Derleme
BibTex RIS Kaynak Göster

GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI

Yıl 2020, , 774 - 785, 21.06.2020
https://doi.org/10.15237/gida.GD20036

Öz

Gıda endüstrisinde ekstrüzyon pişirme; enerji tüketiminin az olması, üretimin verimli ve son ürünün ucuz olması, yeni teknolojilerden olması, yüksek sıcaklık-kısa süreli işleme yöntemi olmasından dolayı tercih edilen ve kullanımı gittikçe artan bir yöntemdir. Ekstrüzyon pişirme esnasında ekstrüdere giren hammaddenin özellikleri (nişasta tipi, protein, yağ, su içeriği, formülasyonvd.), proses değişkenleri (vida hızı, besleme hızı, kalıp şekli ve sıcaklığı gibi) ve ürün karakteristikleri (besinsel, fiziksel ve kimyasal özellikler gibi) arasında önemli bir ilişki bulunmaktadır. Değişkenleri doğru analiz edebilmek ve yapılacak deney sayısını en uygun şekilde azaltabilmek için optimizasyon çalışmalarının yapılması gerekmektedir. Mühendislik açısından optimizasyon, prosesleri etkileyen bağımsız değişkenler ve yanıt olarak adlandırılan bağımlı değişkenler arasındaki ilişkileri değerlendirerek optimum verilerin oluşmasını sağlamaktadır. Bu derlemenin amacı, ekstrüzyon tekniği ile üretilmiş ürünlerle ilgili yanıt-yüzey yöntemiyle yapılan optimizasyon çalışmaları bir arada değerlendirmektir.

Kaynakça

  • KAYNAKLAR 1. Ackar, D., Jozinovic, A., Babic, J., Milicevic, B., Balentic, J.P., Subaric, D., (2018). Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products, Innovative Food Science and Emerging Technologies, 47:517-524.
  • 2. Ajita, T., (2018). Extrusion Cooking Technology: An Advance Skill for Manufacturing of Extrudate Food Products, http://dx.doi.org/10.5772/intechopen.73496.
  • 3. Alam, M.S., Pathania, S., Sharma, A., (2016). Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings, Food Science and Technology, 74:135-144.
  • 4. Ali, S., Singh, B., Sharma, S., (2016). Response surface analysis and extrusion process optimisation of maize-mungbean-based instant weaning food, Food Science and Technology, 51: 2301-2312.
  • 5. Altan, A., McCarthy, K.L., Maskan, M., (2008). Twin-screw extrusion of barley-grape pomace blends:Extrudate characteristics and determination of optimum processing conditions, Journal of Food Engineering, 89: 24-32.
  • 6. Atukuri, J., Odong, B.B., Muyonga, J.H., (2018). Multi-response optimization of extrusion conditions of grain amaranth flour by response surface methodology, Food Science and Nutrition, 7:4147-4162, doi:10.1002/fsn3.1284.
  • 7. Awolu, O.O., Oluwaferanmi, P.M., Fafowora, O.I., Oseyemi, G.F., (2015). Optimization of the extrusion process for the production ready-to-eat snack from rice, cassava and kersting's groundnut composite flours, Food Science and Technology, 64:18-24.
  • 8. Aydar, A.Y., (2018). Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials. http://dx.doi.org/10.5772/intechopen.73690.
  • 9. Aydar, A.Y., (2019). Statistical Methods in Optimization of Food Materials, European International Journal of Science and Technology, 8(3): 33-40. https://orcid.org/0000-0001-9780-0917
  • 10. Bastos, G.M., Junior, M.S.S., Caliari, M., Araujo Pereira, A.L., Morais, C.C., Campos, M.R.H., (2016). Physical and sensory quality of gluten-free spaghetti processed from amaranth flour and potato pulp, Food Science and Technology, 65: 128-136.
  • 11. Cappa, C., Franchi, R., Bogo, V., Lucisano, M., (2017). Cooking behavior of frozen gluten-free potato-based pasta (gnocchi) obtained through turbo cooking technology, Food Science and Technology, 84: 464-470.
  • 12. Cardenes-Hernandez, A., Beta, T., Loarca-Pina, G., Castano-Tostado, E., Nieto-Barrera, J. O., Mendoza, S., (2016). Improved Functional Properties of Pasta: Enrichment with amaranth seed flour and dried amaranth leaves, Journal of Cereal Science, 72: 84-90.
  • 13. Chakraborty, S.K., Singh, D.S., Kumbhar, B.K., Chakraborty, S., (2011). Millet-legume blended extrudates characteristics and process optimization using RSM, Food and Bioproducts Processing, 89: 492-499. doi:10.1016/j.fbp.2010.10.003.
  • 14. Danbaba, N., Iro, N., & Mamudu, H. B., (2016). Application of Response Surface Methodology (RSM) for the production and optimization of extruded instant porridge from broken rice fractions blended with Cowpea. International Journal of Nutrition and Food Sciences, 5: 105-116.
  • 15. Gandhi, N., Singh, B., Sharma, S., Kapoor, S., (2018). Extrusion process optimization of corn starch to develop instant vegetable soup mix, International Journal of Current Microbiology and Applied Sciences, 7(2): 2886-2910.
  • 16. Gbenyi, D.I., Nkama, I., Badau, M.H., (2016). Physical and Functional Properties of Extruded Sorghum-Cowpea Blends: A Response Surface Analysis, Food Science and Quality Management, Vol 50. ISSN 2224-6088 (Paper), ISSN 2225-0557 (Online).
  • 17. Giuberti, G., Gallo, A., Cerioli, C., Fortunati, P., Masoero, F., (2015). Cooking quality and starch digestibility of gluten free pasta using new bean flour, Food Chemistry, 175: 43-49.
  • 18. Helkar, P.B., Sahoo, A., (2016). Review: Food industry by-products used as a functional food ingredients, International Journal of Waste Resources.
  • 19. Jozinovic, A., Ackar, D., Jokıc, S., Babıc, J., Balentıc, J.P., Banozıc, M., Subarıc, D., (2017). Optimisation of extrusion variables for the production of corn snack products enriched with defatted hemp cake, Food Technology and Economy, Engineering and Physical Properties, 35(6): 507-516. doi:10.17221/83/2017-CJFS.
  • 20. Koç, B., Kaymak-Ertekin, F., (2009). Yanıt Yüzey Yöntemi ve Gıda İşleme Uygulamaları, GIDA.GD08060
  • 21. Li, H., Wei, B., Wu, C., Zhang, B., Xu, X., Jin, Z., Tian, Y., (2014). Modelling and optimisation of enzymatic extrusion pretreatment of broken rice for wine manufacture, Food Chemistry, 150: 94-98.
  • 22. Lohani, U.C., Muthukumarappan, K., (2017). Process optimization for antioxidant enriched sorghum flour and apple pomace based extrudates using liquid CO2 assisted extrusion, Food Science and Technology, 86: 544-554.
  • 23. Long, D., Ye, F., Zhao, G., (2014). Optimization and characterization of wheat bran modified by in situ enhanced CO2 blasting extrusion, Food Science and Technology, 59: 605-611.
  • 24. Lu, X., Brennan, M.A., Serventi, L., Liu, J., Guan, W., Brennan, C.S., (2018). Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta, Food Chemistry, 264: 199-209, doi: 10.1016/j.foodchem.2018.04.130.
  • 25. Mangaraj, S., Swain, S., Deshpande, S.S., (2018). Development of Extruded Functional Snack Foods from Plants and Dairy Ingredients Employing Response Surface Methodology, Journal of Dairy and Veterinary Sciences, ISSN:2573-2196. V:7, Issue4.
  • 26. Maskan, A., Altan, A. (2012). Advances In Food Extrusion Technology. CRC Press, ISBN:13:978-1-4398-1521-2 (e-Book Pdf), Version date: 20110829. 121-169.
  • 27. Min, W., Yi, L., Lijun, W., Dong, L., Zhihuai, M., (2015). Effects of extrusion parameters on physicochemical properties of flaxseed snack and process optimization, Int J Agric and Biol Eng, 8(5): 121-131.
  • 28. Nakhon, P.P.S., Jangchud, K., Jangchud, A., Charunuch, C., (2018). Optimization of pumpkin and feed moisture content to produce healthy pumpkin-germinated brown rice extruded snacks, Agriculture and Natural Resources, 52: 550-556.
  • 29. Navale, S.A., Swami, S.B., Thakor, N.J., (2015). Extrusion Cooking Technology for Foods: A Review, Journal of Ready to Eat Food, vol2, ıssue 3: 66-80.
  • 30. Ovando-Martinez, M., Sayago-Ayerdi, S., Agama-Acedevo, E., Goni, L., Bello-Perez, L.A., (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta, Food Chemistry, 113: 121-126.
  • 31. Pathania, S., Sing, B., Sharma, S., Sharma, V., Singla, S., (2013). Optimization of extrusion processing conditions for preparation of an instant grain base for use in weaning foods, International Journal of Engineering Research and Applications, 3(3): 1040-1049.
  • 32. Patino-Rodriguez, O., Bello-Perez, L.A., Flores-Silva, P.C., Sanchez-Rivera, M.M., Romero-Bastida, C.A., (2018). Physicochemical properties and metobolomic profile of gluten-free spaghetti prepared with unripe plantain flours, Food Science and Technology, 90: 297-302.
  • 33. Rajesvari, G., Susanna, S., Prabhasankar, P., Venkateswara-Rao, G., (2013). Influence of onion powder and its hydrocolloid blends on pasta dough, pasting, microstructure, cooking and sensory characteristics, Food Bioscience, 4: 13-20, doi: 10.1016/j.fbio.2013.07.004.
  • 34. Rizvi, S.H., Paraman, I., (2015). Extrusion of Agro-food industry byproducts and protein concentrates into value-added foods. United States Patent Application Publication, Pub.No.: US 2015/0282507 A1., Pub. Date: Oct 8, 2015.
  • 35. Sawant, S.S., Thakor, N.J., Swami, S.B. (2015). Application of Extrusion Cooking Technology In Food Industry. International Journal of Processing and Post Harvest Technology, 6(2): 177-183, doi: 10.15740/HAS/IJPPHT/6.2/177-183.
  • 36. Sharma, R., Srivastava, T., Saxena, DC, (2016). Development of nutritious snack from rice industry waste using twin screw extrusion, MATEC Web of Conferences 57,04006.
  • 37. Shaviklo, A.R., Azaribeh, M., Moradi, Y., Zangeneh, P., (2015). Formula optimization and storage stability of extruded puffed corn-shrimp snacks, Food Science and Technology, 63:307-314. http://dx.doi.org/10.1016/j.lwt.2015.03.093
  • 38. Silva, E., Sagis, L.M.C., Van der Linden, E., Scholten, E., (2013). Effect of matrix and particle type on rheological, textural and structural properties of broccoli pasta and noodles, Journal of Food Engineering, (119) 94-103.
  • 39. Sobowale, S.S., Animashaun, O.H., Mulaba-Bafubiandi, A.F., Abidoye, T.S., Kewuyemi, Y.O., Adebo, O.Y., (2018). Process optimization of extusion variables and its effect on properties of extruded cocoyam (Xanthosoma sagittifolium) noodles.Food Science and Nutrition, 1-17.
  • 40. Surasani, V.K.R., (2016). Application of food extrusion process to develop fish meat-based extruded products, Food Engineering Reviews, 8:448-456. doi:10.1007/s12393-016-9148-0.
  • 41. Spinelli, S., Padalino, L., Costa, C., Nobile, M.A.D., Conte, A., (2019). Food by-products to fortified pasta:A new approach for optimization, Journal of Cleaner Production, 215: 985-991.
  • 42. Sukumar, A., Athmaselvi, K.A., (2019). Optimization of process parameters for the development of finger millet based multigrain extruded snack food fortified with banana powder using RSM, Journal of Food Science and Technology, 56(2): 705-712.
  • 43. Topuz, O.K., Gokoğlu, N., Jouppila, K., Kirjoranta, S., (2017). Development of Extruded Shrimp-Corn Using Response Surface Methodology, Turkish Journal of Fisheries and Aquatic Sciences, 17: 333-343.
  • 44. Torres-Leon, C., Ramires-Guzman, N., Londono-Hernandez, L., Martinez-Medina, G.A., Diaz-Herrera, R., Navarro-Macias, V., Alvarez-Perez, O.B., Picazo, B., Villarreal-Vazquez, M., Ascacio-Valdez, J., Aguilar, C.N., (2018). Food waste and by-products: an opportunity to minimize malnutrition an hunger in developing countries, Frontiers in Sustainable Food Systems, 2(52): 1-17, doi: 10.3389/fsufs.2018.00052.
  • 45. Twum, L.A., Pare, A., (2018). Development and Optimization of the Physical and Functional Properties of Extruded Products, Current Journal of Applied Science and Technology, 29(2): 1-11. ISSN: 2457-1024.
  • 46. Waldron, K., (2007). Handbook of Waste Management and Co-product in Food Processing, 305-377, eBook ISBN: 9781845692520, Published Date:31.03.2007.
  • 47. Wang, L., Duan, W., Zhou, S., Qian, H., Zhang, H., Qi, X., (2016). Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta, Food Chemistry, 204: 320-325.
  • 48. Wang, N., Maximiuk, L., Toews, R., (2012). Pea starch noodles: Effect of processing variables on characteristics and optimisation of twin-screw extrusion process, Food Chemistry, 133: 742-753.
  • 49. Wang, Y., Li, D., Wang, L.J., Chiu, Y.L., Chen, X.D., Mao, Z.H., Song, C.F., (2008). Optimization of extrusion of flaxseeds for in vitro protein digestibility analysis using response surface methodology, Journal of Food Engineering, 85: 59-64.
  • 50. Wani, S.A., Kumar, P., (2016). Development and parameter optimization of health promosing extrudate based on fenugreek oat and pea, Food Bioscience, 14: 34-40. http://dx.doi.org/10.1016/j.fbio.2016.02.002.
  • 51. Xu, E., Pan, X., Wu, Z., Long, J., Li, J., Xu, X., Jin, Z., Jiao, A., (2016). Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion, Food Chemistry, 212: 146-154.
  • 52. Yolmeh, M., Jafari, S.M., (2017). Applications of Response Surface Methodology in the Food Industry Processes, Food Bioprocess Technology. 10: 413-433, doi: 10.1007/s11947-016-1855-2.

APPLICATION OF EXTRUSION TECHNOLOGY AND OPTIMIZATION STUDIES IN THE FOODINDUSTRY

Yıl 2020, , 774 - 785, 21.06.2020
https://doi.org/10.15237/gida.GD20036

Öz

Extrusion cooking is preferred due to its low energy consumption, efficient production and cheap end products, adaptability to new technologies, high temperature-short-term processing method and it is increasingly used in the food industry. There is an important relations between raw material entering the extruder (starch type, protein, oil, water content, formulation etc.), process variables (such as screw speed, feed rate, barrel shape and temperature) and product characteristics (such as nutritional, physical and chemical properties) during the extrusion cooking and many factors come into play to reach the desired product. Optimization studies are required to analyze these factors well and to decrease the number of experiments in the most logical way. In terms of engineering, optimization ensures optimum data by evaluating the relationships between independent variables that affect processes and dependent variables called responses. The purpose of this review is to evaluate the optimization studies carried out using the response-surface method for products produced by extrusion technique.

Kaynakça

  • KAYNAKLAR 1. Ackar, D., Jozinovic, A., Babic, J., Milicevic, B., Balentic, J.P., Subaric, D., (2018). Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products, Innovative Food Science and Emerging Technologies, 47:517-524.
  • 2. Ajita, T., (2018). Extrusion Cooking Technology: An Advance Skill for Manufacturing of Extrudate Food Products, http://dx.doi.org/10.5772/intechopen.73496.
  • 3. Alam, M.S., Pathania, S., Sharma, A., (2016). Optimization of the extrusion process for development of high fibre soybean-rice ready-to-eat snacks using carrot pomace and cauliflower trimmings, Food Science and Technology, 74:135-144.
  • 4. Ali, S., Singh, B., Sharma, S., (2016). Response surface analysis and extrusion process optimisation of maize-mungbean-based instant weaning food, Food Science and Technology, 51: 2301-2312.
  • 5. Altan, A., McCarthy, K.L., Maskan, M., (2008). Twin-screw extrusion of barley-grape pomace blends:Extrudate characteristics and determination of optimum processing conditions, Journal of Food Engineering, 89: 24-32.
  • 6. Atukuri, J., Odong, B.B., Muyonga, J.H., (2018). Multi-response optimization of extrusion conditions of grain amaranth flour by response surface methodology, Food Science and Nutrition, 7:4147-4162, doi:10.1002/fsn3.1284.
  • 7. Awolu, O.O., Oluwaferanmi, P.M., Fafowora, O.I., Oseyemi, G.F., (2015). Optimization of the extrusion process for the production ready-to-eat snack from rice, cassava and kersting's groundnut composite flours, Food Science and Technology, 64:18-24.
  • 8. Aydar, A.Y., (2018). Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials. http://dx.doi.org/10.5772/intechopen.73690.
  • 9. Aydar, A.Y., (2019). Statistical Methods in Optimization of Food Materials, European International Journal of Science and Technology, 8(3): 33-40. https://orcid.org/0000-0001-9780-0917
  • 10. Bastos, G.M., Junior, M.S.S., Caliari, M., Araujo Pereira, A.L., Morais, C.C., Campos, M.R.H., (2016). Physical and sensory quality of gluten-free spaghetti processed from amaranth flour and potato pulp, Food Science and Technology, 65: 128-136.
  • 11. Cappa, C., Franchi, R., Bogo, V., Lucisano, M., (2017). Cooking behavior of frozen gluten-free potato-based pasta (gnocchi) obtained through turbo cooking technology, Food Science and Technology, 84: 464-470.
  • 12. Cardenes-Hernandez, A., Beta, T., Loarca-Pina, G., Castano-Tostado, E., Nieto-Barrera, J. O., Mendoza, S., (2016). Improved Functional Properties of Pasta: Enrichment with amaranth seed flour and dried amaranth leaves, Journal of Cereal Science, 72: 84-90.
  • 13. Chakraborty, S.K., Singh, D.S., Kumbhar, B.K., Chakraborty, S., (2011). Millet-legume blended extrudates characteristics and process optimization using RSM, Food and Bioproducts Processing, 89: 492-499. doi:10.1016/j.fbp.2010.10.003.
  • 14. Danbaba, N., Iro, N., & Mamudu, H. B., (2016). Application of Response Surface Methodology (RSM) for the production and optimization of extruded instant porridge from broken rice fractions blended with Cowpea. International Journal of Nutrition and Food Sciences, 5: 105-116.
  • 15. Gandhi, N., Singh, B., Sharma, S., Kapoor, S., (2018). Extrusion process optimization of corn starch to develop instant vegetable soup mix, International Journal of Current Microbiology and Applied Sciences, 7(2): 2886-2910.
  • 16. Gbenyi, D.I., Nkama, I., Badau, M.H., (2016). Physical and Functional Properties of Extruded Sorghum-Cowpea Blends: A Response Surface Analysis, Food Science and Quality Management, Vol 50. ISSN 2224-6088 (Paper), ISSN 2225-0557 (Online).
  • 17. Giuberti, G., Gallo, A., Cerioli, C., Fortunati, P., Masoero, F., (2015). Cooking quality and starch digestibility of gluten free pasta using new bean flour, Food Chemistry, 175: 43-49.
  • 18. Helkar, P.B., Sahoo, A., (2016). Review: Food industry by-products used as a functional food ingredients, International Journal of Waste Resources.
  • 19. Jozinovic, A., Ackar, D., Jokıc, S., Babıc, J., Balentıc, J.P., Banozıc, M., Subarıc, D., (2017). Optimisation of extrusion variables for the production of corn snack products enriched with defatted hemp cake, Food Technology and Economy, Engineering and Physical Properties, 35(6): 507-516. doi:10.17221/83/2017-CJFS.
  • 20. Koç, B., Kaymak-Ertekin, F., (2009). Yanıt Yüzey Yöntemi ve Gıda İşleme Uygulamaları, GIDA.GD08060
  • 21. Li, H., Wei, B., Wu, C., Zhang, B., Xu, X., Jin, Z., Tian, Y., (2014). Modelling and optimisation of enzymatic extrusion pretreatment of broken rice for wine manufacture, Food Chemistry, 150: 94-98.
  • 22. Lohani, U.C., Muthukumarappan, K., (2017). Process optimization for antioxidant enriched sorghum flour and apple pomace based extrudates using liquid CO2 assisted extrusion, Food Science and Technology, 86: 544-554.
  • 23. Long, D., Ye, F., Zhao, G., (2014). Optimization and characterization of wheat bran modified by in situ enhanced CO2 blasting extrusion, Food Science and Technology, 59: 605-611.
  • 24. Lu, X., Brennan, M.A., Serventi, L., Liu, J., Guan, W., Brennan, C.S., (2018). Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta, Food Chemistry, 264: 199-209, doi: 10.1016/j.foodchem.2018.04.130.
  • 25. Mangaraj, S., Swain, S., Deshpande, S.S., (2018). Development of Extruded Functional Snack Foods from Plants and Dairy Ingredients Employing Response Surface Methodology, Journal of Dairy and Veterinary Sciences, ISSN:2573-2196. V:7, Issue4.
  • 26. Maskan, A., Altan, A. (2012). Advances In Food Extrusion Technology. CRC Press, ISBN:13:978-1-4398-1521-2 (e-Book Pdf), Version date: 20110829. 121-169.
  • 27. Min, W., Yi, L., Lijun, W., Dong, L., Zhihuai, M., (2015). Effects of extrusion parameters on physicochemical properties of flaxseed snack and process optimization, Int J Agric and Biol Eng, 8(5): 121-131.
  • 28. Nakhon, P.P.S., Jangchud, K., Jangchud, A., Charunuch, C., (2018). Optimization of pumpkin and feed moisture content to produce healthy pumpkin-germinated brown rice extruded snacks, Agriculture and Natural Resources, 52: 550-556.
  • 29. Navale, S.A., Swami, S.B., Thakor, N.J., (2015). Extrusion Cooking Technology for Foods: A Review, Journal of Ready to Eat Food, vol2, ıssue 3: 66-80.
  • 30. Ovando-Martinez, M., Sayago-Ayerdi, S., Agama-Acedevo, E., Goni, L., Bello-Perez, L.A., (2009). Unripe banana flour as an ingredient to increase the undigestible carbohydrates of pasta, Food Chemistry, 113: 121-126.
  • 31. Pathania, S., Sing, B., Sharma, S., Sharma, V., Singla, S., (2013). Optimization of extrusion processing conditions for preparation of an instant grain base for use in weaning foods, International Journal of Engineering Research and Applications, 3(3): 1040-1049.
  • 32. Patino-Rodriguez, O., Bello-Perez, L.A., Flores-Silva, P.C., Sanchez-Rivera, M.M., Romero-Bastida, C.A., (2018). Physicochemical properties and metobolomic profile of gluten-free spaghetti prepared with unripe plantain flours, Food Science and Technology, 90: 297-302.
  • 33. Rajesvari, G., Susanna, S., Prabhasankar, P., Venkateswara-Rao, G., (2013). Influence of onion powder and its hydrocolloid blends on pasta dough, pasting, microstructure, cooking and sensory characteristics, Food Bioscience, 4: 13-20, doi: 10.1016/j.fbio.2013.07.004.
  • 34. Rizvi, S.H., Paraman, I., (2015). Extrusion of Agro-food industry byproducts and protein concentrates into value-added foods. United States Patent Application Publication, Pub.No.: US 2015/0282507 A1., Pub. Date: Oct 8, 2015.
  • 35. Sawant, S.S., Thakor, N.J., Swami, S.B. (2015). Application of Extrusion Cooking Technology In Food Industry. International Journal of Processing and Post Harvest Technology, 6(2): 177-183, doi: 10.15740/HAS/IJPPHT/6.2/177-183.
  • 36. Sharma, R., Srivastava, T., Saxena, DC, (2016). Development of nutritious snack from rice industry waste using twin screw extrusion, MATEC Web of Conferences 57,04006.
  • 37. Shaviklo, A.R., Azaribeh, M., Moradi, Y., Zangeneh, P., (2015). Formula optimization and storage stability of extruded puffed corn-shrimp snacks, Food Science and Technology, 63:307-314. http://dx.doi.org/10.1016/j.lwt.2015.03.093
  • 38. Silva, E., Sagis, L.M.C., Van der Linden, E., Scholten, E., (2013). Effect of matrix and particle type on rheological, textural and structural properties of broccoli pasta and noodles, Journal of Food Engineering, (119) 94-103.
  • 39. Sobowale, S.S., Animashaun, O.H., Mulaba-Bafubiandi, A.F., Abidoye, T.S., Kewuyemi, Y.O., Adebo, O.Y., (2018). Process optimization of extusion variables and its effect on properties of extruded cocoyam (Xanthosoma sagittifolium) noodles.Food Science and Nutrition, 1-17.
  • 40. Surasani, V.K.R., (2016). Application of food extrusion process to develop fish meat-based extruded products, Food Engineering Reviews, 8:448-456. doi:10.1007/s12393-016-9148-0.
  • 41. Spinelli, S., Padalino, L., Costa, C., Nobile, M.A.D., Conte, A., (2019). Food by-products to fortified pasta:A new approach for optimization, Journal of Cleaner Production, 215: 985-991.
  • 42. Sukumar, A., Athmaselvi, K.A., (2019). Optimization of process parameters for the development of finger millet based multigrain extruded snack food fortified with banana powder using RSM, Journal of Food Science and Technology, 56(2): 705-712.
  • 43. Topuz, O.K., Gokoğlu, N., Jouppila, K., Kirjoranta, S., (2017). Development of Extruded Shrimp-Corn Using Response Surface Methodology, Turkish Journal of Fisheries and Aquatic Sciences, 17: 333-343.
  • 44. Torres-Leon, C., Ramires-Guzman, N., Londono-Hernandez, L., Martinez-Medina, G.A., Diaz-Herrera, R., Navarro-Macias, V., Alvarez-Perez, O.B., Picazo, B., Villarreal-Vazquez, M., Ascacio-Valdez, J., Aguilar, C.N., (2018). Food waste and by-products: an opportunity to minimize malnutrition an hunger in developing countries, Frontiers in Sustainable Food Systems, 2(52): 1-17, doi: 10.3389/fsufs.2018.00052.
  • 45. Twum, L.A., Pare, A., (2018). Development and Optimization of the Physical and Functional Properties of Extruded Products, Current Journal of Applied Science and Technology, 29(2): 1-11. ISSN: 2457-1024.
  • 46. Waldron, K., (2007). Handbook of Waste Management and Co-product in Food Processing, 305-377, eBook ISBN: 9781845692520, Published Date:31.03.2007.
  • 47. Wang, L., Duan, W., Zhou, S., Qian, H., Zhang, H., Qi, X., (2016). Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta, Food Chemistry, 204: 320-325.
  • 48. Wang, N., Maximiuk, L., Toews, R., (2012). Pea starch noodles: Effect of processing variables on characteristics and optimisation of twin-screw extrusion process, Food Chemistry, 133: 742-753.
  • 49. Wang, Y., Li, D., Wang, L.J., Chiu, Y.L., Chen, X.D., Mao, Z.H., Song, C.F., (2008). Optimization of extrusion of flaxseeds for in vitro protein digestibility analysis using response surface methodology, Journal of Food Engineering, 85: 59-64.
  • 50. Wani, S.A., Kumar, P., (2016). Development and parameter optimization of health promosing extrudate based on fenugreek oat and pea, Food Bioscience, 14: 34-40. http://dx.doi.org/10.1016/j.fbio.2016.02.002.
  • 51. Xu, E., Pan, X., Wu, Z., Long, J., Li, J., Xu, X., Jin, Z., Jiao, A., (2016). Response surface methodology for evaluation and optimization of process parameter and antioxidant capacity of rice flour modified by enzymatic extrusion, Food Chemistry, 212: 146-154.
  • 52. Yolmeh, M., Jafari, S.M., (2017). Applications of Response Surface Methodology in the Food Industry Processes, Food Bioprocess Technology. 10: 413-433, doi: 10.1007/s11947-016-1855-2.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Ayşe Merve Büyükyazı 0000-0003-4942-5897

Şebnem Tavman 0000-0002-3069-1709

Yayımlanma Tarihi 21 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Büyükyazı, A. M., & Tavman, Ş. (2020). GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI. Gıda, 45(4), 774-785. https://doi.org/10.15237/gida.GD20036
AMA Büyükyazı AM, Tavman Ş. GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI. GIDA. Haziran 2020;45(4):774-785. doi:10.15237/gida.GD20036
Chicago Büyükyazı, Ayşe Merve, ve Şebnem Tavman. “GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI”. Gıda 45, sy. 4 (Haziran 2020): 774-85. https://doi.org/10.15237/gida.GD20036.
EndNote Büyükyazı AM, Tavman Ş (01 Haziran 2020) GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI. Gıda 45 4 774–785.
IEEE A. M. Büyükyazı ve Ş. Tavman, “GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI”, GIDA, c. 45, sy. 4, ss. 774–785, 2020, doi: 10.15237/gida.GD20036.
ISNAD Büyükyazı, Ayşe Merve - Tavman, Şebnem. “GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI”. Gıda 45/4 (Haziran 2020), 774-785. https://doi.org/10.15237/gida.GD20036.
JAMA Büyükyazı AM, Tavman Ş. GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI. GIDA. 2020;45:774–785.
MLA Büyükyazı, Ayşe Merve ve Şebnem Tavman. “GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI”. Gıda, c. 45, sy. 4, 2020, ss. 774-85, doi:10.15237/gida.GD20036.
Vancouver Büyükyazı AM, Tavman Ş. GIDA ENDÜSTRİSİNDE EKSTRÜZYON TEKNOLOJİSİNİN KULLANIMI VE YAPILAN OPTİMİZASYON ÇALIŞMALARI. GIDA. 2020;45(4):774-85.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/