EXTRACTION OF BIOACTIVE COMPOUNDS FROM FENUGREEK LEAVES BY MACERATION WITH D-OPTIMAL DESIGN
Yıl 2023,
, 305 - 316, 15.04.2023
İzzet Türker
,
Hilal İşleroğlu
Öz
In this study, optimum extraction conditions of bioactive compounds from fenugreek leaves (Trigonella-foenum graecum L.) were investigated using response surface methodology and the extracts having the highest total phenolic content, total flavonoid compounds, antioxidant activity and total saponin content were achieved. The independent process variables were solvent mixture ratio (water and ethanol, 0-100%), temperature (25-65°C) and sample–solvent ratio (10-50 g/L), and a constant extraction time of 120 minutes was used for all the design points. The experimental study was arranged according to D-optimal combined design and the process conditions were optimized using desirability function approach. Results showed that the extraction of phenolic compounds and antioxidant activity were increased at increasing water ratios and temperature and decreasing sample-solvent ratio. Saponins were extracted better when 25% ethanol was used as solvent. The optimum extraction conditions were determined as 100% of water, 49.71°C of temperature, and 10 g/L of sample–solvent ratio.
Destekleyen Kurum
Tokat Gaziosmanpasa University Scientific Research Projects Committee
Kaynakça
- Akbari, S., Abdurahman, N.H., Yunus, R.M. (2019). Optimization of saponins, phenolics, and antioxidants extracted from fenugreek seeds using microwave-assisted extraction and response surface methodology as an optimizing tool. Comptes Rendus Chimie, 22(11-12), 714-727. DOI: 10.1016/j.crci.2019.07.007
- Annida, B., & Stanely Mainzen Prince, P. (2004). Supplementation of fenugreek leaves lower lipid profile in streptozotocin-induced diabetic rats. Journal of Medicinal Food, 7(2), 153-156. DOI: 10.1089/1096620041224201
- Ballard, T.S., Mallikarjunan, P., Zhou, K., & O’Keefe, S.F. (2009). Optimizing the extraction of phenolic antioxidants from peanut skins using response surface methodology. Journal of Agricultural and Food Chemistry, 57(8), 3064-3072. DOI: 10.1021/jf8030925
- Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., Simmonds, M.S., El Feki, A., Makni-Ayedi, F. 2013. Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chemistry, 138(2-3), 1448-1453. DOI: 10.1016/j.foodchem.2012.11.003
- Chaturvedi, V. & Pant, M.C. (1987). Effect of feeding Trigonella foenum-graecum leaves on serum cholesterol, triglycerides and high density lipoprotein cholesterol in the normal rabbits. Current Science, 56, 600–601.
- Chaturvedi, V. & Pant, M.C. 1988. Effect of feeding fenugreek leaves (Trigonella foenum-graecum) on faecal excretion of total lipids and sterols in the normal albino rabbits. Current Science, 57, 81–82.
- Chouhan, K.B.S., Tandey, R., Sen, K.K., Mehta, R., & Mandal, V. (2019). Extraction of phenolic principles: value addition through effective sample pretreatment and operational improvement. Journal of Food Measurement and Characterization, 13(1), 177-186. DOI: 10.1007/s11694-018-9931-0
- Devi, B.A., Kamalakkannan, N., Prince, P.S.M. (2003). Supplementation of fenugreek leaves to diabetic rats. Effect on carbohydrate metabolic enzymes in diabetic liver and kidney. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(10), 1231-1233. DOI: 10.1002/ptr.1357
- Goli, A.H., Barzegar, M., & Sahari, M.A. (2005). Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chemistry, 92(3), 521-525. DOI: 10.1016/j.foodchem.2004.08.020
- Heng, L., Vincken, J.P., Hoppe, K., Van Koningsveld, G.A., Decroos, K., Gruppen, H., ... Voragen, A.G.J. 2006. Stability of pea DDMP saponin and the mechanism of its decomposition. Food Chemistry, 99(2), 326-334. DOI: 10.1016/j.foodchem.2005.07.045
- Hussain, P.R., Suradkar, P., Javaid, S., Akram, H., & Parvez, S. (2016). Influence of postharvest gamma irradiation treatment on the content of bioactive compounds and antioxidant activity of fenugreek (Trigonella foenum–graceum L.) and spinach (Spinacia oleracea L.) leaves. Innovative Food Science & Emerging Technologies, 33, 268-281. DOI: 10.1016/j.ifset.2015.11.017
- Isleroglu, H., & Turker, I. (2022). Ultrasonic-assisted extraction and thermal stability of phytochemicals from fenugreek leaves. Journal of Applied Research on Medicinal and Aromatic Plants, 30, 100390. DOI: 10.1016/j.jarmap.2022.100390
- Ismail, A., Marjan, Z.M., & Foong, C.W. (2004). Total antioxidant activity and phenolic content in selected vegetables. Food Chemistry, 87(4), 581-586. DOI: 10.1016/j.foodchem.2004.01.010
- Khan, M.K.I., GhaurI, Y.M., Alvi, T., Amin, U., Khan, M.I., Nazir, A., ... & Maan, A.A. (2021). Microwave assisted drying and extraction technique; kinetic modelling, energy consumption and influence on antioxidant compounds of fenugreek leaves. Food Science and Technology, 42, e56020. DOI: 10.1590/fst.56020
- Khoja, K.K., Aslam, M.F., Sharp, P. A., & Latunde-Dada, G.O. (2021). In vitro bioaccessibility and bioavailability of iron from fenugreek, baobab and moringa. Food Chemistry, 335, 127671. DOI: 10.1002/ptr.1357
- Kwon, J.H., Lee, G.D., Bélanger, J.M., Jocelyn Paré, J.R. (2003). Effect of ethanol concentration on the efficiency of extraction of ginseng saponins when using a microwave‐assisted process (MAP™). International Journal of Food Science & Technology, 38(5), 615-622. DOI: 0.1046/j.1365-2621.2003.00688.x
- Liu, Y., Kakani, R., & Nair, M.G. (2012). Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chemistry, 131(4), 1187-1192. DOI: 10.1016/j.foodchem.2011.09.102
- Mashkor, I.M. (2014). Phenolic content and antioxidant activity of fenugreek seeds extract. International Journal of Pharmacognosy and Phytochemical Research, 6(4), 841-844.
- Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Seperation and Purification Technology, 162, 68-76. DOI: 10.1016/j.seppur.2016.01.043
- Myers, R.H., Montgomery, D.C. (eds.) (1995). Response Surface Methodology, Process and Product Optimization Using Designed Experiments, 2nd ed. John Wiley and Sons, New York, USA, 700 p.
- Pająk, P., Socha, R., Broniek, J., Królikowska, K., Fortuna, T. (2019). Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chemistry, 275, 69-76. DOI: 10.1016/j.foodchem.2018.09.081
- Silva, E. M., Rogez, H., & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology, 55(3), 381-387. DOI: 10.1016/j.seppur.2007.01.008
- Singhal, S., Rasane, P., Kaur, S., Singh, J., & Gupta, N. (2020). Thermal degradation kinetics of bioactive compounds in button mushroom (Agaricus bisporus) during tray drying process. Journal of Food Process Engineering, 43(12), e13555. DOI: 10.1111/jfpe.13555
- Singleton, V.L., Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
- Srinivasan, K. 2006. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Reviews International, 22(2), 203-224. DOI: 10.1080/87559120600586315
- Yancheshmeh, B. S., Panahi, Y., Allahdad, Z., Abdolshahi, A., & Zamani, Z. (2022). Optimization of ultrasound-assisted extraction of bioactive compounds from Achillea kellalensis using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 28, 100355. DOI: 10.1016/j.jarmap.2021.100355
- Yang, B., Liu, X., & Gao, Y. (2009). Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innovative Food Science & Emerging Technologies, 10(4), 610-615. DOI: 10.1016/j.ifset.2009.03.003
- Yim, H.S., Chye, F.Y., Koo, S.M., Matanjun, P., How, S.E., & Ho, C.W. (2012). Optimization of extraction time and temperature for antioxidant activity of edible wild mushroom, Pleurotus porrigens. Food and Bioproducts Processing, 90(2), 235-242. DOI: 10.1016/j.fbp.2011.04.001
- Zuorro, A., Maffei, G., & Lavecchia, R. (2016). Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. Journal of Cleaner Production, 111, 279-284. DOI: 10.1016/j.jclepro.2015.06.011
D-OPTİMAL TASARIM İLE ÇEMEN OTU YAPRAKLARINDAN BİYOAKTİF BİLEŞENLERİN MASERASYON YOLUYLA EKSTRAKSİYONU
Yıl 2023,
, 305 - 316, 15.04.2023
İzzet Türker
,
Hilal İşleroğlu
Öz
Bu çalışmada çemen otu (Trigonella-foenum graecum L.) yapraklarından biyoaktif bileşenlerin optimum ekstraksiyon koşulları yanıt yüzey yöntemi kullanılarak belirlenmiş ve en yüksek toplam fenolik madde, toplam flavonoid, antioksidan aktivite ve toplam saponin içeriğine sahip ekstraktlar elde edilmiştir. Çözgen karışım oranı (su ve etanol, %0-100), sıcaklık (25-65°C) ve örnek–çözgen oranı (10-50 g/L) bağımsız işlem değişkenleri olarak seçilmiş ve tasarımın tüm noktalarında 120 dakikalık ekstraksiyon süresi sabit olarak uygulanmıştır. Deneysel çalışma D-optimal birleşik tasarıma göre düzenlenmiş ve istenirlik fonksiyonu yaklaşımı kullanılarak işlem koşulları optimize edilmiştir. Sonuçlara göre çözgende bulunan suyun yüzdesi ve ekstraksiyon sıcaklığı arttıkça, örnek–çözgen oranı azaldıkça fenolik bileşenlerin miktarı artış göstermiştir. Saponinler ise çözgen olarak %25 etanol kullanıldığında daha iyi ekstrakte edilmişlerdir. Optimum ekstraksiyon koşulları %100 saf su, 49.71°C ekstraksiyon sıcaklığı ve 10 g/L örnek–çözgen oranı olarak belirlenmiştir.
Kaynakça
- Akbari, S., Abdurahman, N.H., Yunus, R.M. (2019). Optimization of saponins, phenolics, and antioxidants extracted from fenugreek seeds using microwave-assisted extraction and response surface methodology as an optimizing tool. Comptes Rendus Chimie, 22(11-12), 714-727. DOI: 10.1016/j.crci.2019.07.007
- Annida, B., & Stanely Mainzen Prince, P. (2004). Supplementation of fenugreek leaves lower lipid profile in streptozotocin-induced diabetic rats. Journal of Medicinal Food, 7(2), 153-156. DOI: 10.1089/1096620041224201
- Ballard, T.S., Mallikarjunan, P., Zhou, K., & O’Keefe, S.F. (2009). Optimizing the extraction of phenolic antioxidants from peanut skins using response surface methodology. Journal of Agricultural and Food Chemistry, 57(8), 3064-3072. DOI: 10.1021/jf8030925
- Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., Simmonds, M.S., El Feki, A., Makni-Ayedi, F. 2013. Comparative study on hypocholesterolemic and antioxidant activities of various extracts of fenugreek seeds. Food Chemistry, 138(2-3), 1448-1453. DOI: 10.1016/j.foodchem.2012.11.003
- Chaturvedi, V. & Pant, M.C. (1987). Effect of feeding Trigonella foenum-graecum leaves on serum cholesterol, triglycerides and high density lipoprotein cholesterol in the normal rabbits. Current Science, 56, 600–601.
- Chaturvedi, V. & Pant, M.C. 1988. Effect of feeding fenugreek leaves (Trigonella foenum-graecum) on faecal excretion of total lipids and sterols in the normal albino rabbits. Current Science, 57, 81–82.
- Chouhan, K.B.S., Tandey, R., Sen, K.K., Mehta, R., & Mandal, V. (2019). Extraction of phenolic principles: value addition through effective sample pretreatment and operational improvement. Journal of Food Measurement and Characterization, 13(1), 177-186. DOI: 10.1007/s11694-018-9931-0
- Devi, B.A., Kamalakkannan, N., Prince, P.S.M. (2003). Supplementation of fenugreek leaves to diabetic rats. Effect on carbohydrate metabolic enzymes in diabetic liver and kidney. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(10), 1231-1233. DOI: 10.1002/ptr.1357
- Goli, A.H., Barzegar, M., & Sahari, M.A. (2005). Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chemistry, 92(3), 521-525. DOI: 10.1016/j.foodchem.2004.08.020
- Heng, L., Vincken, J.P., Hoppe, K., Van Koningsveld, G.A., Decroos, K., Gruppen, H., ... Voragen, A.G.J. 2006. Stability of pea DDMP saponin and the mechanism of its decomposition. Food Chemistry, 99(2), 326-334. DOI: 10.1016/j.foodchem.2005.07.045
- Hussain, P.R., Suradkar, P., Javaid, S., Akram, H., & Parvez, S. (2016). Influence of postharvest gamma irradiation treatment on the content of bioactive compounds and antioxidant activity of fenugreek (Trigonella foenum–graceum L.) and spinach (Spinacia oleracea L.) leaves. Innovative Food Science & Emerging Technologies, 33, 268-281. DOI: 10.1016/j.ifset.2015.11.017
- Isleroglu, H., & Turker, I. (2022). Ultrasonic-assisted extraction and thermal stability of phytochemicals from fenugreek leaves. Journal of Applied Research on Medicinal and Aromatic Plants, 30, 100390. DOI: 10.1016/j.jarmap.2022.100390
- Ismail, A., Marjan, Z.M., & Foong, C.W. (2004). Total antioxidant activity and phenolic content in selected vegetables. Food Chemistry, 87(4), 581-586. DOI: 10.1016/j.foodchem.2004.01.010
- Khan, M.K.I., GhaurI, Y.M., Alvi, T., Amin, U., Khan, M.I., Nazir, A., ... & Maan, A.A. (2021). Microwave assisted drying and extraction technique; kinetic modelling, energy consumption and influence on antioxidant compounds of fenugreek leaves. Food Science and Technology, 42, e56020. DOI: 10.1590/fst.56020
- Khoja, K.K., Aslam, M.F., Sharp, P. A., & Latunde-Dada, G.O. (2021). In vitro bioaccessibility and bioavailability of iron from fenugreek, baobab and moringa. Food Chemistry, 335, 127671. DOI: 10.1002/ptr.1357
- Kwon, J.H., Lee, G.D., Bélanger, J.M., Jocelyn Paré, J.R. (2003). Effect of ethanol concentration on the efficiency of extraction of ginseng saponins when using a microwave‐assisted process (MAP™). International Journal of Food Science & Technology, 38(5), 615-622. DOI: 0.1046/j.1365-2621.2003.00688.x
- Liu, Y., Kakani, R., & Nair, M.G. (2012). Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chemistry, 131(4), 1187-1192. DOI: 10.1016/j.foodchem.2011.09.102
- Mashkor, I.M. (2014). Phenolic content and antioxidant activity of fenugreek seeds extract. International Journal of Pharmacognosy and Phytochemical Research, 6(4), 841-844.
- Mokrani, A., & Madani, K. (2016). Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Seperation and Purification Technology, 162, 68-76. DOI: 10.1016/j.seppur.2016.01.043
- Myers, R.H., Montgomery, D.C. (eds.) (1995). Response Surface Methodology, Process and Product Optimization Using Designed Experiments, 2nd ed. John Wiley and Sons, New York, USA, 700 p.
- Pająk, P., Socha, R., Broniek, J., Królikowska, K., Fortuna, T. (2019). Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chemistry, 275, 69-76. DOI: 10.1016/j.foodchem.2018.09.081
- Silva, E. M., Rogez, H., & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Separation and Purification Technology, 55(3), 381-387. DOI: 10.1016/j.seppur.2007.01.008
- Singhal, S., Rasane, P., Kaur, S., Singh, J., & Gupta, N. (2020). Thermal degradation kinetics of bioactive compounds in button mushroom (Agaricus bisporus) during tray drying process. Journal of Food Process Engineering, 43(12), e13555. DOI: 10.1111/jfpe.13555
- Singleton, V.L., Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
- Srinivasan, K. 2006. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Reviews International, 22(2), 203-224. DOI: 10.1080/87559120600586315
- Yancheshmeh, B. S., Panahi, Y., Allahdad, Z., Abdolshahi, A., & Zamani, Z. (2022). Optimization of ultrasound-assisted extraction of bioactive compounds from Achillea kellalensis using response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 28, 100355. DOI: 10.1016/j.jarmap.2021.100355
- Yang, B., Liu, X., & Gao, Y. (2009). Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innovative Food Science & Emerging Technologies, 10(4), 610-615. DOI: 10.1016/j.ifset.2009.03.003
- Yim, H.S., Chye, F.Y., Koo, S.M., Matanjun, P., How, S.E., & Ho, C.W. (2012). Optimization of extraction time and temperature for antioxidant activity of edible wild mushroom, Pleurotus porrigens. Food and Bioproducts Processing, 90(2), 235-242. DOI: 10.1016/j.fbp.2011.04.001
- Zuorro, A., Maffei, G., & Lavecchia, R. (2016). Reuse potential of artichoke (Cynara scolimus L.) waste for the recovery of phenolic compounds and bioenergy. Journal of Cleaner Production, 111, 279-284. DOI: 10.1016/j.jclepro.2015.06.011