Derleme
BibTex RIS Kaynak Göster

PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER

Yıl 2019, Cilt: 44 Sayı: 6, 1222 - 1236, 06.10.2019
https://doi.org/10.15237/gida.GD19087

Öz

Fonksiyonel gıdaların üretiminde kullanılan probiyotik
bakteriler, insan sağlığını destekleme ve sürdürmede önemli rol
oynayabilmektedir. P
robiyotik kültürlerin bu ürünlerde sağladıkları avantajların yanı sıra kullanımlarını sınırlandıran bazı faktörler de bulunmaktadır. Probiyotik kültürlerin gıda ortamında çevresel koşullardan etkilenmeleri ve canlılıklarını uzun süre koruyamamaları en önemli dezavantajlarıdır. Son yıllarda, probiyotik kültürlere
olumsuz çevresel koşullara karşı koymaları için fiziksel bir bariyer
oluşturulması sıklıkla uygulanan bir yöntem haline gelmiştir. Probiyotik
kültürlerin korunmasına yönelik mikroenkapsülasyon yöntemleri, bu
mikroorganizmaların gıda ürünlerinde ve gastrointestinal sistemde canlı kalma
oranlarını büyük ölçüde arttırmaktadır. Ek olarak mikroenkapsülasyon
probiyotik kültürlerin
istenilen zamanda
ve bölgede kontrollü salınımını sağlayarak kültürün etkinliğini güçlendirmektedir. Bu derlemede, probiyotik kültürlerin mikroenkapsülasyonunda kullanılan kaplama materyalleri ve mikroenkapsülasyon
yöntemleri özetlenmiştir.

Kaynakça

  • Abd El-Salam, M.H., El-Shibiny, S., (2015). Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Sci Technol, 95: 393–412.
  • Albadran H.A.,.Chatzifragkou A., Khutoryanskiy V.V., Charalampopoulos D., (2018). Development of surfactant-coated alginate capsules containing Lactobacillus plantarum. Food Hydrocolloids, 82: 490-499
  • Altun, B., Özcan, T., (2013). Süt Ürünlerinde Probiyotik Bakterilerin Mikroenkapsülasyonu II: Kaplama Materyalleri ve Süt Ürünlerinde Uygulamalar. Uludağ Üniv Ziraat Fak Derg, 27(2): 105–114.
  • Arepally, D., Goswami, T.K., (2019). Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT- Food Sci Technol, 99: 583–593.
  • Arslan-Tontul, S., Erbas, M., (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Sci Technol, 81: 160–169.
  • Atak, Z., Koç, M., Kaymak-Ertekin, F., (2017). Gıda Endüstrisinde Aroma Mikroenkapsülasyonu. Akad Gıda, 15: 416–425.
  • Azagheswari, Kuriokase, B., Padma, S., Padma Priya, S., (2015). A Review on Microcapsules. Glob J Pharmacol. 9: 28–39.
  • Başyigit, B., Hayoğlu, I., Atasoy, F., (2017). Kekik Esansiyel Yağı ve Mikroenkapsülasyon Uygulamaları. Batman Üniv Yaşam Bilim Derg 7: 63–70.
  • Çakır, İ., (2006). Mikroenkapsülasyon Tekniğinin Probiyotik Gıda Üretiminde Kullanımı. Türkiye 9. Gıda Kongresi, 24-26 Mayıs 2006, Bolu, Türkiye, 693-696.
  • Celli, G.B., Ghanem, A., Brooks, M.S.L., (2015). Bioactive Encapsulated Powders for Functional Foods—a Review of Methods and Current Limitations. Food Bioprocess Technol. 8: 1825–1837.
  • Chakraborty, S., (2017). Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J Carbohydr Chem, 36: 1–19.
  • Chen, C., Liu, S., Liu, W., Zhao, Y., Lu, Y., (2012). Synthesis of novel solidliquid phase change materials and electrospinning of ultrafine phase change fibers. Sol Energy Mater Sol Cells, 96: 202–209.
  • Chen, J., Wang, Q., Liu, C.M., Gong, J., (2017). Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Crit Rev Food Sci Nutr, 57: 1228–1238.
  • Coghetto, C.C., Brinques, G.B., Ayub, M.A.Z., (2016). Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions. Int J Food Sci Nutr, 67: 929–943.
  • De Prisco, A., Mauriello, G., (2016). Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci Technol, 48: 27–39.
  • De Prisco, A., van Valenberg, H.J.F., Fogliano, V., Mauriello, G., (2017). Microencapsulated Starter Culture During Yoghurt Manufacturing, Effect on Technological Features. Food Bioprocess Technol, 10: 1767–1777.
  • Desai, K.G.H., ve Park, H.J., (2005). Recent developments in microencapsulation of food ingredients. Drying Technol, 23(7): 1361-1394
  • Dianawati, D., Mishra, V., Shah, N.P., (2016). Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review. Crit Rev Food Sci Nutr, 56: 1685–1716.
  • Ðordevic´, V., Balancˇ, B., Belscak-Cvitanovic´, A., Levic´, S., Trifkovic´, K., Kalusevic´, A., Kostic´, I., Komes, D., Bugarski, B., Nedovic, V., (2015). Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng Rev, 7: 452–490.
  • Espitia, P.J.P., Batista, R.A., Azeredo, H.M.C., Otoni, C.G., (2016). Probiotics and their potential applications in active edible films and coatings. Food Res Int, 90: 42–52.
  • Giro-Paloma, J., Martínez, M., Cabeza, L.F., Fernández, A.I., (2016). Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew Sustain Energy Rev, 53: 1059–1075.
  • Gökbulut, İ., Öztürk, F.S., 2018. Gıda Mikroenkapsülasyonunda Aljinat Kullanımı. Batman ÜnivYaşam Bilim Derg, 8(1/2), 16–28.
  • Habibi, H., Khosravi-Darani, K., (2017). Effective variables on production and structure of xanthan gum and its food applications: A review. Biocatal Agric Biotechnol, 10: 130–140.
  • Heidebach, T., Först, P., Kulozik, U., (2012). Microencapsulation of Probiotic Cells for Food Applications. Crit Rev Food Sci Nutr, 52: 291–311.
  • Huo, X., Li, W., Wang, Y., Han, N., Wang, J., Wang, N., Zhang, X., (2018). Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohydr Polym, 200: 602–610.
  • Kavitake, D., Kandasamy, S., Devi, P.B., Shetty, P.H., (2018). Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – A review. Food Biosci, 21: 34–44.
  • Koç, M., Sakin, M., Ertekin, F.K., (2010). Mikroenkapsülasyon ve Gıda Teknolojisinde Kullanımı. Pamukkale Üniv Müh Bilim. Derg, 16: 77–86.
  • Kumar, B.V., Venkata, S., Vijayendra, N., (2015). Trends in dairy and non-dairy probiotic products - a review. J Food Sci Technol, 52(10): 6112–6124.
  • Kumar, R., Chauhan, S.K., Shinde, G., Subramanian, V., Nadanasabapathi, S., (2018). Whey Proteins: A potential ingredient for food industry- A review. Asian J Dairy Food Res, 37: 283–290.
  • Li, H., Thuy Ho, V.T., Turner, M.S., Dhital, S., (2016). Encapsulation of Lactobacillus plantarum in porous maize starch. LWT - Food Sci Technol, 74: 542–549.
  • Marcial-Coba, M.S., Knøchel, S., Nielsen, D.S., (2019). Low-moisture food matrices as probiotic carriers. FEMS Microbiol Lett, 366: 1–11.
  • Martín, M.J., Lara-Villoslada, F., Ruiz, M.A., Morales, M.E., (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol, 27: 15–25.
  • Mohan, A., Rajendran, S.R.C.K., He, Q.S., Bazinet, L., Udenigwe, C.C., (2015). Encapsulation of food protein hydrolysates and peptides: A review. RSC Adv, 5: 79270–79278.
  • Öztürk, S., Çakır, İ., (2015). Mikroorganizma Kültürlerinin Korunmasında Kullanılan Kurutma Yöntemleri. Akad Gıda, 13 (1), 94–100.
  • Pandey, K.R., Vakil, B.V., (2017). Encapsulation of Probiotic Bacillus coagulans for Enhanced Shelf Life. J Appl Biol Biotechnol, 5: 57–65.
  • Paulo, F., Santos, L., (2017). Design of experiments for microencapsulation applications: A review. Mater Sci Eng C, 77: 1327–1340.
  • Peanparkdee, M., Iwamoto, S., Yamauchi, R., (2016). Microencapsulation: a Review of Applications in the Food and Pharmaceutical Industries. Rev Agric Sci, 4: 56-65.
  • Pradeep Prasanna, P.H., Charalampopoulos, D., (2018). Encapsulation in an alginate–goats’ milk–inulin matrix improves survival of probiotic Bifidobacterium in simulated gastrointestinal conditions and goats’ milk yoghurt. Int J Dairy Technol, 72(1): 132-141.
  • Quintero, J., Rojas, J., Ciro, G., (2018). Vegetable proteins as potential encapsulation agents: a review. Foodresearch, 2(3): 208–220.
  • Ramani, R., Ramani, V., (2018). Probıotıc Mıcroencapsulatıon Technıques And Coatıng Materıals. Int J Probiotics Prebiotics, 13: 161–168.
  • Ramos, P.E., Cerqueira, M.A., Teixeira, J.A., Vicente, A.A., (2018). Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr, 58:1864–1877.
  • Rocha, M.A.M., Coimbra, M.A., Nunes, C., (2017). Applications of chitosan and their derivatives in beverages: a critical review. Curr Opin Food Sci, 15: 61–69.
  • Roshanzamir, M., Jafari, M., Molaee, E., Ghasemkhani, I., (2017). The survival of probiotic bacteria and sensory properties of yogurt affected by microencapsulation with resistant starch 3. J Food Safe & Hyg, 3(3/4): 59-64.
  • Sagis, L.M. (2015). Microencapsulation and microspheres for food applications. Academic Press, p.235-248, ISBN 9780128003503
  • Sarao, L.K., Arora, M., (2017). Probiotics, prebiotics, and microencapsulation: A review. Crit Rev Food Sci Nutr, 57: 344–371.
  • Schuck, P., Jeantet, R., Bhandari, B., Chen, X.D., Perrone, Í.T., de Carvalho, A.F., Fenelon, M., Kelly, P., (2016). Recent advances in spray drying relevant to the dairy industry: A comprehensive critical review. Dry Technol, 34: 1773–1790.
  • Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., Huang, Q., (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. Int J Biol Macromol 107: 1800–1810.
  • Sharif, H.R., Williams, P.A., Sharif, M.K., Abbas, S., Majeed, H., Masamba, K.G., Safdar, W., Zhong, F., (2018). Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants – A review. Food Hydrocoll, 76: 2–16.
  • Shori, A.B., (2017). Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI J Biosci, 24: 1–5.
  • Singh, P., Magalhães, S., Alves, L., Antunes, F., Miguel, M., Lindman, B., Medronho, B., (2019). Cellulose-based edible films for probiotic entrapment. Food Hydrocoll, 88: 68–74.
  • Soccol, C.R., Prado, M.M.R., Garcia, L.M.B., Rodrigues, C., Medeiros, A.B.P., Soccol, V.T., (2014). Current Developments in Probiotics. J Microb Biochem Technol, 7: 11–20.
  • Sohail, A., Turner, M.S., Prabawati, E.K., Coombes, A.G.A., Bhandari, B., (2012). Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. Int J Food Microbiol, 157: 162–166.
  • Suganya, V., Anuradha, V., (2017). Microencapsulation and Nanoencapsulation: A Review. Int J Pharm Clin Res, 9: 233–239.
  • Turasan, H., Sahin, S., Sumnu, G., (2015). Encapsulation of rosemary essential oil. LWT - Food Sci Technol, 64: 112–119.
  • Uran, H., Aloğlu, H., Çetin, B., (2017). Probiyotik bakterilerin mikroenkapsülasyonu Mediterr Agric Sci 30 (2), 107–112.
  • Varhan, E., Koç, M., (2018). Gıda Bileşenlerinin Sprey Soğutma Yöntemi ile Enkapsülasyonu. Food Health, 4(3): 202–212.
  • Wang, J., Korber, D.R., Low, N.H., Nickerson, M.T., (2014). Entrapment, survival and release of Bifidobacterium adolescentis within chickpea protein-based microcapsules. Food Res Int, 55: 20–27.
  • Wang, M., Yang, J., Li, M., Wang, Y., Wu, H., Xiong, L., Sun, Q., (2019). Enhanced viability of layer-by-layer encapsulated Lactobacillus pentosus using chitosan and sodium phytate. Food Chem, 285: 260–265.
  • Wani, T.A., Shah, A.G., Wani, S.M., Wani, I.A., Masoodi, F.A., Nissar, N., Shagoo, M.A., (2016). Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility. Crit Rev Food Sci Nutr, 56(15), 2431-2454.
  • Zia, K.M., Tabasum, S., Khan, M.F., Akram, N., Akhter, N., Noreen, A., Zuber, M., (2018). Recent trends on gellan gum blends with natural and synthetic polymers: A review. Int J Biol Macromol, 109: 1068–1087.

DIFFERENT COATING MATERIALS AND METHODS USED IN MICROENCAPSULATION OF PROBIOTIC CULTURES

Yıl 2019, Cilt: 44 Sayı: 6, 1222 - 1236, 06.10.2019
https://doi.org/10.15237/gida.GD19087

Öz

Probiotic bacteria used in the production of functional
foods may play an important role in the promote and maintenance of human
health. In addition to the provide advantages of probiotic cultures in these
products, there are some factors that limit their use.
The most important disadvantages of
probiotic cultures that they are affected by enviromental conditions in food
and can not maintain their viability for a long time. In recent years, the
creation of physical barrier to counteract adverse enviromental conditions of
probiotic cultures has become a frequently applied method. Microencapsulation
methods for protection of probiotic cultures greatly increase their survival in
food products and gastrointestinal tract. In addition, microencapsulation
enhances the efficiency of the culture by providing controlled release of
probiotic cultures at the desired time and site.
  In this review, coating materials and
microencapsulation methods used for microencapsulation of probiotic cultures
were summarized.

Kaynakça

  • Abd El-Salam, M.H., El-Shibiny, S., (2015). Preparation and properties of milk proteins-based encapsulated probiotics: a review. Dairy Sci Technol, 95: 393–412.
  • Albadran H.A.,.Chatzifragkou A., Khutoryanskiy V.V., Charalampopoulos D., (2018). Development of surfactant-coated alginate capsules containing Lactobacillus plantarum. Food Hydrocolloids, 82: 490-499
  • Altun, B., Özcan, T., (2013). Süt Ürünlerinde Probiyotik Bakterilerin Mikroenkapsülasyonu II: Kaplama Materyalleri ve Süt Ürünlerinde Uygulamalar. Uludağ Üniv Ziraat Fak Derg, 27(2): 105–114.
  • Arepally, D., Goswami, T.K., (2019). Effect of inlet air temperature and gum Arabic concentration on encapsulation of probiotics by spray drying. LWT- Food Sci Technol, 99: 583–593.
  • Arslan-Tontul, S., Erbas, M., (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT - Food Sci Technol, 81: 160–169.
  • Atak, Z., Koç, M., Kaymak-Ertekin, F., (2017). Gıda Endüstrisinde Aroma Mikroenkapsülasyonu. Akad Gıda, 15: 416–425.
  • Azagheswari, Kuriokase, B., Padma, S., Padma Priya, S., (2015). A Review on Microcapsules. Glob J Pharmacol. 9: 28–39.
  • Başyigit, B., Hayoğlu, I., Atasoy, F., (2017). Kekik Esansiyel Yağı ve Mikroenkapsülasyon Uygulamaları. Batman Üniv Yaşam Bilim Derg 7: 63–70.
  • Çakır, İ., (2006). Mikroenkapsülasyon Tekniğinin Probiyotik Gıda Üretiminde Kullanımı. Türkiye 9. Gıda Kongresi, 24-26 Mayıs 2006, Bolu, Türkiye, 693-696.
  • Celli, G.B., Ghanem, A., Brooks, M.S.L., (2015). Bioactive Encapsulated Powders for Functional Foods—a Review of Methods and Current Limitations. Food Bioprocess Technol. 8: 1825–1837.
  • Chakraborty, S., (2017). Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J Carbohydr Chem, 36: 1–19.
  • Chen, C., Liu, S., Liu, W., Zhao, Y., Lu, Y., (2012). Synthesis of novel solidliquid phase change materials and electrospinning of ultrafine phase change fibers. Sol Energy Mater Sol Cells, 96: 202–209.
  • Chen, J., Wang, Q., Liu, C.M., Gong, J., (2017). Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Crit Rev Food Sci Nutr, 57: 1228–1238.
  • Coghetto, C.C., Brinques, G.B., Ayub, M.A.Z., (2016). Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions. Int J Food Sci Nutr, 67: 929–943.
  • De Prisco, A., Mauriello, G., (2016). Probiotication of foods: A focus on microencapsulation tool. Trends Food Sci Technol, 48: 27–39.
  • De Prisco, A., van Valenberg, H.J.F., Fogliano, V., Mauriello, G., (2017). Microencapsulated Starter Culture During Yoghurt Manufacturing, Effect on Technological Features. Food Bioprocess Technol, 10: 1767–1777.
  • Desai, K.G.H., ve Park, H.J., (2005). Recent developments in microencapsulation of food ingredients. Drying Technol, 23(7): 1361-1394
  • Dianawati, D., Mishra, V., Shah, N.P., (2016). Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review. Crit Rev Food Sci Nutr, 56: 1685–1716.
  • Ðordevic´, V., Balancˇ, B., Belscak-Cvitanovic´, A., Levic´, S., Trifkovic´, K., Kalusevic´, A., Kostic´, I., Komes, D., Bugarski, B., Nedovic, V., (2015). Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Eng Rev, 7: 452–490.
  • Espitia, P.J.P., Batista, R.A., Azeredo, H.M.C., Otoni, C.G., (2016). Probiotics and their potential applications in active edible films and coatings. Food Res Int, 90: 42–52.
  • Giro-Paloma, J., Martínez, M., Cabeza, L.F., Fernández, A.I., (2016). Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew Sustain Energy Rev, 53: 1059–1075.
  • Gökbulut, İ., Öztürk, F.S., 2018. Gıda Mikroenkapsülasyonunda Aljinat Kullanımı. Batman ÜnivYaşam Bilim Derg, 8(1/2), 16–28.
  • Habibi, H., Khosravi-Darani, K., (2017). Effective variables on production and structure of xanthan gum and its food applications: A review. Biocatal Agric Biotechnol, 10: 130–140.
  • Heidebach, T., Först, P., Kulozik, U., (2012). Microencapsulation of Probiotic Cells for Food Applications. Crit Rev Food Sci Nutr, 52: 291–311.
  • Huo, X., Li, W., Wang, Y., Han, N., Wang, J., Wang, N., Zhang, X., (2018). Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohydr Polym, 200: 602–610.
  • Kavitake, D., Kandasamy, S., Devi, P.B., Shetty, P.H., (2018). Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods – A review. Food Biosci, 21: 34–44.
  • Koç, M., Sakin, M., Ertekin, F.K., (2010). Mikroenkapsülasyon ve Gıda Teknolojisinde Kullanımı. Pamukkale Üniv Müh Bilim. Derg, 16: 77–86.
  • Kumar, B.V., Venkata, S., Vijayendra, N., (2015). Trends in dairy and non-dairy probiotic products - a review. J Food Sci Technol, 52(10): 6112–6124.
  • Kumar, R., Chauhan, S.K., Shinde, G., Subramanian, V., Nadanasabapathi, S., (2018). Whey Proteins: A potential ingredient for food industry- A review. Asian J Dairy Food Res, 37: 283–290.
  • Li, H., Thuy Ho, V.T., Turner, M.S., Dhital, S., (2016). Encapsulation of Lactobacillus plantarum in porous maize starch. LWT - Food Sci Technol, 74: 542–549.
  • Marcial-Coba, M.S., Knøchel, S., Nielsen, D.S., (2019). Low-moisture food matrices as probiotic carriers. FEMS Microbiol Lett, 366: 1–11.
  • Martín, M.J., Lara-Villoslada, F., Ruiz, M.A., Morales, M.E., (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol, 27: 15–25.
  • Mohan, A., Rajendran, S.R.C.K., He, Q.S., Bazinet, L., Udenigwe, C.C., (2015). Encapsulation of food protein hydrolysates and peptides: A review. RSC Adv, 5: 79270–79278.
  • Öztürk, S., Çakır, İ., (2015). Mikroorganizma Kültürlerinin Korunmasında Kullanılan Kurutma Yöntemleri. Akad Gıda, 13 (1), 94–100.
  • Pandey, K.R., Vakil, B.V., (2017). Encapsulation of Probiotic Bacillus coagulans for Enhanced Shelf Life. J Appl Biol Biotechnol, 5: 57–65.
  • Paulo, F., Santos, L., (2017). Design of experiments for microencapsulation applications: A review. Mater Sci Eng C, 77: 1327–1340.
  • Peanparkdee, M., Iwamoto, S., Yamauchi, R., (2016). Microencapsulation: a Review of Applications in the Food and Pharmaceutical Industries. Rev Agric Sci, 4: 56-65.
  • Pradeep Prasanna, P.H., Charalampopoulos, D., (2018). Encapsulation in an alginate–goats’ milk–inulin matrix improves survival of probiotic Bifidobacterium in simulated gastrointestinal conditions and goats’ milk yoghurt. Int J Dairy Technol, 72(1): 132-141.
  • Quintero, J., Rojas, J., Ciro, G., (2018). Vegetable proteins as potential encapsulation agents: a review. Foodresearch, 2(3): 208–220.
  • Ramani, R., Ramani, V., (2018). Probıotıc Mıcroencapsulatıon Technıques And Coatıng Materıals. Int J Probiotics Prebiotics, 13: 161–168.
  • Ramos, P.E., Cerqueira, M.A., Teixeira, J.A., Vicente, A.A., (2018). Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr, 58:1864–1877.
  • Rocha, M.A.M., Coimbra, M.A., Nunes, C., (2017). Applications of chitosan and their derivatives in beverages: a critical review. Curr Opin Food Sci, 15: 61–69.
  • Roshanzamir, M., Jafari, M., Molaee, E., Ghasemkhani, I., (2017). The survival of probiotic bacteria and sensory properties of yogurt affected by microencapsulation with resistant starch 3. J Food Safe & Hyg, 3(3/4): 59-64.
  • Sagis, L.M. (2015). Microencapsulation and microspheres for food applications. Academic Press, p.235-248, ISBN 9780128003503
  • Sarao, L.K., Arora, M., (2017). Probiotics, prebiotics, and microencapsulation: A review. Crit Rev Food Sci Nutr, 57: 344–371.
  • Schuck, P., Jeantet, R., Bhandari, B., Chen, X.D., Perrone, Í.T., de Carvalho, A.F., Fenelon, M., Kelly, P., (2016). Recent advances in spray drying relevant to the dairy industry: A comprehensive critical review. Dry Technol, 34: 1773–1790.
  • Shaddel, R., Hesari, J., Azadmard-Damirchi, S., Hamishehkar, H., Fathi-Achachlouei, B., Huang, Q., (2018). Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. Int J Biol Macromol 107: 1800–1810.
  • Sharif, H.R., Williams, P.A., Sharif, M.K., Abbas, S., Majeed, H., Masamba, K.G., Safdar, W., Zhong, F., (2018). Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants – A review. Food Hydrocoll, 76: 2–16.
  • Shori, A.B., (2017). Microencapsulation Improved Probiotics Survival During Gastric Transit. HAYATI J Biosci, 24: 1–5.
  • Singh, P., Magalhães, S., Alves, L., Antunes, F., Miguel, M., Lindman, B., Medronho, B., (2019). Cellulose-based edible films for probiotic entrapment. Food Hydrocoll, 88: 68–74.
  • Soccol, C.R., Prado, M.M.R., Garcia, L.M.B., Rodrigues, C., Medeiros, A.B.P., Soccol, V.T., (2014). Current Developments in Probiotics. J Microb Biochem Technol, 7: 11–20.
  • Sohail, A., Turner, M.S., Prabawati, E.K., Coombes, A.G.A., Bhandari, B., (2012). Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. Int J Food Microbiol, 157: 162–166.
  • Suganya, V., Anuradha, V., (2017). Microencapsulation and Nanoencapsulation: A Review. Int J Pharm Clin Res, 9: 233–239.
  • Turasan, H., Sahin, S., Sumnu, G., (2015). Encapsulation of rosemary essential oil. LWT - Food Sci Technol, 64: 112–119.
  • Uran, H., Aloğlu, H., Çetin, B., (2017). Probiyotik bakterilerin mikroenkapsülasyonu Mediterr Agric Sci 30 (2), 107–112.
  • Varhan, E., Koç, M., (2018). Gıda Bileşenlerinin Sprey Soğutma Yöntemi ile Enkapsülasyonu. Food Health, 4(3): 202–212.
  • Wang, J., Korber, D.R., Low, N.H., Nickerson, M.T., (2014). Entrapment, survival and release of Bifidobacterium adolescentis within chickpea protein-based microcapsules. Food Res Int, 55: 20–27.
  • Wang, M., Yang, J., Li, M., Wang, Y., Wu, H., Xiong, L., Sun, Q., (2019). Enhanced viability of layer-by-layer encapsulated Lactobacillus pentosus using chitosan and sodium phytate. Food Chem, 285: 260–265.
  • Wani, T.A., Shah, A.G., Wani, S.M., Wani, I.A., Masoodi, F.A., Nissar, N., Shagoo, M.A., (2016). Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility. Crit Rev Food Sci Nutr, 56(15), 2431-2454.
  • Zia, K.M., Tabasum, S., Khan, M.F., Akram, N., Akhter, N., Noreen, A., Zuber, M., (2018). Recent trends on gellan gum blends with natural and synthetic polymers: A review. Int J Biol Macromol, 109: 1068–1087.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Burak Geniş 0000-0002-7204-2176

Yasin Tuncer 0000-0002-2075-5027

Yayımlanma Tarihi 6 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 44 Sayı: 6

Kaynak Göster

APA Geniş, B., & Tuncer, Y. (2019). PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER. Gıda, 44(6), 1222-1236. https://doi.org/10.15237/gida.GD19087
AMA Geniş B, Tuncer Y. PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER. GIDA. Ekim 2019;44(6):1222-1236. doi:10.15237/gida.GD19087
Chicago Geniş, Burak, ve Yasin Tuncer. “PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER”. Gıda 44, sy. 6 (Ekim 2019): 1222-36. https://doi.org/10.15237/gida.GD19087.
EndNote Geniş B, Tuncer Y (01 Ekim 2019) PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER. Gıda 44 6 1222–1236.
IEEE B. Geniş ve Y. Tuncer, “PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER”, GIDA, c. 44, sy. 6, ss. 1222–1236, 2019, doi: 10.15237/gida.GD19087.
ISNAD Geniş, Burak - Tuncer, Yasin. “PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER”. Gıda 44/6 (Ekim 2019), 1222-1236. https://doi.org/10.15237/gida.GD19087.
JAMA Geniş B, Tuncer Y. PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER. GIDA. 2019;44:1222–1236.
MLA Geniş, Burak ve Yasin Tuncer. “PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER”. Gıda, c. 44, sy. 6, 2019, ss. 1222-36, doi:10.15237/gida.GD19087.
Vancouver Geniş B, Tuncer Y. PROBİYOTİK KÜLTÜRLERİN MİKROENKAPSÜLASYONUNDA KULLANILAN FARKLI KAPLAMA MATERYALLERİ VE YÖNTEMLER. GIDA. 2019;44(6):1222-36.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/