Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapay Zekâ Öğrenme Niyeti Ölçeği’nin Türk Kültürüne Uyarlanması: Geçerlik ve Güvenirlik Çalışması

Yıl 2025, Cilt: 6 Sayı: 2, 88 - 106, 25.08.2025
https://doi.org/10.69918/ejte.1666160

Öz

Bu çalışmada Chai ve ark. tarafından geliştirilen Yapay Zekâ Öğrenme Niyeti Ölçeği'nin Türkçe'ye uyarlanması ve psikometrik özelliklerinin öğretmen adayı ve öğretmen adaylarından oluşan bir örneklemde incelenmesi amaçlanmıştır. Uyarlama sürecinde dilsel eşdeğerliği sağlamak amacıyla çift yönlü çeviri yöntemi kullanılmış ve içerik geçerliliğini sağlamak amacıyla uzman görüşlerine başvurulmuştur. Ölçeğin yapısını incelemek amacıyla 403 öğretmen adayı ile açımlayıcı faktör analizi (AFA) ve 419 ortaokul öğretmeni ile doğrulayıcı faktör analizi (DFA) yapılmıştır. Öğretmen adayları yeni teknolojilere açık olmaları nedeniyle AFA için seçilirken, öğretmen adayları ise istikrarlı mesleki tutumları nedeniyle DFA için seçilmiştir. AFA sonuçlarına göre ölçeğin toplam varyansın %62,44'ünü açıkladığı görülmüştür. DFA bulguları iyi bir model uyumunu doğrulamıştır (örn., χ²/sd = 2,81, RMSEA = .066, CFI = .96). Cronbach alfa, Omega, Guttman ve Spearman-Brown katsayıları kullanılarak yapılan güvenilirlik analizleri .70 ile .85 arasında değişmiştir. Alt boyutlar arasındaki korelasyonlar ise .202 ile .456 arasında değişmiştir. Genel olarak, bulgular ölçeğin Türkçe versiyonunun hem hizmet öncesi hem de hizmet içi öğretmenler arasında yapay zekâ öğrenme niyetini değerlendirmek için geçerli ve güvenilir bir araç olduğunu göstermiştir.

Etik Beyan

Yapılan bu çalışmada “Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi” kapsamında uyulması belirtilen tüm kurallara uyulmuştur. Yönergenin ikinci bölümü olan “Bilimsel Araştırma ve Yayın Etiğine Aykırı Eylemler” başlığı altında belirtilen eylemlerden hiçbiri gerçekleştirilmemiştir. Etik kurul izin bilgileri; Etik değerlendirmeyi yapan kurul adı: Bayburt Üniversitesi Etik değerlendirme kararının tarihi: 20.02.2025 Etik değerlendirme belgesi sayı numarası: 42

Kaynakça

  • Abbasi, B. N., Wu, Y., & Luo, Z. (2025). Exploring the impact of artificial intelligence on curriculum development in global higher education institutions. Education and Information Technologies, 30, 547–581. https://doi.org/10.1007/s10639-024-13113-z
  • Aggarwal, D., Sharma, D., & Saxena, A. B. (2024). Smart education: An emerging teaching pedagogy for ınteractive and adaptive learning methods. Journal of Learning and Educational Policy, (44), 1-9. https://doi.org/10.55529/jlep.44.1.9
  • Aksekili, E., & Kan, A. (2024). Öğretmenlerin eğitimde yapay zekâ kullanımına yönelik tutum ölçeği geliştirme: Geçerlik ve güvenirlik çalışması. 21. Yüzyılda Eğitim ve Toplum, 13(39), 525–541. https://dergipark.org.tr/tr/download/article-file/3875249
  • Avcı, E. (2023). Yapay zekânın toplumsal karşılığı ve karşıtlığı üzerine bir derleme. Yalova Sosyal Bilimler Dergisi, 14(1), 239–260. https://dergipark.org.tr/tr/pub/yalovasosbil/issue/87936/1419070
  • Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186–3191. https://doi.org/10.1097/00007632-200012150-00014
  • Brislin, R. W. (1986). The wording and translation of research instruments. In W. J. Lonner & J. W. Berry (Eds.), Field methods in educational research (1st ed., pp. 137–164). Sage.
  • Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: Guilford Press.
  • Büyüköztürk, Ş. (2018). Sosyal bilimler için veri analizi el kitabı. Pegem Akademi.
  • Büyüköztürk, Ş., Çakmak, A. K., Akgün, Ö. A., Karadeniz, Ş., & Demirel, F. (2013). Bilimsel araştırma yöntemleri (14. baskı). Pegem Akademi.
  • Chai, C. S., Yu, D., King, R. B., & Zhou, Y. (2024). Development and validation of the artificial intelligence learning intention scale (AILIS) for university students. Sage Open, 14(2). https://doi.org/10.1177/21582440241242188
  • Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
  • Chinaka, T.W. (2021). The effect of PhET simulation vs. phenomenon-based experiential learning on students’ integration of motion along two independent axes in projectile motion. African Journal of Research in Mathematics, Science and Technology Education, 25(2), 185–196. https://doi.org/10.1080/18117295.2021.1969739
  • Chung, K., Kim, S., Jang, Y., Choi, S., & Kim, H. (2025). Developing an AI literacy diagnostic tool for elementary school students. Education and Information Technologies, 30, 1013–1044. https://doi.org/10.1007/s10639-024-13097-w
  • Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(1), 7. https://doi.org/10.7275/jyj1-4868
  • Çelik, H.E., & Yılmaz, V. (2016). LISREL 9.1 ile yapısal eşitlik modellemesi: Temel kavramlar-uygulamalar-programlama. Anı Yayıncılık.
  • Çetin, E., & Aktaş, M. (2023). Öğretmen adaylarının yapay zekâ algıları: Nitel bir araştırma. Eğitim ve Teknoloji Dergisi, 5(2), 45–60. https://dergipark.org.tr/tr/download/article-file/4283191
  • Daher, W.M. (2020). Grade 10 students’ technology-based exploration processes of narratives associated with the sine function. EURASIA Journal of Mathematics, Science and Technology Education, 16(6), em1852 https://doi.org/10.29333/ejmste/7897
  • DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Sage Publications.
  • DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications. Sage publications.
  • Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399–412. https://doi.org/10.1111/bjop.12046
  • Durmuş, B., Yurtkoru, E. S., & Çinko, M. (2013). Sosyal bilimlerde SPSS'le veri analizi (5. baskı). Beta Yayıncılık.
  • Elçiçek, M. (2024). Öğrencilerin yapay zekâ okuryazarlığı üzerine bir inceleme. Bilgi ve İletişim Teknolojileri Dergisi, 6(1), 24-35. https://doi.org/10.53694/bited.1460106
  • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8(3), 430-457. https://doi.org/10.1207/S15328007SEM0803_5
  • Erdoğan, T. E., & Ekşioğlu, S. (2024). Yapay zekâ okuryazarlığı ölçeği’nin Türkçeye uyarlanması. Türk Eğitim Bilimleri Dergisi, 22(2), 1196-1211. https://doi.org/10.37217/tebd.1496716
  • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. https://doi.org/10.1037/1082-989X.4.3.272
  • Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Sage.
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Gökçe Tekin, Ö. (2025). Yapay zekâ okuryazarlık ölçeği geliştirme ve doğrulama çalışması. Batı Anadolu Eğitim Bilimleri Dergisi, 16(1), 418-434. https://doi.org/10.51460/baebd.1609636
  • Görgülü, D., Coşkun, F., Demir, M., & Sipahioğlu, M. (2025). A psychometric analysis of the artificial intelligence skills scale developed through ChatGPT. Education and Information Technologies, 30, 1-24. https://doi.org/10.1007/s10639-024-13294-7
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage Learning.
  • Hambleton, R. K., Merenda, P., & Spielberger, C. (Eds.). (2005). Adapting educational and psychological tests for cross-cultural assessment. Lawrence Erlbaum.
  • Kaya, F., Yetişensoy, O., Aydın, F., & Kaya, M. D. (2024). Yapay zekâ korkusu ölçeğinin Türkçe’ye uyarlanması. Ordu Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Araştırmaları Dergisi, 14(2), 554-567. https://doi.org/10.48146/odusobiad.1264103
  • Li, M. Integrating Artificial Intelligence in Primary Mathematics Education: Investigating Internal and External Influences on Teacher Adoption. International Journal of Science and Mathematics Education, 23(5), 1283–1308. https://doi.org/10.1007/s10763-024-10515-w
  • Lim, E. M. (2023). The effects of pre-service early childhood teachers’ digital literacy and self-efficacy on their perception of AI education for young children. Education and Information Technologies, 28(10), 12969-12995. https://doi.org/10.1007/s10639-023-11724-6
  • Liu, J., Zhang, L., Wei, B., & Zheng, Q. (2022). Virtual teaching assistants: Technologies, applications and challenges. In F. Chen & J. Zhou (Eds.), Humanity driven AI (1st ed., pp. 255-277). Springer. https://doi.org/10.1007/978-3-030-72188-6_13
  • Orhan, A., Aydın Yıldız, T., & Çınar Yağcı, Ş. (2024). Assessing EFL learners’ attitudes on generative artificial intelligence: Development and validation of generative artificial intelligence attitude scale for EFL learners (GenAIAS). Journal of Research on Technology in Education, 56(3) 1-21. https://doi.org/10.1080/15391523.2024.2437744
  • Perkash, A., Shaheen, Q., Saleem, R., Rustam, F., Villar, M. G., Alvarado, E. S., ... & Ashraf, I. (2024). Feature optimization and machine learning for predicting students’ academic performance in higher education institutions. Education and Information Technologies, 29(16), 21169-21193. https://doi.org/10.1007/s10639-024-12698-9
  • Polatgil, M., & Güler, A. (2023). Yapay zekâ okuryazarlığı ölçeğinin Türkçe’ye uyarlanması: Adaptation of artificial intelligence literacy scale into Turkish. Sosyal Bilimlerde Nicel Araştırmalar Dergisi, 3(2), 99-114.
  • Pregowska, A., Masztalerz, K., Garlińska, M., & Osial, M. (2021). A worldwide journey through distance education—from the post office to virtual, augmented and mixed realities, and education during the COVID-19 pandemic. Education Sciences, 11(3), 118. https://doi.org/10.3390/educsci11030118
  • Raykov, T., & Marcoulides, G. A. (2006). On multilevel model reliability estimation from the perspective of structural equation modeling. Structural Equation Modeling, 13(1), 130-141. https://doi.org/10.1207/s15328007sem1301_7
  • Santandreu-Calonge, D., Medina-Aguerrebere, P., Hultberg, P., & Shah, M. A. (2023). Can ChatGPT improve communication in hospitals? Profesional de la información, 32(2). https://doi.org/10.3145/epi.2023.mar.19
  • Seyrek, M., Yıldız, S., Emeksiz, H., Şahin, A., & Türkmen, M. T. (2024). Öğretmenlerin eğitimde yapay zekâ kullanımına yönelik algıları. International Journal of Social and Humanities Sciences Research (JSHSR), 11(106), 845-856. https://doi.org/10.5281/zenodo.11113077
  • Shin, D. (2020). User perceptions of algorithmic decisions in the personalized AI system: Perceptual evaluation of fairness, accountability, and transparency. Journal of Broadcasting & Electronic Media, 64(4), 541–565. https://doi.org/10.1080/08838151.2020.1843357
  • Sousa, V. D., & Rojjanasrirat, W. (2011). Translation, adaptation and validation of instruments or scales for use in cross-cultural health care research: A clear and user-friendly guideline. Journal of Evaluation in Clinical Practice, 17(2), 268–274. https://doi.org/10.1111/j.1365-2753.2010.01434.x
  • Streiner, D. L. (1994). Figuring out factors: The use and misuse of factor analysis. Canadian Journal of Psychiatry, 39(3), 135-140. https://doi.org/10.1177/0706743794039003
  • Strielkowski, W., Grebennikova, V., Lisovskiy, A., Rakhimova, G., & Vasileva, T. (2024). AI‐driven adaptive learning for sustainable educational transformation. Sustainable Development, 33(2), 1921-1947. https://doi.org/10.1002/sd.3221
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6. ed.). Pearson Education.
  • Tapalova, O., & Zhiyenbayeva, N. (2022). Artificial intelligence in education: AIEd for personalised learning pathways. Electronic Journal of e-Learning, 20(5), 639–653. https://doi.org/10.34190/ejel.20.5.2597
  • Tat, O., & Doğan, N. (2018). Uluslararası Bilgisayar ve Bilgi Teknolojileri Okuryazarlığı Testinin Madde-Birey Dağılımı ve Değişen Madde Fonksiyonu Yönünden İncelenmesi. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 38(3), 1207–1231. https://doi.org/10.17152/gefad.321630
  • Trizano-Hermosilla, I., & Alvarado, J. M. (2016). Best alternatives to cronbach’s alpha reliability in realistic conditions: congeneric and asymmetrical measurements. Frontiers in Psychology, 7, 769. https://doi.org/10.3389/fpsyg.2016.00769
  • Turgut, D., & Kunuroglu, F. (2025). Adaptation of the Student Attitudes toward Artificial Intelligence Scale (SATAI) to the Turkish Context: A Sample of Emerging Adults. International Journal of Human–Computer Interaction, 41(11), 1-11. https://doi.org/10.1080/10447318.2025.2474474
  • Üzüm, B., Elçiçek, M., & Pesen, A. (2024). Development of teachers’ perception scale regarding artificial intelligence use in education: Validity and reliability study. International Journal of Human–Computer Interaction, 1-12. https://doi.org/10.1080/10447318.2024.2385518
  • Van de Vijver, F. J., & Poortinga, Y. H. (1997). Towards an integrated analysis of bias in cross-cultural assessment. European Journal of Psychological Assessment, 13(1), 29-37. https://doi.org/10.1027/1015-5759.13.1.29
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
  • Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806–838. https://doi.org/10.1177/0011000006288127
  • Yılmaz, F. G. K., & Yılmaz, R. (2023). Yapay zekâ okuryazarlığı ölçeğinin Türkçeye uyarlanması. Bilgi ve İletişim Teknolojileri Dergisi, 5(2), 172-190. https://doi.org/10.53694/bited.1376831
  • Yılmaz, F. G. K., Yılmaz, R., & Ceylan, M. (2024). Generative artificial intelligence acceptance scale: A validity and reliability study. International Journal of Human–Computer Interaction, 40(24), 8703-8715. https://doi.org/10.1080/10447318.2023.2288730
  • Žáková, K., Urbano, D., Cruz-Correia, R., Guzmán, J. L., & Matišák, J. (2024). Exploring student and teacher perspectives on ChatGPT’s impact in higher education. Education and Information Technologies, 30(1), 649-692. https://doi.org/10.1007/s10639-024-13184-y

Adaptation of Artificial Intelligence Learning Intention Scale to Turkish Culture: Validity and Reliability Study

Yıl 2025, Cilt: 6 Sayı: 2, 88 - 106, 25.08.2025
https://doi.org/10.69918/ejte.1666160

Öz

This study aimed to adapt the Artificial Intelligence Learning Intention Scale, originally developed by Chai et al., into Turkish and to examine its psychometric properties in a sample of pre-service and in-service teachers. During the adaptation process, the bidirectional translation method was used to ensure linguistic equivalence, and expert opinions were consulted to establish content validity. To examine the scale’s structure, exploratory factor analysis (EFA) was conducted with 403 pre-service teachers, while confirmatory factor analysis (CFA) was performed with 419 in-service secondary school teachers. Pre-service teachers were selected for EFA due to their receptiveness to new technologies, whereas in-service teachers were chosen for CFA because of their stable professional attitudes. The EFA results indicated that the scale explained 62.44% of the total variance. CFA findings confirmed a good model fit (e.g., χ²/df = 2.81, RMSEA = .066, CFI = .96). Reliability analyses using Cronbach’s alpha, Omega, Guttman, and Spearman-Brown coefficients ranged from .70 to .85. Correlations between sub-dimensions varied from .202 to .456. Overall, the findings demonstrated that the Turkish version of the scale is a valid and reliable instrument for assessing AI learning intention among both pre-service and in-service teachers.

Etik Beyan

This study followed all the rules stated to be followed within the “Higher Education Institutions Scientific Research and Publication Ethics Directive” scope. None of the actions specified under the title of “Actions Contrary to Scientific Research and Publication Ethics,” which is the second part of the directive, were not carried out. Ethics committee permission information Name of the committee that made the ethical evaluation: Bayburt University Date of ethical review decision: 20.02.2025 Ethics assessment document issue number: 42

Kaynakça

  • Abbasi, B. N., Wu, Y., & Luo, Z. (2025). Exploring the impact of artificial intelligence on curriculum development in global higher education institutions. Education and Information Technologies, 30, 547–581. https://doi.org/10.1007/s10639-024-13113-z
  • Aggarwal, D., Sharma, D., & Saxena, A. B. (2024). Smart education: An emerging teaching pedagogy for ınteractive and adaptive learning methods. Journal of Learning and Educational Policy, (44), 1-9. https://doi.org/10.55529/jlep.44.1.9
  • Aksekili, E., & Kan, A. (2024). Öğretmenlerin eğitimde yapay zekâ kullanımına yönelik tutum ölçeği geliştirme: Geçerlik ve güvenirlik çalışması. 21. Yüzyılda Eğitim ve Toplum, 13(39), 525–541. https://dergipark.org.tr/tr/download/article-file/3875249
  • Avcı, E. (2023). Yapay zekânın toplumsal karşılığı ve karşıtlığı üzerine bir derleme. Yalova Sosyal Bilimler Dergisi, 14(1), 239–260. https://dergipark.org.tr/tr/pub/yalovasosbil/issue/87936/1419070
  • Beaton, D. E., Bombardier, C., Guillemin, F., & Ferraz, M. (2000). Guidelines for the process of cross-cultural adaptation of self-report measures. Spine, 25(24), 3186–3191. https://doi.org/10.1097/00007632-200012150-00014
  • Brislin, R. W. (1986). The wording and translation of research instruments. In W. J. Lonner & J. W. Berry (Eds.), Field methods in educational research (1st ed., pp. 137–164). Sage.
  • Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: Guilford Press.
  • Büyüköztürk, Ş. (2018). Sosyal bilimler için veri analizi el kitabı. Pegem Akademi.
  • Büyüköztürk, Ş., Çakmak, A. K., Akgün, Ö. A., Karadeniz, Ş., & Demirel, F. (2013). Bilimsel araştırma yöntemleri (14. baskı). Pegem Akademi.
  • Chai, C. S., Yu, D., King, R. B., & Zhou, Y. (2024). Development and validation of the artificial intelligence learning intention scale (AILIS) for university students. Sage Open, 14(2). https://doi.org/10.1177/21582440241242188
  • Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
  • Chinaka, T.W. (2021). The effect of PhET simulation vs. phenomenon-based experiential learning on students’ integration of motion along two independent axes in projectile motion. African Journal of Research in Mathematics, Science and Technology Education, 25(2), 185–196. https://doi.org/10.1080/18117295.2021.1969739
  • Chung, K., Kim, S., Jang, Y., Choi, S., & Kim, H. (2025). Developing an AI literacy diagnostic tool for elementary school students. Education and Information Technologies, 30, 1013–1044. https://doi.org/10.1007/s10639-024-13097-w
  • Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(1), 7. https://doi.org/10.7275/jyj1-4868
  • Çelik, H.E., & Yılmaz, V. (2016). LISREL 9.1 ile yapısal eşitlik modellemesi: Temel kavramlar-uygulamalar-programlama. Anı Yayıncılık.
  • Çetin, E., & Aktaş, M. (2023). Öğretmen adaylarının yapay zekâ algıları: Nitel bir araştırma. Eğitim ve Teknoloji Dergisi, 5(2), 45–60. https://dergipark.org.tr/tr/download/article-file/4283191
  • Daher, W.M. (2020). Grade 10 students’ technology-based exploration processes of narratives associated with the sine function. EURASIA Journal of Mathematics, Science and Technology Education, 16(6), em1852 https://doi.org/10.29333/ejmste/7897
  • DeVellis, R. F. (2017). Scale development: Theory and applications (4th ed.). Sage Publications.
  • DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications. Sage publications.
  • Dunn, T. J., Baguley, T., & Brunsden, V. (2014). From alpha to omega: A practical solution to the pervasive problem of internal consistency estimation. British Journal of Psychology, 105(3), 399–412. https://doi.org/10.1111/bjop.12046
  • Durmuş, B., Yurtkoru, E. S., & Çinko, M. (2013). Sosyal bilimlerde SPSS'le veri analizi (5. baskı). Beta Yayıncılık.
  • Elçiçek, M. (2024). Öğrencilerin yapay zekâ okuryazarlığı üzerine bir inceleme. Bilgi ve İletişim Teknolojileri Dergisi, 6(1), 24-35. https://doi.org/10.53694/bited.1460106
  • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8(3), 430-457. https://doi.org/10.1207/S15328007SEM0803_5
  • Erdoğan, T. E., & Ekşioğlu, S. (2024). Yapay zekâ okuryazarlığı ölçeği’nin Türkçeye uyarlanması. Türk Eğitim Bilimleri Dergisi, 22(2), 1196-1211. https://doi.org/10.37217/tebd.1496716
  • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. https://doi.org/10.1037/1082-989X.4.3.272
  • Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). Sage.
  • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Gökçe Tekin, Ö. (2025). Yapay zekâ okuryazarlık ölçeği geliştirme ve doğrulama çalışması. Batı Anadolu Eğitim Bilimleri Dergisi, 16(1), 418-434. https://doi.org/10.51460/baebd.1609636
  • Görgülü, D., Coşkun, F., Demir, M., & Sipahioğlu, M. (2025). A psychometric analysis of the artificial intelligence skills scale developed through ChatGPT. Education and Information Technologies, 30, 1-24. https://doi.org/10.1007/s10639-024-13294-7
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Cengage Learning.
  • Hambleton, R. K., Merenda, P., & Spielberger, C. (Eds.). (2005). Adapting educational and psychological tests for cross-cultural assessment. Lawrence Erlbaum.
  • Kaya, F., Yetişensoy, O., Aydın, F., & Kaya, M. D. (2024). Yapay zekâ korkusu ölçeğinin Türkçe’ye uyarlanması. Ordu Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Araştırmaları Dergisi, 14(2), 554-567. https://doi.org/10.48146/odusobiad.1264103
  • Li, M. Integrating Artificial Intelligence in Primary Mathematics Education: Investigating Internal and External Influences on Teacher Adoption. International Journal of Science and Mathematics Education, 23(5), 1283–1308. https://doi.org/10.1007/s10763-024-10515-w
  • Lim, E. M. (2023). The effects of pre-service early childhood teachers’ digital literacy and self-efficacy on their perception of AI education for young children. Education and Information Technologies, 28(10), 12969-12995. https://doi.org/10.1007/s10639-023-11724-6
  • Liu, J., Zhang, L., Wei, B., & Zheng, Q. (2022). Virtual teaching assistants: Technologies, applications and challenges. In F. Chen & J. Zhou (Eds.), Humanity driven AI (1st ed., pp. 255-277). Springer. https://doi.org/10.1007/978-3-030-72188-6_13
  • Orhan, A., Aydın Yıldız, T., & Çınar Yağcı, Ş. (2024). Assessing EFL learners’ attitudes on generative artificial intelligence: Development and validation of generative artificial intelligence attitude scale for EFL learners (GenAIAS). Journal of Research on Technology in Education, 56(3) 1-21. https://doi.org/10.1080/15391523.2024.2437744
  • Perkash, A., Shaheen, Q., Saleem, R., Rustam, F., Villar, M. G., Alvarado, E. S., ... & Ashraf, I. (2024). Feature optimization and machine learning for predicting students’ academic performance in higher education institutions. Education and Information Technologies, 29(16), 21169-21193. https://doi.org/10.1007/s10639-024-12698-9
  • Polatgil, M., & Güler, A. (2023). Yapay zekâ okuryazarlığı ölçeğinin Türkçe’ye uyarlanması: Adaptation of artificial intelligence literacy scale into Turkish. Sosyal Bilimlerde Nicel Araştırmalar Dergisi, 3(2), 99-114.
  • Pregowska, A., Masztalerz, K., Garlińska, M., & Osial, M. (2021). A worldwide journey through distance education—from the post office to virtual, augmented and mixed realities, and education during the COVID-19 pandemic. Education Sciences, 11(3), 118. https://doi.org/10.3390/educsci11030118
  • Raykov, T., & Marcoulides, G. A. (2006). On multilevel model reliability estimation from the perspective of structural equation modeling. Structural Equation Modeling, 13(1), 130-141. https://doi.org/10.1207/s15328007sem1301_7
  • Santandreu-Calonge, D., Medina-Aguerrebere, P., Hultberg, P., & Shah, M. A. (2023). Can ChatGPT improve communication in hospitals? Profesional de la información, 32(2). https://doi.org/10.3145/epi.2023.mar.19
  • Seyrek, M., Yıldız, S., Emeksiz, H., Şahin, A., & Türkmen, M. T. (2024). Öğretmenlerin eğitimde yapay zekâ kullanımına yönelik algıları. International Journal of Social and Humanities Sciences Research (JSHSR), 11(106), 845-856. https://doi.org/10.5281/zenodo.11113077
  • Shin, D. (2020). User perceptions of algorithmic decisions in the personalized AI system: Perceptual evaluation of fairness, accountability, and transparency. Journal of Broadcasting & Electronic Media, 64(4), 541–565. https://doi.org/10.1080/08838151.2020.1843357
  • Sousa, V. D., & Rojjanasrirat, W. (2011). Translation, adaptation and validation of instruments or scales for use in cross-cultural health care research: A clear and user-friendly guideline. Journal of Evaluation in Clinical Practice, 17(2), 268–274. https://doi.org/10.1111/j.1365-2753.2010.01434.x
  • Streiner, D. L. (1994). Figuring out factors: The use and misuse of factor analysis. Canadian Journal of Psychiatry, 39(3), 135-140. https://doi.org/10.1177/0706743794039003
  • Strielkowski, W., Grebennikova, V., Lisovskiy, A., Rakhimova, G., & Vasileva, T. (2024). AI‐driven adaptive learning for sustainable educational transformation. Sustainable Development, 33(2), 1921-1947. https://doi.org/10.1002/sd.3221
  • Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6. ed.). Pearson Education.
  • Tapalova, O., & Zhiyenbayeva, N. (2022). Artificial intelligence in education: AIEd for personalised learning pathways. Electronic Journal of e-Learning, 20(5), 639–653. https://doi.org/10.34190/ejel.20.5.2597
  • Tat, O., & Doğan, N. (2018). Uluslararası Bilgisayar ve Bilgi Teknolojileri Okuryazarlığı Testinin Madde-Birey Dağılımı ve Değişen Madde Fonksiyonu Yönünden İncelenmesi. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 38(3), 1207–1231. https://doi.org/10.17152/gefad.321630
  • Trizano-Hermosilla, I., & Alvarado, J. M. (2016). Best alternatives to cronbach’s alpha reliability in realistic conditions: congeneric and asymmetrical measurements. Frontiers in Psychology, 7, 769. https://doi.org/10.3389/fpsyg.2016.00769
  • Turgut, D., & Kunuroglu, F. (2025). Adaptation of the Student Attitudes toward Artificial Intelligence Scale (SATAI) to the Turkish Context: A Sample of Emerging Adults. International Journal of Human–Computer Interaction, 41(11), 1-11. https://doi.org/10.1080/10447318.2025.2474474
  • Üzüm, B., Elçiçek, M., & Pesen, A. (2024). Development of teachers’ perception scale regarding artificial intelligence use in education: Validity and reliability study. International Journal of Human–Computer Interaction, 1-12. https://doi.org/10.1080/10447318.2024.2385518
  • Van de Vijver, F. J., & Poortinga, Y. H. (1997). Towards an integrated analysis of bias in cross-cultural assessment. European Journal of Psychological Assessment, 13(1), 29-37. https://doi.org/10.1027/1015-5759.13.1.29
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
  • Worthington, R. L., & Whittaker, T. A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34(6), 806–838. https://doi.org/10.1177/0011000006288127
  • Yılmaz, F. G. K., & Yılmaz, R. (2023). Yapay zekâ okuryazarlığı ölçeğinin Türkçeye uyarlanması. Bilgi ve İletişim Teknolojileri Dergisi, 5(2), 172-190. https://doi.org/10.53694/bited.1376831
  • Yılmaz, F. G. K., Yılmaz, R., & Ceylan, M. (2024). Generative artificial intelligence acceptance scale: A validity and reliability study. International Journal of Human–Computer Interaction, 40(24), 8703-8715. https://doi.org/10.1080/10447318.2023.2288730
  • Žáková, K., Urbano, D., Cruz-Correia, R., Guzmán, J. L., & Matišák, J. (2024). Exploring student and teacher perspectives on ChatGPT’s impact in higher education. Education and Information Technologies, 30(1), 649-692. https://doi.org/10.1007/s10639-024-13184-y
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eğitim Üzerine Çalışmalar (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Abdullah Kaplan 0000-0001-6743-6368

Cem Kurdal 0009-0008-0880-4093

Erken Görünüm Tarihi 9 Ağustos 2025
Yayımlanma Tarihi 25 Ağustos 2025
Gönderilme Tarihi 26 Mart 2025
Kabul Tarihi 12 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kaplan, A., & Kurdal, C. (2025). Yapay Zekâ Öğrenme Niyeti Ölçeği’nin Türk Kültürüne Uyarlanması: Geçerlik ve Güvenirlik Çalışması. Eurasian Journal of Teacher Education, 6(2), 88-106. https://doi.org/10.69918/ejte.1666160