Bulanık Yıldız-Şekilli Sayıların I-İstatistiksel Yakınsak Dizi Uzayları
Yıl 2022,
Sayı: 34, 778 - 782, 31.03.2022
Ömer Kişi
,
Erhan Güler
Öz
Bu çalışmada, bulanık yıldız-şekilli sayıların I-istatistiksel yakınsaklığını elde ettik. Elde edilen yeni dizi uzaylarının bazı topolojik ve cebirsel özelliklerini inceledik. Bu yeni kavramların önemli örneklerini ortaya koyduk.
Kaynakça
-
Diamond, P. (1990). A note on fuzzy star-shaped fuzzy sets. Fuzzy Sets Syst., 37(2), 193-199.
-
Diamond, P., & Kloeden, P. (1989). Characterization of compact subsets of fuzzy sets. Fuzzy Sets Syst., 29(3), 341–348.
-
Diamond, P., & Kloeden, P. (1990). Metric spaces of fuzzy sets. Fuzzy Sets Syst., 35(2), 241-249.
-
Khan, V.A., Kara, E.E., Tuba, U., Alshlool, K.M.A.S., & Ahmad, A. (2021). Sequences of fuzzy star-shaped numbers. J. Math. Comput. Sci., 23(4), 321-327.
-
Khan, V.A., Tuba, U., Ashadul Rahaman, SK., & Ahmad, A. (2021). Ideal convergent sequence spaces of fuzzy star–shaped numbers. J. Intell. Fuzzy Syst., 40, 11355-11362. https://doi.org/10.3233/JIFS-202534
-
Kostyrko, P., Macaj, M., Salat, T., & Sleziak, M. (2005). I-convergence and extremal I -limit points. Math. Slov., 4, 443-464.
-
Kostyrko, P., Salat, T., & Wilczynski, W. (2000/2001). I-convergence. Real Anal. Exchange, 26(2), 669-686.
-
Kumar, V., & Kumar, K. (2008). On the ideal convergence of sequences of fuzzy numbers. Inf. Sci., 178(24), 4670-4678.
-
Salat, T., Tripathy, B., & Ziman, M. (2004). On some properties of I-convergence. Tatra. Mt. Math. Publ., 28, 279-286.
-
Savaş, E., & Das, P. (2011). A generalized statistical convergence via ideals. App. Math. Lett., 24, 826-830.
-
Zadeh, L. A. (1965). Fuzzy sets. Inf. Control., 8(3), 338-353.
-
Zhao, Z., & Wu, C. (2013). A characterization for compact sets in the space of fuzzy star-shaped numbers with metric. Abstr. Appl. Anal., 2013, Article ID: 627314. https://doi.org/10.1155/2013/627314
I-Statistical Convergent Sequence Spaces of Fuzzy Star–Shaped Numbers
Yıl 2022,
Sayı: 34, 778 - 782, 31.03.2022
Ömer Kişi
,
Erhan Güler
Öz
In this study, we acquire I-statistical convergence of sequences of fuzzy star–shaped numbers. We examine topological and algebraic features of the obtained new sequence spaces. We put forward to significant examples of these new notions.
Kaynakça
-
Diamond, P. (1990). A note on fuzzy star-shaped fuzzy sets. Fuzzy Sets Syst., 37(2), 193-199.
-
Diamond, P., & Kloeden, P. (1989). Characterization of compact subsets of fuzzy sets. Fuzzy Sets Syst., 29(3), 341–348.
-
Diamond, P., & Kloeden, P. (1990). Metric spaces of fuzzy sets. Fuzzy Sets Syst., 35(2), 241-249.
-
Khan, V.A., Kara, E.E., Tuba, U., Alshlool, K.M.A.S., & Ahmad, A. (2021). Sequences of fuzzy star-shaped numbers. J. Math. Comput. Sci., 23(4), 321-327.
-
Khan, V.A., Tuba, U., Ashadul Rahaman, SK., & Ahmad, A. (2021). Ideal convergent sequence spaces of fuzzy star–shaped numbers. J. Intell. Fuzzy Syst., 40, 11355-11362. https://doi.org/10.3233/JIFS-202534
-
Kostyrko, P., Macaj, M., Salat, T., & Sleziak, M. (2005). I-convergence and extremal I -limit points. Math. Slov., 4, 443-464.
-
Kostyrko, P., Salat, T., & Wilczynski, W. (2000/2001). I-convergence. Real Anal. Exchange, 26(2), 669-686.
-
Kumar, V., & Kumar, K. (2008). On the ideal convergence of sequences of fuzzy numbers. Inf. Sci., 178(24), 4670-4678.
-
Salat, T., Tripathy, B., & Ziman, M. (2004). On some properties of I-convergence. Tatra. Mt. Math. Publ., 28, 279-286.
-
Savaş, E., & Das, P. (2011). A generalized statistical convergence via ideals. App. Math. Lett., 24, 826-830.
-
Zadeh, L. A. (1965). Fuzzy sets. Inf. Control., 8(3), 338-353.
-
Zhao, Z., & Wu, C. (2013). A characterization for compact sets in the space of fuzzy star-shaped numbers with metric. Abstr. Appl. Anal., 2013, Article ID: 627314. https://doi.org/10.1155/2013/627314