Derleme
BibTex RIS Kaynak Göster

NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ

Yıl 2021, Cilt: 46 Sayı: 4, 925 - 938, 17.05.2021
https://doi.org/10.15237/gida.GD21010

Öz

Şekerler; duyusal olarak tatlı tada sahip, suda çözünürlüğü yüksek ve molekül ağırlıkları düşük karbonhidratlar olarak tanımlanabilir. Doğada yüksek miktarda bulunan şekerler yaygın şekerler ve düşük miktarda bulunan şekerler ise nadir şekerler olarak adlandırılırlar. Nadir bir şeker olan D-allüloz, D-fruktozun 3. karbondan epimerik izomeridir. D-allüloz aynı zamanda D-glikoza eşdeğer tatlı tada, oldukça düşük enerji içeriğine ve glisemik indeks değerine sahip olması gibi özellikleri ile de gıda teknolojisinde kullanım potansiyeline sahip bir bileşendir. D-allülozun diğer endüstriyel şekerlere alternatif bir bileşen olarak kullanımı için doğal kaynakları yetersizdir. Bu nedenle D-allülozun diğer yaygın heksoz şekerlerden üretilmesi gerekmektedir. D-allülozun en genel üretim yöntemi; D-fruktozun, D-tagatoz 3-epimeraz veya D-allüloz 3-epimeraz enzimleri ile D-allüloza dönüştürülmesidir. Bu çalışmada; D-allülozun bazı özellikleri, sağlık üzerine etkileri, üretim yöntemleri ve gıdalarda kullanım potansiyeli derlenmiştir.

Kaynakça

  • Barkalow, D.G., Hsu, C., Haseleu, A., Stawski, B.Z. (2018). Confections containing allulose. Patent US-20180271112-A1.
  • Bilal, M., Iqbal, H.M.N., Hu, H., Wang, W., Zhang, X. (2018). Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review. Crit Rev Food Sci Nutr, 58(16): 2768–2778.
  • Bilik, V., Tihlárik, K. (1973). Reactions of saccharides catalyzed by molybdate ions. IX.* Epimerization of ketohexoses. Chemicke Zvesti, 28(1): 106–109.
  • Chen, J., Zhu, Y., Fu, G., Song, Y., Jin, Z., Sun, Y., Zhang, D. (2016). High-level intra- and extra-cellular production of d-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis. J Ind Microbiol Biotechnol, 43(11): 1577–1591.
  • Chen, X., Wang, W., Xu, J., Yuan, Z., Yuan, T., Zhang, Y., Liang, C., He, M., Guo, Y. (2017). Production of D-psicose from D-glucose by co-expression of D-psicose 3-epimerase and xylose isomerase. Enzyme Microb Technol, 105: 18–23.
  • Dedania, S.R., Patel, M.J., Patel, D.M., Akhani, R.C., Patel, D.H. (2017). Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of D-psicose 3-epimerase for rare sugar production. Enzyme Microb Technol, 107: 49–56.
  • Dedania, S.R., Patel, V.K., Soni, S.S., Patel, D.H. (2020). Immobilization of Agrobacterium tumefaciens D-psicose 3-epimerase onto titanium dioxide for bioconversion of rare sugar. Enzyme Microb Technol, 140: 109605.
  • Do, G.Y., Kwon, E.Y., Kim, Y.J., Han, Y., Kim, S.B., Kim, Y.H., Choi, M.S. (2019). Supplementation of non-dairy creamer-enriched high-fat diet with d-allulose ameliorated blood glucose and body fat accumulation in C57BL/6J mice. Appl Sci, 9(13): 2750.
  • Doner, L.W. (1979). Isomerization of D-fructose by base: Liquid-chromatographic evaluation and the isolation of D-psicose. Carbohydr Res, 70(2): 209–216.
  • FDA. (2017). GRAS Notice (GRN) No. 693. www.fda.gov/media/106159/download (Accessed: 10 December 2020).
  • FDA. (2019). The declaration of allulose and calories from allulose on nutrition and supplement facts labels: guidance for ındustry. www.fda.gov/media/123342/download (Accessed: 10 December 2020).
  • Gil-Campos, M., San José González, M.A., Díaz Martín, J.J. (2015). Use of sugars and sweeteners in children’s diets. Recommendations of the Nutrition Committee of the Spanish Association of Paediatrics. Anales de Pediatría (English Edition), 83(5): 353.e1-353.e7.
  • Hadipernata, M., Ogawa, M., Hayakawa, S. (2016). Effect of D-allulose on rheological properties of chicken breast sausage. Poult Sci, 95(9): 2120–2128.
  • Hadipernata, M., Ogawa, M., Hayakawa, S. (2017). Improved rheological properties of chicken egg frozen gels fortified by D-ketohexoses. J Food Process Preservation, 41(5).
  • Han, Y., Han, H.J., Kim, A.H., Choi, J.Y., Cho, S.J., Park, Y.B., Jung, U.J., Choi, M. S. (2016). D-allulose supplementation normalized the body weight and fat-pad mass in diet-induced obese mice via the regulation of lipid metabolism under isocaloric fed condition. Mol Nutr Food Res, 60(7): 1695–1706.
  • Han, Y., Kwon, E.Y., Yu, M.K., Lee, S.J., Kim, H.J., Kim, S.B., Kim, Y.H., Choi, M.S. (2018). A preliminary study for evaluating the dose-dependent effect of D-allulose for fat mass reduction in adult humans: A randomized, double-blind, placebo-controlled trial. Nutrients, 10(2): 160-174.
  • Hashii, K., Hasegawa, T., Idegami, N., Kadota, M., Taniguchi, M., Toyama, T., Toyonaga, D. (2015). Rare Sugar. Discover Kagawa through English and Science, 40.
  • Hossain, A., Yamaguchi, F., Matsuo, T., Tsukamoto, I., Toyoda, Y., Ogawa, M., Nagata, Y., Tokuda, M. (2015). Rare sugar D-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharm Ther, 155: 45-49.
  • Iida, T., Hayashi, N., Yamada, T., Yoshikawa, Y., Miyazato, S., Kishimoto, Y., Okuma, K., Tokuda, M., Izumori, K. (2010). Failure of D-psicose absorbed in the small intestine to metabolize into energy and its low large intestinal fermentability in humans. Metab Clin Exp, 59(2): 206-214.
  • Ilhan, E., Pocan, P., Ogawa, M., Oztop, M. H. (2020). Role of ‘D-allulose’ in a starch based composite gel matrix. Carbohydr Polym, 228: 115373.
  • Itoh, H., Okaya, H., Khan, A.R., Tajima, S., Hayakawa, S., Izumori, K. (1994). Purification and characterization of D-tagatose 3-epimerase from Pseudomonas sp. ST-24 . Biosci Biotechnol Biochem, 58(12): 2168–2171.
  • Iwasaki, Y., Sendo, M., Dezaki, K., Hira, T., Sato, T., Nakata, M., Goswami, C., Aoki, R., Arai, T., Kumari, P., Hayakawa, M., Masuda, C., Okada, T., Hara, H., Drucker, D.J., Yamada, Y., Tokuda, M., Yada, T. (2018). GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose. Nat Commun, 9(1).
  • Jia, M., Mu, W., Chu, F., Zhang, X., Jiang, B., Zhou, L.L., Zhang, T. (2014). A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: Cloning, expression, purification, and characterization. Appl Microbiol Biotechnol, 98(2): 717–725.
  • Jiang, S., Xiao, W., Zhu, X., Yang, P., Zheng, Z., Lu, S., Jiang, S., Zhang, G., Liu, J. (2020). Review on D-Allulose: In vivo metabolism, catalytic mechanism, engineering strain construction, bio-production technology. Front Bioeng Biotechnol, 8.
  • Juneja, A., Zhang, G., Jin, Y.S., Singh, V. (2019). Bioprocessing and technoeconomic feasibility analysis of simultaneous production of D-psicose and ethanol using engineered yeast strain KAM-2GD. Bioresour Technol, 275: 27–34.
  • Kim, H.J., Hyun, E.K., Kim, Y.S., Lee, Y.J., Oh, D.K. (2006). Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Appl Environ Microbiol, 72(2): 981–985.
  • Kim, H., Park, C., Sa, S., Case, I., Li, C., Gao, Y., Wang, H., Tian, J. (2019). A study of D-allulose-associated reproductive toxicity in rats. Food Chem Toxicol, 131: 110548.
  • Kimura, T., Kanasaki, A., Hayashi, N., Yamada, T., Iida, T., Nagata, Y., Okuma, K. (2017). D-allulose enhances postprandial fat oxidation in healthy humans. Nutrition, 43–44: 16–20.
  • Li, Z., Li, Y., Duan, S., Liu, J., Yuan, P., Nakanishi, H., Gao, X.D. (2015). Bioconversion of D-glucose to D-psicose with immobilized D-xylose isomerase and D-psicose 3-epimerase on Saccharomyces cerevisiae spores. J Ind Microbiol Biotechnol, 42(8): 1117–1128.
  • Li, C., Zhang, C., Lin, J., Gao, L., Lin, H., Lin, J. (2018a). Enzymatic fructose removal from D-psicose bioproduction model solution and the system modeling and simulation. J Chem Technol Biotechnol, 93(5): 1249–1260.
  • Li, C., Lin, J., Guo, Q., Zhang, C., Du, K., Lin, H., Lin, J. (2018b). D-psicose 3-epimerase secretory overexpression, immobilization, and d-psicose biotransformation, separation and crystallization. J Chem Technol Biotechnol, 93(2): 350–357.
  • Li, S., Chen, Z., Zhang, W., Guang, C., Mu, W. (2019). Characterization of a D-tagatose 3-epimerase from Caballeronia fortuita and its application in rare sugar production. Int J Biol Macromol, 138: 536–545.
  • Mao, S., Cheng, X., Zhu, Z., Chen, Y., Li, C., Zhu, M., Liu, X., Lu, F., Qin, H.M. (2020). Engineering a thermostable version of D-allulose 3-epimerase from Rhodopirellula baltica via site-directed mutagenesis based on B-factors analysis. Enzyme Microb Technol, 132: 109441.
  • Matsuo, T., Tanaka, T., Hashiguchi, M., Izumori, K., Suzuki, H. (2002). Effects of oral acute administration and subchronic feeding of several levels of D-psicose in rats. J Nutr Sci Vitaminol, 48(6): 512–516.
  • Matsuo, T., Izumori, K. (2006). Effects of dietary D-psicose on diurnal variation in plasma glucose and insulin concentrations of rats. Biosci Biotechnol Biochem, 70(9): 2081–2085.
  • McDonald, E. J. (1967). A new synthesis of D-psicose (D-ribo-hexulose). Carbohydr Res, 5(1): 106–108.
  • Mu, W., Chu, F., Xing, Q., Yu, S., Zhou, L., Jiang, B. (2011). Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10. J Agric Food Chem, 59(14): 7785–7792.
  • Mu, W., Zhang, W., Fang, D., Zhou, L., Jiang, B., Zhang, T. (2013). Characterization of a D-psicose-producing enzyme, D-psicose 3-epimerase, from Clostridium sp. Biotechnol Lett, 35(9): 1481–1486.
  • Mu, W., Yu, L., Zhang, W., Zhang, T., Jiang, B. (2015). Isomerases for biotransformation of D-hexoses. Appl Microbiol Biotechnol, 99(16): 6571–6584.
  • Mu, W., Hassanin, H.A.M., Zhou, L., Jiang, B. (2018). Chemistry behind rare sugars and bioprocessing. J Agric Food Chem, 66(51): 13343–13345.
  • Nagata, Y., Kanasaki, A., Tamaru, S., Tanaka, K. (2015). D-psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats. J Agric Food Chem, 63(12): 3168–3176.
  • O’Charoen, S., Hayakawa, S., Ogawa, M. (2015). Food properties of egg white protein modified by rare ketohexoses through Maillard reaction. Int J Food Sci Technol, 50(1): 194–202.
  • Oshima, H., Kimura, I., Izumori, K. (2006). Psicose contents in various food products and its origin. Food Sci Technol Res, 12(2): 137–143.
  • Park, C.S., Kim, T., Hong, S.H., Shin, K.C., Kim, K.R., Oh, D. K. (2016). D-allulose production from D-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase Flavonifractor plautii. PLoS ONE, 11(7).
  • Patel, S.N., Sharma, M., Lata, K., Singh, U., Kumar, V., Sangwan, R.S., Singh, S.P. (2016). Improved operational stability of D-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues. Bioresour Technol, 216: 121–127.
  • Patel, S.N., Singh, V., Sharma, M., Sangwan, R.S., Singhal, N.K., Singh, S.P. (2018). Development of a thermo-stable and recyclable magnetic nanobiocatalyst for bioprocessing of fruit processing residues and D-allulose synthesis. Bioresour Technol, 247: 633–639.
  • Qi, Z., Zhu, Z., Wang, J.W., Li, S., Guo, Q., Xu, P., Lu, F., Qin, H.M. (2017). Biochemical analysis and the preliminary crystallographic characterization of D-tagatose 3-epimerase from Rhodobacter sphaeroides. Microb Cell Fact, 16(1): 1–9.
  • Ran, G., Tan, D., Zhao, J., Fan, F., Zhang, Q., Wu, X., Fan, P., Fang, X., Lu, X. (2019). Functionalized polyhydroxyalkanoate nano-beads as a stable biocatalyst for cost-effective production of the rare sugar D-allulose. Bioresour Technol, 289: 9-18.
  • Shintani, T., Yamada, T., Hayashi, N., Iida, T., Nagata, Y., Ozaki, N., Toyoda, Y. (2017). Rare sugar syrup containing D-allulose but not high-fructose corn syrup maintains glucose tolerance and ınsulin sensitivity partly via hepatic glucokinase translocation in Wistar rats. J Agric Food Chem, 65(13): 2888–2894.
  • Song, Y., Nguyen, Q.A., Wi, S.G., Yang, J., Bae, H.J. (2017a). Strategy for dual production of bioethanol and D-psicose as value-added products from cruciferous vegetable residue. Bioresour Technol, 223: 34–39.
  • Song, Y., Oh, C., Bae, H.J. (2017b). Simultaneous production of bioethanol and value-added D-psicose from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Bioresour Technol, 244: 1068-1072.
  • Takeshita, K., Suga, A., Takada, G., Izumori, K. (2000). Mass production of D-psicose from D-fructose by a continuous bioreactor system using immobilized D-tagatose 3-epimerase. J Biosci Bioeng, 90(4): 453–455.
  • Tseng, W.C., Chen, C.N., Hsu, C.T., Lee, H.C., Fang, H.Y., Wang, M.J., Wu, Y.H., Fang, T.Y. (2018). Characterization of a recombinant D-allulose 3-epimerase from Agrobacterium sp. ATCC 31749 and identification of an important interfacial residue. Int J Biol Macromol, 112(400): 767–774.
  • Van Laar, A.D.E., Grootaert, C., Van Camp, J. (2020). Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Crit Rev Food Sci Nutr, 1–29.
  • Wee, M., Tan, V., Forde, C. (2018). A comparison of psychophysical dose-response behaviour across 16 sweeteners. Nutrients, 10(11): 1–16.
  • Yang, P., Zhu, X., Zheng, Z., Mu, D., Jiang, S., Luo, S., Wu, Y., Du, M. (2018). Cell regeneration and cyclic catalysis of engineered Kluyveromyces marxianus of a D-psicose-3-epimerase gene from Agrobacterium tumefaciens for D-allulose production. World J Microbiol Biotechnol, 34(5).
  • Yoshihara, A., Kozakai, T., Shintani, T., Matsutani, R., Ohtani, K., Iida, T., Akimitsu, K., Izumori, K., Gullapalli, P.K. (2017). Purification and characterization of D-allulose 3-epimerase derived from Arthrobacter globiformis M30, a GRAS microorganism. J Biosci Bioeng, 123(2): 170–176.
  • Zeng, Y., Dou, D., Zhang, Y., Zhang, L., Sun, Y. (2015). Rare sugars and antioxidants in Itea virginica, Itea oblonga Hand.-Mazz., and Itea yunnanensis franch leaves. In J Food Prop, 18(11): 2549–2560.
  • Zhang, L., Mu, W., Jiang, B., Zhang, T. (2009). Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose. Biotechnol Lett, 31(6): 857–862.
  • Zhang, W., Fang, D., Xing, Q., Zhou, L., Jiang, B., Mu, W. (2013a). Characterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704. PLoS ONE, 8(4): 1–9.
  • Zhang, W., Fang, D., Zhang, T., Zhou, L., Jiang, B., Mu, W. (2013b). Characterization of a metal-dependent D-psicose 3-epimerase from a novel strain, Desmospora sp. 8437. J Agric Food Chem, 61(47): 11468–11476.
  • Zhang, W., Li, H., Zhang, T., Jiang, B., Zhou, L., Mu, W. (2015). Characterization of a D-psicose 3-epimerase from Dorea sp. CAG317 with an acidic pH optimum and a high specific activity. J Mol Catal B Enzym, 120: 68–74.
  • Zhang, W., Zhang, T., Jiang, B., Mu, W. (2016). Biochemical characterization of a D-psicose 3-epimerase from Treponema primitia ZAS-1 and its application on enzymatic production of D-psicose. J Sci Food Agric, 96(1): 49–56.
  • Zhang, W., Zhang, T., Jiang, B., Mu, W. (2017). Enzymatic approaches to rare sugar production. Biotechnol Adv, 35(2): 267–274.
  • Zhang, W., Zhang, Y., Huang, J., Chen, Z., Zhang, T., Guang, C., Mu, W. (2018). Thermostability improvement of the D-allulose 3-epimerase from Dorea sp. CAG317 by site-directed mutagenesis at the interface regions. J Agric Food Chem, 66(22): 5593–5601.
  • Zhang, J., Xu, C., Chen, X., Ruan, X., Zhang, Y., Xu, H., Guo, Y. (2020). Engineered Bacillus subtilis harbouring gene of D-tagatose 3-epimerase for the bioconversion of D-fructose into D-psicose through fermentation. Enzyme Microb Technol, 136: 109531.
  • Zhu, Y., Men, Y., Bai, W., Li, X., Zhang, L., Sun, Y., Ma, Y. (2012). Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production. Biotechnol Lett, 34(10): 1901–1906.
  • Zhu, Z., Li, C., Liu, X., Gao, D., Wang, X., Tanokura, M., Qin, H.M., Lu, F. (2019). Biochemical characterization and biocatalytic application of a novel D-tagatose 3-epimerase from: Sinorhizobium sp. RSC Advances, 9(6): 2919–2927.

D-ALLULOSE, A RARE SUGAR, AND ITS USAGE POSSIBILITIES IN NUTRITION AND PRODUCTION METHODS

Yıl 2021, Cilt: 46 Sayı: 4, 925 - 938, 17.05.2021
https://doi.org/10.15237/gida.GD21010

Öz

Sugars are defined as carbohydrates with a sweet taste, high water solubility, and low molecular weight. Sugars found in high amounts in nature are classified as common sugars, sugars found in low amounts are classified as rare sugars. D-allulose, a rare sugar, is the C-3 epimeric isomer of D-fructose. D-allulose is also an ingredient having the potential for usage in food technology with its properties such as sweet taste equivalent to D-glucose, very low energy content and glycemic index value. Natural resources are insufficient for D-allulose to be used as an alternative ingredient to other industrial sugars. Therefore, D-allulose must be produced from other common hexose sugars. The most common production method of D-allulose is the conversion of D-fructose to D-allulose by D-tagatose 3-epimerase or D-allulose 3-epimerase enzymes. In this study; some properties, effects on health, production methods and potential usage in foods of D-allulose are reviewed.

Kaynakça

  • Barkalow, D.G., Hsu, C., Haseleu, A., Stawski, B.Z. (2018). Confections containing allulose. Patent US-20180271112-A1.
  • Bilal, M., Iqbal, H.M.N., Hu, H., Wang, W., Zhang, X. (2018). Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications-a review. Crit Rev Food Sci Nutr, 58(16): 2768–2778.
  • Bilik, V., Tihlárik, K. (1973). Reactions of saccharides catalyzed by molybdate ions. IX.* Epimerization of ketohexoses. Chemicke Zvesti, 28(1): 106–109.
  • Chen, J., Zhu, Y., Fu, G., Song, Y., Jin, Z., Sun, Y., Zhang, D. (2016). High-level intra- and extra-cellular production of d-psicose 3-epimerase via a modified xylose-inducible expression system in Bacillus subtilis. J Ind Microbiol Biotechnol, 43(11): 1577–1591.
  • Chen, X., Wang, W., Xu, J., Yuan, Z., Yuan, T., Zhang, Y., Liang, C., He, M., Guo, Y. (2017). Production of D-psicose from D-glucose by co-expression of D-psicose 3-epimerase and xylose isomerase. Enzyme Microb Technol, 105: 18–23.
  • Dedania, S.R., Patel, M.J., Patel, D.M., Akhani, R.C., Patel, D.H. (2017). Immobilization on graphene oxide improves the thermal stability and bioconversion efficiency of D-psicose 3-epimerase for rare sugar production. Enzyme Microb Technol, 107: 49–56.
  • Dedania, S.R., Patel, V.K., Soni, S.S., Patel, D.H. (2020). Immobilization of Agrobacterium tumefaciens D-psicose 3-epimerase onto titanium dioxide for bioconversion of rare sugar. Enzyme Microb Technol, 140: 109605.
  • Do, G.Y., Kwon, E.Y., Kim, Y.J., Han, Y., Kim, S.B., Kim, Y.H., Choi, M.S. (2019). Supplementation of non-dairy creamer-enriched high-fat diet with d-allulose ameliorated blood glucose and body fat accumulation in C57BL/6J mice. Appl Sci, 9(13): 2750.
  • Doner, L.W. (1979). Isomerization of D-fructose by base: Liquid-chromatographic evaluation and the isolation of D-psicose. Carbohydr Res, 70(2): 209–216.
  • FDA. (2017). GRAS Notice (GRN) No. 693. www.fda.gov/media/106159/download (Accessed: 10 December 2020).
  • FDA. (2019). The declaration of allulose and calories from allulose on nutrition and supplement facts labels: guidance for ındustry. www.fda.gov/media/123342/download (Accessed: 10 December 2020).
  • Gil-Campos, M., San José González, M.A., Díaz Martín, J.J. (2015). Use of sugars and sweeteners in children’s diets. Recommendations of the Nutrition Committee of the Spanish Association of Paediatrics. Anales de Pediatría (English Edition), 83(5): 353.e1-353.e7.
  • Hadipernata, M., Ogawa, M., Hayakawa, S. (2016). Effect of D-allulose on rheological properties of chicken breast sausage. Poult Sci, 95(9): 2120–2128.
  • Hadipernata, M., Ogawa, M., Hayakawa, S. (2017). Improved rheological properties of chicken egg frozen gels fortified by D-ketohexoses. J Food Process Preservation, 41(5).
  • Han, Y., Han, H.J., Kim, A.H., Choi, J.Y., Cho, S.J., Park, Y.B., Jung, U.J., Choi, M. S. (2016). D-allulose supplementation normalized the body weight and fat-pad mass in diet-induced obese mice via the regulation of lipid metabolism under isocaloric fed condition. Mol Nutr Food Res, 60(7): 1695–1706.
  • Han, Y., Kwon, E.Y., Yu, M.K., Lee, S.J., Kim, H.J., Kim, S.B., Kim, Y.H., Choi, M.S. (2018). A preliminary study for evaluating the dose-dependent effect of D-allulose for fat mass reduction in adult humans: A randomized, double-blind, placebo-controlled trial. Nutrients, 10(2): 160-174.
  • Hashii, K., Hasegawa, T., Idegami, N., Kadota, M., Taniguchi, M., Toyama, T., Toyonaga, D. (2015). Rare Sugar. Discover Kagawa through English and Science, 40.
  • Hossain, A., Yamaguchi, F., Matsuo, T., Tsukamoto, I., Toyoda, Y., Ogawa, M., Nagata, Y., Tokuda, M. (2015). Rare sugar D-allulose: Potential role and therapeutic monitoring in maintaining obesity and type 2 diabetes mellitus. Pharm Ther, 155: 45-49.
  • Iida, T., Hayashi, N., Yamada, T., Yoshikawa, Y., Miyazato, S., Kishimoto, Y., Okuma, K., Tokuda, M., Izumori, K. (2010). Failure of D-psicose absorbed in the small intestine to metabolize into energy and its low large intestinal fermentability in humans. Metab Clin Exp, 59(2): 206-214.
  • Ilhan, E., Pocan, P., Ogawa, M., Oztop, M. H. (2020). Role of ‘D-allulose’ in a starch based composite gel matrix. Carbohydr Polym, 228: 115373.
  • Itoh, H., Okaya, H., Khan, A.R., Tajima, S., Hayakawa, S., Izumori, K. (1994). Purification and characterization of D-tagatose 3-epimerase from Pseudomonas sp. ST-24 . Biosci Biotechnol Biochem, 58(12): 2168–2171.
  • Iwasaki, Y., Sendo, M., Dezaki, K., Hira, T., Sato, T., Nakata, M., Goswami, C., Aoki, R., Arai, T., Kumari, P., Hayakawa, M., Masuda, C., Okada, T., Hara, H., Drucker, D.J., Yamada, Y., Tokuda, M., Yada, T. (2018). GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose. Nat Commun, 9(1).
  • Jia, M., Mu, W., Chu, F., Zhang, X., Jiang, B., Zhou, L.L., Zhang, T. (2014). A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: Cloning, expression, purification, and characterization. Appl Microbiol Biotechnol, 98(2): 717–725.
  • Jiang, S., Xiao, W., Zhu, X., Yang, P., Zheng, Z., Lu, S., Jiang, S., Zhang, G., Liu, J. (2020). Review on D-Allulose: In vivo metabolism, catalytic mechanism, engineering strain construction, bio-production technology. Front Bioeng Biotechnol, 8.
  • Juneja, A., Zhang, G., Jin, Y.S., Singh, V. (2019). Bioprocessing and technoeconomic feasibility analysis of simultaneous production of D-psicose and ethanol using engineered yeast strain KAM-2GD. Bioresour Technol, 275: 27–34.
  • Kim, H.J., Hyun, E.K., Kim, Y.S., Lee, Y.J., Oh, D.K. (2006). Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Appl Environ Microbiol, 72(2): 981–985.
  • Kim, H., Park, C., Sa, S., Case, I., Li, C., Gao, Y., Wang, H., Tian, J. (2019). A study of D-allulose-associated reproductive toxicity in rats. Food Chem Toxicol, 131: 110548.
  • Kimura, T., Kanasaki, A., Hayashi, N., Yamada, T., Iida, T., Nagata, Y., Okuma, K. (2017). D-allulose enhances postprandial fat oxidation in healthy humans. Nutrition, 43–44: 16–20.
  • Li, Z., Li, Y., Duan, S., Liu, J., Yuan, P., Nakanishi, H., Gao, X.D. (2015). Bioconversion of D-glucose to D-psicose with immobilized D-xylose isomerase and D-psicose 3-epimerase on Saccharomyces cerevisiae spores. J Ind Microbiol Biotechnol, 42(8): 1117–1128.
  • Li, C., Zhang, C., Lin, J., Gao, L., Lin, H., Lin, J. (2018a). Enzymatic fructose removal from D-psicose bioproduction model solution and the system modeling and simulation. J Chem Technol Biotechnol, 93(5): 1249–1260.
  • Li, C., Lin, J., Guo, Q., Zhang, C., Du, K., Lin, H., Lin, J. (2018b). D-psicose 3-epimerase secretory overexpression, immobilization, and d-psicose biotransformation, separation and crystallization. J Chem Technol Biotechnol, 93(2): 350–357.
  • Li, S., Chen, Z., Zhang, W., Guang, C., Mu, W. (2019). Characterization of a D-tagatose 3-epimerase from Caballeronia fortuita and its application in rare sugar production. Int J Biol Macromol, 138: 536–545.
  • Mao, S., Cheng, X., Zhu, Z., Chen, Y., Li, C., Zhu, M., Liu, X., Lu, F., Qin, H.M. (2020). Engineering a thermostable version of D-allulose 3-epimerase from Rhodopirellula baltica via site-directed mutagenesis based on B-factors analysis. Enzyme Microb Technol, 132: 109441.
  • Matsuo, T., Tanaka, T., Hashiguchi, M., Izumori, K., Suzuki, H. (2002). Effects of oral acute administration and subchronic feeding of several levels of D-psicose in rats. J Nutr Sci Vitaminol, 48(6): 512–516.
  • Matsuo, T., Izumori, K. (2006). Effects of dietary D-psicose on diurnal variation in plasma glucose and insulin concentrations of rats. Biosci Biotechnol Biochem, 70(9): 2081–2085.
  • McDonald, E. J. (1967). A new synthesis of D-psicose (D-ribo-hexulose). Carbohydr Res, 5(1): 106–108.
  • Mu, W., Chu, F., Xing, Q., Yu, S., Zhou, L., Jiang, B. (2011). Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10. J Agric Food Chem, 59(14): 7785–7792.
  • Mu, W., Zhang, W., Fang, D., Zhou, L., Jiang, B., Zhang, T. (2013). Characterization of a D-psicose-producing enzyme, D-psicose 3-epimerase, from Clostridium sp. Biotechnol Lett, 35(9): 1481–1486.
  • Mu, W., Yu, L., Zhang, W., Zhang, T., Jiang, B. (2015). Isomerases for biotransformation of D-hexoses. Appl Microbiol Biotechnol, 99(16): 6571–6584.
  • Mu, W., Hassanin, H.A.M., Zhou, L., Jiang, B. (2018). Chemistry behind rare sugars and bioprocessing. J Agric Food Chem, 66(51): 13343–13345.
  • Nagata, Y., Kanasaki, A., Tamaru, S., Tanaka, K. (2015). D-psicose, an epimer of D-fructose, favorably alters lipid metabolism in Sprague-Dawley rats. J Agric Food Chem, 63(12): 3168–3176.
  • O’Charoen, S., Hayakawa, S., Ogawa, M. (2015). Food properties of egg white protein modified by rare ketohexoses through Maillard reaction. Int J Food Sci Technol, 50(1): 194–202.
  • Oshima, H., Kimura, I., Izumori, K. (2006). Psicose contents in various food products and its origin. Food Sci Technol Res, 12(2): 137–143.
  • Park, C.S., Kim, T., Hong, S.H., Shin, K.C., Kim, K.R., Oh, D. K. (2016). D-allulose production from D-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase Flavonifractor plautii. PLoS ONE, 11(7).
  • Patel, S.N., Sharma, M., Lata, K., Singh, U., Kumar, V., Sangwan, R.S., Singh, S.P. (2016). Improved operational stability of D-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues. Bioresour Technol, 216: 121–127.
  • Patel, S.N., Singh, V., Sharma, M., Sangwan, R.S., Singhal, N.K., Singh, S.P. (2018). Development of a thermo-stable and recyclable magnetic nanobiocatalyst for bioprocessing of fruit processing residues and D-allulose synthesis. Bioresour Technol, 247: 633–639.
  • Qi, Z., Zhu, Z., Wang, J.W., Li, S., Guo, Q., Xu, P., Lu, F., Qin, H.M. (2017). Biochemical analysis and the preliminary crystallographic characterization of D-tagatose 3-epimerase from Rhodobacter sphaeroides. Microb Cell Fact, 16(1): 1–9.
  • Ran, G., Tan, D., Zhao, J., Fan, F., Zhang, Q., Wu, X., Fan, P., Fang, X., Lu, X. (2019). Functionalized polyhydroxyalkanoate nano-beads as a stable biocatalyst for cost-effective production of the rare sugar D-allulose. Bioresour Technol, 289: 9-18.
  • Shintani, T., Yamada, T., Hayashi, N., Iida, T., Nagata, Y., Ozaki, N., Toyoda, Y. (2017). Rare sugar syrup containing D-allulose but not high-fructose corn syrup maintains glucose tolerance and ınsulin sensitivity partly via hepatic glucokinase translocation in Wistar rats. J Agric Food Chem, 65(13): 2888–2894.
  • Song, Y., Nguyen, Q.A., Wi, S.G., Yang, J., Bae, H.J. (2017a). Strategy for dual production of bioethanol and D-psicose as value-added products from cruciferous vegetable residue. Bioresour Technol, 223: 34–39.
  • Song, Y., Oh, C., Bae, H.J. (2017b). Simultaneous production of bioethanol and value-added D-psicose from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Bioresour Technol, 244: 1068-1072.
  • Takeshita, K., Suga, A., Takada, G., Izumori, K. (2000). Mass production of D-psicose from D-fructose by a continuous bioreactor system using immobilized D-tagatose 3-epimerase. J Biosci Bioeng, 90(4): 453–455.
  • Tseng, W.C., Chen, C.N., Hsu, C.T., Lee, H.C., Fang, H.Y., Wang, M.J., Wu, Y.H., Fang, T.Y. (2018). Characterization of a recombinant D-allulose 3-epimerase from Agrobacterium sp. ATCC 31749 and identification of an important interfacial residue. Int J Biol Macromol, 112(400): 767–774.
  • Van Laar, A.D.E., Grootaert, C., Van Camp, J. (2020). Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Crit Rev Food Sci Nutr, 1–29.
  • Wee, M., Tan, V., Forde, C. (2018). A comparison of psychophysical dose-response behaviour across 16 sweeteners. Nutrients, 10(11): 1–16.
  • Yang, P., Zhu, X., Zheng, Z., Mu, D., Jiang, S., Luo, S., Wu, Y., Du, M. (2018). Cell regeneration and cyclic catalysis of engineered Kluyveromyces marxianus of a D-psicose-3-epimerase gene from Agrobacterium tumefaciens for D-allulose production. World J Microbiol Biotechnol, 34(5).
  • Yoshihara, A., Kozakai, T., Shintani, T., Matsutani, R., Ohtani, K., Iida, T., Akimitsu, K., Izumori, K., Gullapalli, P.K. (2017). Purification and characterization of D-allulose 3-epimerase derived from Arthrobacter globiformis M30, a GRAS microorganism. J Biosci Bioeng, 123(2): 170–176.
  • Zeng, Y., Dou, D., Zhang, Y., Zhang, L., Sun, Y. (2015). Rare sugars and antioxidants in Itea virginica, Itea oblonga Hand.-Mazz., and Itea yunnanensis franch leaves. In J Food Prop, 18(11): 2549–2560.
  • Zhang, L., Mu, W., Jiang, B., Zhang, T. (2009). Characterization of D-tagatose-3-epimerase from Rhodobacter sphaeroides that converts D-fructose into D-psicose. Biotechnol Lett, 31(6): 857–862.
  • Zhang, W., Fang, D., Xing, Q., Zhou, L., Jiang, B., Mu, W. (2013a). Characterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704. PLoS ONE, 8(4): 1–9.
  • Zhang, W., Fang, D., Zhang, T., Zhou, L., Jiang, B., Mu, W. (2013b). Characterization of a metal-dependent D-psicose 3-epimerase from a novel strain, Desmospora sp. 8437. J Agric Food Chem, 61(47): 11468–11476.
  • Zhang, W., Li, H., Zhang, T., Jiang, B., Zhou, L., Mu, W. (2015). Characterization of a D-psicose 3-epimerase from Dorea sp. CAG317 with an acidic pH optimum and a high specific activity. J Mol Catal B Enzym, 120: 68–74.
  • Zhang, W., Zhang, T., Jiang, B., Mu, W. (2016). Biochemical characterization of a D-psicose 3-epimerase from Treponema primitia ZAS-1 and its application on enzymatic production of D-psicose. J Sci Food Agric, 96(1): 49–56.
  • Zhang, W., Zhang, T., Jiang, B., Mu, W. (2017). Enzymatic approaches to rare sugar production. Biotechnol Adv, 35(2): 267–274.
  • Zhang, W., Zhang, Y., Huang, J., Chen, Z., Zhang, T., Guang, C., Mu, W. (2018). Thermostability improvement of the D-allulose 3-epimerase from Dorea sp. CAG317 by site-directed mutagenesis at the interface regions. J Agric Food Chem, 66(22): 5593–5601.
  • Zhang, J., Xu, C., Chen, X., Ruan, X., Zhang, Y., Xu, H., Guo, Y. (2020). Engineered Bacillus subtilis harbouring gene of D-tagatose 3-epimerase for the bioconversion of D-fructose into D-psicose through fermentation. Enzyme Microb Technol, 136: 109531.
  • Zhu, Y., Men, Y., Bai, W., Li, X., Zhang, L., Sun, Y., Ma, Y. (2012). Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production. Biotechnol Lett, 34(10): 1901–1906.
  • Zhu, Z., Li, C., Liu, X., Gao, D., Wang, X., Tanokura, M., Qin, H.M., Lu, F. (2019). Biochemical characterization and biocatalytic application of a novel D-tagatose 3-epimerase from: Sinorhizobium sp. RSC Advances, 9(6): 2919–2927.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Hazal Özhanlı 0000-0002-9825-3916

Duygu Bilgin Bu kişi benim 0000-0003-4162-1412

Ceren Mutlu 0000-0003-4943-2798

Mustafa Erbas 0000-0002-9485-2356

Yayımlanma Tarihi 17 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 46 Sayı: 4

Kaynak Göster

APA Özhanlı, H., Bilgin, D., Mutlu, C., Erbas, M. (2021). NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ. Gıda, 46(4), 925-938. https://doi.org/10.15237/gida.GD21010
AMA Özhanlı H, Bilgin D, Mutlu C, Erbas M. NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ. GIDA. Mayıs 2021;46(4):925-938. doi:10.15237/gida.GD21010
Chicago Özhanlı, Hazal, Duygu Bilgin, Ceren Mutlu, ve Mustafa Erbas. “NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ”. Gıda 46, sy. 4 (Mayıs 2021): 925-38. https://doi.org/10.15237/gida.GD21010.
EndNote Özhanlı H, Bilgin D, Mutlu C, Erbas M (01 Mayıs 2021) NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ. Gıda 46 4 925–938.
IEEE H. Özhanlı, D. Bilgin, C. Mutlu, ve M. Erbas, “NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ”, GIDA, c. 46, sy. 4, ss. 925–938, 2021, doi: 10.15237/gida.GD21010.
ISNAD Özhanlı, Hazal vd. “NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ”. Gıda 46/4 (Mayıs 2021), 925-938. https://doi.org/10.15237/gida.GD21010.
JAMA Özhanlı H, Bilgin D, Mutlu C, Erbas M. NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ. GIDA. 2021;46:925–938.
MLA Özhanlı, Hazal vd. “NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ”. Gıda, c. 46, sy. 4, 2021, ss. 925-38, doi:10.15237/gida.GD21010.
Vancouver Özhanlı H, Bilgin D, Mutlu C, Erbas M. NADİR BİR ŞEKER OLAN D-ALLÜLOZUN BESLENMEDE KULLANIM İMKANLARI VE ÜRETİM YÖNTEMLERİ. GIDA. 2021;46(4):925-38.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/