Araştırma Makalesi
BibTex RIS Kaynak Göster

GFRP Çubukların Özelikleri ve Prefabrik Altyapı Elemanlarında Kullanımı

Yıl 2020, Cilt: 7 Sayı: 1, 169 - 178, 31.01.2020
https://doi.org/10.31202/ecjse.602224

Öz

Donatı çeliğinin korozyonu, günümüzde inşaat
sektörünün en önemli sorunlarından biri haline gelmiştir. Altyapı elemanlarında
bu durum daha fazla ortaya çıkmaktadır. Bu tür problemler yaşamamak için çelik
donatıya alternatif olarak korozyona dirençli bir malzeme olan cam liflerle
güçlendirilmiş polimerik donatıların (GFRP) yapılarda kullanılması fikri ortaya
çıkmıştır. GFRP çubukları, içeriklerindeki yüksek orandaki cam elyaf, karbon
elyaf, aramid elyaf ve uygun reçine kombinasyonları sayesinde yüksek çekme
kuvvetlerine dayanabilmektedir. Buna rağmen elastisite modülleri çelik donatıya
oranla düşüktür. Donatı elemanların betonarme yapılarda kullanılmasının en
önemli nedenlerinden birisi çekme gerilmelerini karşılamalarıdır. Bu çalışmada
da nervürlü çelik çubukların ve GFRP donatıların çekme yükü altındaki
özeliklerinin belirlenmesi amacıyla Ø8, Ø10, Ø12, Ø14, Ø16 ve Ø18’lik numunelerde
çekme deneyi yapılmış ve deney sonuçları karşılaştırılmıştır. GFRP donatılı
betonlarda hızlandırılmış korozyon testi ve asit tesirlerine dayanımı
incelenmiştir. Ayrıca her bir donatı sınıfında betonla olan aderansları
deneysel olarak araştırılmıştır. GFRP donatıların çelik donatılara göre daha
düşük aderans dayanımına sahip olduğu, ancak korozyon ve asit tesirlerine
oldukça dayanıklı olduğu görülmüştür. 

Kaynakça

  • [1] Dejke, V., Tepfers, R., ‘Durability and service life prediction of GFRP for concrete reinforcement’, In Proceedings of 5th international conference on fiber-reinforced plastics for reinforced concrete structures (FRPRCS-5), 505–516, (2001).[2] Hota, V.S. G., Vıjay, P.V. And Narendra, T., ‘Reinforced Concrete Design with FRP Composites’, CRC Press, (2007).[3] Yavuz, G., ‘Lif Takviyeli Polimerlerin Betonarme Kirişlerde Donatı Olarak Kullanımı’, Selçuk Üniversitesi, Mayıs, (2011).[4] Caratelli A., Meda A., Rinaldi Z., Spagnuolo S., Maddaluno G., ‘Optimization of GFRP reinforcement in precast segments for metro tunnel lining’, Composite Structures, 181, 336–346, (2017)[5] Karbhari, V.M., ‘Durability of Advanced Polymer Composites in the Civil Infrastructure’, Advance Polymer Composites for Structural Applications in Construction (ACIC), 31-38, (2004).[6] Glass Fiber Reinforced Polymer Rebar. Hughes Brothers, Inc., Seward, Nebraska, 2000.[7] DeFreese J.M., Roberts-Wollmann C.L., ‘Glass fıber reinforced polymer bars as top mat reinforcement for bridge decks, Virginia Transportation Research Council’, Final Report (VTRC 03-CR6), (2002). [8] Eslami S., Taheri F., Effects of perforation size on the response of perforated GFRP composites aged in acidic media, Corrosion Science 69 (2013) 262–269.[9] Amaro A.M., Reis P.N.B., Neto M.A., Louro C., Effects of alkaline and acid solutions on glass/epoxy composites, Polymer Degradation and Stability 98 (2013) 853-862.[10] Sindhu K, Joseph K, Joseph JM, Mathew TV. Degradation studies of coir fiber/ polyester and glass fiber/polyester composites under different conditions. J Reinf Plast Compos 2007;26:1571-1585[11] Jabbar, S.A.A., Farid, S.B.H., Replacement of steel rebars by GFRP rebars in the concrete structures, Karbala International Journal of Modern Science 4 (2018) 216-227.
  • [12] TS 138 EN 10002-1: Metalik Malzemeler-Çekme Deneyi, Türk Standartları Enstitüsü, Nisan (2004).[13] Aydın F., Ekiz Y., Sarıbıyık M., Sarıbıyık A., ‘FRP Donatı Çekme Testlerinde Numune Başlık Özeliklerinin Çekme Test Sonuçlarına Etkilerinin Araştırılması’, Akademik Platform (3rd International Symposium on Innovative Technologies in Engineering and Science, ISITES2015), 1796-1806, (2015).
  • [14] Topçu, İ.B., Eroğlu, S., FRP Donatıların Beton İle Aderansının Araştırılması, Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projesi Sonuç Raporu, Proje No:2017-1579, 2018, Eskişehir[15] Bacanlı, K., FRP Donatıların Beton İle Aderansının Araştırılması, Bitirme Tezi, Eskişehir Osmangazi Üniversitesi, İnşaat Mühendisliği Bölümü, 2018, Eskişehir[16] Baena, M., Torres, L., Turon, A., Barris, C., ‘Experimental study of bond behaviour between concrete and FRP bars using a pull-out test’, Composites Part B: Engineering, 40(8), 784-797, (2009).[17] Cosenza E, Manfredi G, Realfonzo R., ‘Behavior and modeling of bond of FRP rebars to concrete’, J Compos Constr, 1(2):40–51, (1997).[18] Hwang J.H., Seo D.W., Park K.T., You Y.J., ‘Experimental Study on the Mechanical Properties of FRP Bars by Hybridizing with Steel Wires’, Engineering, 6(7):365-373, (2014). [19] Yoo D-Y, Kwon K-Y, Park J-J, Yoon Y-S., ‘Local bond-slip response of GFRP rebar in ultra-high-performance fiber-reinforced concrete’. Compos Struct, 120:53–64, (2015).[20] Okelo, R., and Yuan R. L., ‘Bond strength of fibre reinforced polymer rebars in normal strength concrete’, Journal of Composites for Construction, 9(3), 203-213, (2005).[21] Malvar, L., ‘Tensile and bond properties of GFRP reinforcing bars’, ACI Materials Journals, 92(3), 276-285, (1995).[22] Halliwell, S.M., Reynolds, T., ‘Effective Use of Fibre Reinforced Polymer Materials in Construction’, BRE Centre for Composites in Construction, London, (2004).[23] Uygunoglu, T., Güneş, İ., Biogenic corrosion on ribbed reinforcing steel bars with different bending angles in sewage systems, Construction and Building Materials 96 (2015) 530–540[24] Taha, M.R. FRP for Infrastructure Applications: Research Advances, Fibers, 2018, 6(1), 1-3.

Properties of GFRP Rods and Use in Prefabricated Infrastructure Elements

Yıl 2020, Cilt: 7 Sayı: 1, 169 - 178, 31.01.2020
https://doi.org/10.31202/ecjse.602224

Öz

Corrosion of the
reinforcement steel has become one of the most important problems of the
construction industry today. This situation is more evident in the
infrastructure elements. In order to survive such problems, the idea of ​​using
glass fiber reinforced polymeric installations (GFRP) as a corrosion-resistant
material has emerged as an alternative to steel fixtures. GFRP rods are able to
withstand high tensile forces thanks to the combination of high fiberglass,
carbon fiber, aramid fiber and suitable resin in the contents. However, the
E-modulus is lower than that of steel hardware. One of the most important
reasons for the use of reinforcement elements in reinforced concrete structures
is that they meet tensile stresses. In this study, tensile tests of Ø8, Ø10,
Ø12, Ø14, Ø16 and Ø18 specimens were carried out in order to determine the
tensile properties of ribbed steel bars and GFRP bars. Accelerated corrosion
test and resistance to acid effects were investigated in GFRP reinforced
concrete. In addition, adherence to concrete was investigated experimentally in
each reinforcement class. It has been found that GFRP reinforcements have lower
adherence strength than steel reinforcement, but are highly resistant to
corrosion and acid effects.

Kaynakça

  • [1] Dejke, V., Tepfers, R., ‘Durability and service life prediction of GFRP for concrete reinforcement’, In Proceedings of 5th international conference on fiber-reinforced plastics for reinforced concrete structures (FRPRCS-5), 505–516, (2001).[2] Hota, V.S. G., Vıjay, P.V. And Narendra, T., ‘Reinforced Concrete Design with FRP Composites’, CRC Press, (2007).[3] Yavuz, G., ‘Lif Takviyeli Polimerlerin Betonarme Kirişlerde Donatı Olarak Kullanımı’, Selçuk Üniversitesi, Mayıs, (2011).[4] Caratelli A., Meda A., Rinaldi Z., Spagnuolo S., Maddaluno G., ‘Optimization of GFRP reinforcement in precast segments for metro tunnel lining’, Composite Structures, 181, 336–346, (2017)[5] Karbhari, V.M., ‘Durability of Advanced Polymer Composites in the Civil Infrastructure’, Advance Polymer Composites for Structural Applications in Construction (ACIC), 31-38, (2004).[6] Glass Fiber Reinforced Polymer Rebar. Hughes Brothers, Inc., Seward, Nebraska, 2000.[7] DeFreese J.M., Roberts-Wollmann C.L., ‘Glass fıber reinforced polymer bars as top mat reinforcement for bridge decks, Virginia Transportation Research Council’, Final Report (VTRC 03-CR6), (2002). [8] Eslami S., Taheri F., Effects of perforation size on the response of perforated GFRP composites aged in acidic media, Corrosion Science 69 (2013) 262–269.[9] Amaro A.M., Reis P.N.B., Neto M.A., Louro C., Effects of alkaline and acid solutions on glass/epoxy composites, Polymer Degradation and Stability 98 (2013) 853-862.[10] Sindhu K, Joseph K, Joseph JM, Mathew TV. Degradation studies of coir fiber/ polyester and glass fiber/polyester composites under different conditions. J Reinf Plast Compos 2007;26:1571-1585[11] Jabbar, S.A.A., Farid, S.B.H., Replacement of steel rebars by GFRP rebars in the concrete structures, Karbala International Journal of Modern Science 4 (2018) 216-227.
  • [12] TS 138 EN 10002-1: Metalik Malzemeler-Çekme Deneyi, Türk Standartları Enstitüsü, Nisan (2004).[13] Aydın F., Ekiz Y., Sarıbıyık M., Sarıbıyık A., ‘FRP Donatı Çekme Testlerinde Numune Başlık Özeliklerinin Çekme Test Sonuçlarına Etkilerinin Araştırılması’, Akademik Platform (3rd International Symposium on Innovative Technologies in Engineering and Science, ISITES2015), 1796-1806, (2015).
  • [14] Topçu, İ.B., Eroğlu, S., FRP Donatıların Beton İle Aderansının Araştırılması, Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projesi Sonuç Raporu, Proje No:2017-1579, 2018, Eskişehir[15] Bacanlı, K., FRP Donatıların Beton İle Aderansının Araştırılması, Bitirme Tezi, Eskişehir Osmangazi Üniversitesi, İnşaat Mühendisliği Bölümü, 2018, Eskişehir[16] Baena, M., Torres, L., Turon, A., Barris, C., ‘Experimental study of bond behaviour between concrete and FRP bars using a pull-out test’, Composites Part B: Engineering, 40(8), 784-797, (2009).[17] Cosenza E, Manfredi G, Realfonzo R., ‘Behavior and modeling of bond of FRP rebars to concrete’, J Compos Constr, 1(2):40–51, (1997).[18] Hwang J.H., Seo D.W., Park K.T., You Y.J., ‘Experimental Study on the Mechanical Properties of FRP Bars by Hybridizing with Steel Wires’, Engineering, 6(7):365-373, (2014). [19] Yoo D-Y, Kwon K-Y, Park J-J, Yoon Y-S., ‘Local bond-slip response of GFRP rebar in ultra-high-performance fiber-reinforced concrete’. Compos Struct, 120:53–64, (2015).[20] Okelo, R., and Yuan R. L., ‘Bond strength of fibre reinforced polymer rebars in normal strength concrete’, Journal of Composites for Construction, 9(3), 203-213, (2005).[21] Malvar, L., ‘Tensile and bond properties of GFRP reinforcing bars’, ACI Materials Journals, 92(3), 276-285, (1995).[22] Halliwell, S.M., Reynolds, T., ‘Effective Use of Fibre Reinforced Polymer Materials in Construction’, BRE Centre for Composites in Construction, London, (2004).[23] Uygunoglu, T., Güneş, İ., Biogenic corrosion on ribbed reinforcing steel bars with different bending angles in sewage systems, Construction and Building Materials 96 (2015) 530–540[24] Taha, M.R. FRP for Infrastructure Applications: Research Advances, Fibers, 2018, 6(1), 1-3.
Toplam 3 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İlker Bekir Topçu 0000-0003-4382-8257

Tayfun Uygunoğlu 0000-0003-4382-8257

Yayımlanma Tarihi 31 Ocak 2020
Gönderilme Tarihi 6 Ağustos 2019
Kabul Tarihi 20 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 7 Sayı: 1

Kaynak Göster

IEEE İ. B. Topçu ve T. Uygunoğlu, “GFRP Çubukların Özelikleri ve Prefabrik Altyapı Elemanlarında Kullanımı”, ECJSE, c. 7, sy. 1, ss. 169–178, 2020, doi: 10.31202/ecjse.602224.