 595-603.
  • 29. Ribeiro, C.P., Lage, P.L., Borges, C.P., 2004. A Combined Gas-stripping Vapour Permeation Process for Aroma Recovery, Journal of Membrane Science, 238(1): pp. 9-19.
  • 30. Hua, D., Ma, C., Song, L., Lin, S., Zhang, Z., Deng, Z., Xu, P., 2007. Enhanced Vanillin Production from Ferulic Acid using Adsorbent resin, Applied Microbiology and Biotechnology, 74(4): pp. 783-790.
  • 31. Zhang, Q.F., Jiang, Z.T., Gao, H.J., Li, R., 2008. Recovery of Vanillin from Aqueous Solutions using Macroporous Adsorption Resins, European Food Research and Technology, 226(3): pp. 377-383.
  • 32. Hua, D., Lin, S., Li, Y., Chen, H., Zhang, Z., Du, Y., Xu, P., 2010. Enhanced 2-Phenylethanol Production from L-phenylalanine Via in Situ Product Adsorption, Biocatalysis and Biotransformation, 28(4): pp. 259-266.
  • 33. Wang, H., Dong, Q., Meng, C., Ai Shi, X., Guo, Y., 2011. A Continuous and Adsorptive Bioprocess for Efficient Production of the Natural Aroma Chemical 2-phenylethanol with Yeast, Enzyme and Microbial Technology, 48(4): pp. 404-407.
  • 34. Güvenç, A., Aydoğan, Ö., Kapucu, N., Mehmetoğlu, Ü., 2007. Fuzel Yağından İzoamil Asetat Üretimi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 22(4): pp. 801-808.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Murat Yılmaztekin

Sevinç Tay Bu kişi benim

Yayımlanma Tarihi 15 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 31 Sayı: ÖS2

Kaynak Göster

APA Yılmaztekin, M., & Tay, S. (2016). Lindnera saturnus Kullanılarak Hücresel Biyodönüşüm Yolu ile Fuzel Yağından Muz Aroması Eldesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(ÖS2), 43-52. https://doi.org/10.21605/cukurovaummfd.315864
AMA Yılmaztekin M, Tay S. Lindnera saturnus Kullanılarak Hücresel Biyodönüşüm Yolu ile Fuzel Yağından Muz Aroması Eldesi. cukurovaummfd. Eylül 2016;31(ÖS2):43-52. doi:10.21605/cukurovaummfd.315864
Chicago Yılmaztekin, Murat, ve Sevinç Tay. “Lindnera Saturnus Kullanılarak Hücresel Biyodönüşüm Yolu Ile Fuzel Yağından Muz Aroması Eldesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31, sy. ÖS2 (Eylül 2016): 43-52. https://doi.org/10.21605/cukurovaummfd.315864.
EndNote Yılmaztekin M, Tay S (01 Eylül 2016) Lindnera saturnus Kullanılarak Hücresel Biyodönüşüm Yolu ile Fuzel Yağından Muz Aroması Eldesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31 ÖS2 43–52.
IEEE M. Yılmaztekin ve S. Tay, “Lindnera saturnus Kullanılarak Hücresel Biyodönüşüm Yolu ile Fuzel Yağından Muz Aroması Eldesi”, cukurovaummfd, c. 31, sy. ÖS2, ss. 43–52, 2016, doi: 10.21605/cukurovaummfd.315864.
ISNAD Yılmaztekin, Murat - Tay, Sevinç. “Lindnera Saturnus Kullanılarak Hücresel Biyodönüşüm Yolu Ile Fuzel Yağından Muz Aroması Eldesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 31/ÖS2 (Eylül 2016), 43-52. https://doi.org/10.21605/cukurovaummfd.315864.
JAMA Yılmaztekin M, Tay S. Lindnera saturnus Kullanılarak Hücresel Biyodönüşüm Yolu ile Fuzel Yağından Muz Aroması Eldesi. cukurovaummfd. 2016;31:43–52.
MLA Yılmaztekin, Murat ve Sevinç Tay. “Lindnera Saturnus Kullanılarak Hücresel Biyodönüşüm Yolu Ile Fuzel Yağından Muz Aroması Eldesi”. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 31, sy. ÖS2, 2016, ss. 43-52, doi:10.21605/cukurovaummfd.315864.
Vancouver Yılmaztekin M, Tay S. Lindnera saturnus Kullanılarak Hücresel Biyodönüşüm Yolu ile Fuzel Yağından Muz Aroması Eldesi. cukurovaummfd. 2016;31(ÖS2):43-52.