Araştırma Makalesi
BibTex RIS Kaynak Göster

FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA

Yıl 2022, Cilt: 47 Sayı: 4, 564 - 575, 30.08.2022

Öz

The aim of this study was to investigate some of the technological and functional properties of 16 autochthonous Candida zeylanoides strains isolated and identified from pastırma, a traditional dry-cured meat product. Consequently, it was determined that some strains could grow at high sugar concentrations (45%) while all strains were resistant to 10% NaCl concentration and most strains were tolerant to 10% ethanol and 0.5% bile salt levels. Furthermore, the certain strains showed good growth at pH 3.0 and only 6 strains were able to grow at 42°C. All strains showed catalase activity. It was detected that the strains did not produce hydrogen sulfide (H2S) and also had no DNase, nitrate reductase, proteolytic, and lipolytic activities. It was found that some strains exhibited urease activity and all strains that could grow at 37°C had β-hemolytic activity and formed biofilm. Moreover, C. zeylanoides strains showed sensitivity to nystatin, fluconazole, voriconazole, and ketoconazole.

Teşekkür

The authors would like to thank the Eastern Anatolia High Technology and Research Center (DAYTAM) that helped carry out the analysis.

Kaynakça

  • Anastassiadis, S., Morgunov, I.G., Kamzolova, S.V., Finogenova, T.V. (2008). Citric acid production patent review. Recent Pat Biotechnol, 2(2), 107-123.
  • Andrade, M.J., Rodríguez, M., Sánchez, B., Aranda, E., Córdoba, J.J. (2006). DNA typing methods for differentiation of yeasts related to dry-cured meat products. Int J Food Microbiol, 107:48–58.
  • Asefa, D.T., Møretrø, T., Gjerde, R.O., Langsrud, S., Kure, C.F., Sidhu, M.S., Nesbakken, T., Skaar, I. (2009). Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products. Int J Food Microbiol, 133:135–140.
  • Bai, M., Qing, M., Guo, Z., Zhang, Y., Chen, X., Bao, Q., Zhang, H., Song Sun, T. (2010). Occurrence and dominance of yeast species in naturally fermented milk from the Tibetan Plateau of China. Can J Microbiol, 56:707–714.
  • Barnes, E.M., Impey, C.S., Geeson, J.D., Buhagiar, R.W.M. (1978). The effect of storage temperature on the shelf-life of eviscerated air-chilled turkeys. Br Poult Sci, 19:77–84.
  • Bharathi, N., Meyyappan, R. (2015). Production of urease enzyme from ureolytic yeast cell. Int J Eng Res Gen Sci, 3:643–647.
  • Brilhante, R.S.N., Oliveira, J.S., Evangelista, A.J.J., Serpa, R., Silva, A.L.D., Aguiar, F.R.M., Pereira, V.S., Castelo-Branco, D.S.C.M., Pereira-Neto, W.A., Cordeiro, R.A., Sidrim, J.J.C., Rocha, M.F.G. (2016). Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Vet Microbiol, 192:213-219.
  • Buxton, R. (2011). Nitrate and nitrite reduction test protocols. Am Soc Microb, 1-20.
  • Čanak, I., Berkics, A., Bajcsi, N., Kovacs, M., Belak, A., Teparić, R., Maraz, A., Mrša, V. (2015). Purification and characterization of a novel cold-active lipase from the yeast Candida zeylanoides. Microb Physiol, 25(6), 403-411.
  • Casey, G.P., Ingledew, W.M.M. (1986). Ethanol tolerance in yeasts. CRC Crit Rev Microbiol, 13: 219–280.
  • Cavalheiro, M., Teixeira, M.C. (2018). Candida Biofilms: Threats, challenges, and promising strategies. Front Med, 5:1–15.
  • Corbo, M.R., Lanciotti, R., Albenzio, M., Sinigaglia, M. (2001). Occurrence and characterization of yeasts isolated from milks and dairy products of Apulia region. Int J Food Microbiol, 69:147–152.
  • D’amore, T., Panchal, C.J., Russell, I., Stewart, G.G. (1990). A study of ethanol tolerance in yeast. Crit Rev Biotechnol, 9:287–304.
  • Dallé da Rosa, P., Mattanna, P., Carboni, D., Amorim, L., Richards, N., Valente, P. (2014). Candida zeylanoides as a new yeast model for lipid metabolism studies: Effect of nitrogen sources on fatty acid accumulation. Folia microbiol, 59:477-484.
  • Danis Vijay, D., Jayanthi, S., Meenakshi, N., Meharaj, S.H.S., Sujhithra, A., Perumal, J. (2019). Characterization of virulence factors, antifungal resistance with ERG-11 gene among Candida species isolated from pulmonary samples. Microb Pathog, 137:103750.
  • Diriye, F.U., Scorzetti, G., Martini, A. (1993). Methods for the separation of yeast cells from the surfaces of processed, frozen foods. Int J Food Microbiol, 19:27-37.
  • Durá, M.A., Flores, M., Toldrá, F. (2004). Effect of Debaryomyces spp. on the proteolysis of dry-fermented sausages. Meat Sci, 68:319-328.
  • Encinas, J.P., López-Díaz, T.M., García-López, M.L., Otero, A., Moreno, B. (2000). Yeast populations on Spanish fermented sausages. Meat Sci, 54:203-208.
  • Espinel-Ingroff, A. (2007). Standardized disk diffusion method for yeasts. Clin Microbiol Newsl, 29:97-100.
  • Furukawa, S. (2015). Studies on formation, control and application of biofilm formed by food related microorganisms. Biosci Biotechnol Biochem, 79:1050-1056.
  • Giarratana, F., Muscolino, D., Beninati, C., Giuffrida, A., Ziino, G., Panebianco, A. (2014). Characterisation of yeasts isolated from ’Nduja of spilinga. Ital J Food Saf, 3:78–80.
  • Gomar-Alba, M., Morcillo-Parra, M.Á., del Olmo, M lí. (2015). Response of yeast cells to high glucose involves molecular and physiological differences when compared to other osmostress conditions. FEMS Yeast Res, 15:1-14.
  • Guerrero, M.G., Gutierrez, M. (1977). Purification and properties of the NAD (P) H: nitrate reductase of the yeast Rhodotorula glutinis. Biochim Biophys Acta (BBA)-Enzymology, 482:272–285.
  • Hammes, W.P., Knauf, H.J. (1994). Starters in the processing of meat products. Biochim Biophys Acta (BBA)-Enzymology, 36:155-168.
  • Hattori, K., Suzuki, T. (1974). Large scale production of erythritol and its conversion to D-mannitol production by n-alkane-grown Candida zeylanoides. Agric Biol Chem, 38:1203-1208.
  • Hernández, A., Martín A., Aranda, E., Pérez-Nevado, F., Córdoba, M.G. (2007). Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol, 24:346–351.
  • Ismail, S.A.S., Deak, T., Abd El-Rahman, H.A., Yassien, M.A.M., Beuchat, L.R. (2000). Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature. Int J Food Microbiol, 62:113–121.
  • Jafari, N., Soudi, M.R., Kasra-Kermanshahi, R. (2014). Biodegradation perspectives of azo dyes by yeasts. Microbiology, 83:484-497.
  • Johnson, E.A., Echavarri-Erasun, C. (2011). Yeast biotechnology. In: The yeasts, Kurtzman, C.P., Fell, J.W., Boekhout, T. (Eds.), 5th edition, Elsevier, pp. 21-44.
  • Kaban, G. (2013). Sucuk and pastırma: Microbiological changes and formation of volatile compounds. Meat Sci, 95:912–918.
  • Kamzolova, S.V., Fatykhova, A.R., Dedyukhina, E.G., Anastassiadis, S.G., Golovchenko, N.P., Morgunov, I.G. (2011). Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Food Technol Biotechnol, 49:65-74.
  • Kamzolova, S.V., Yusupova, A.I., Dedyukhina, E.G., Chistyakova, T.I., Kozyreva, T.M. and Morgunov, I.G. (2009). Succinic acid synthesis by ethanol-grown yeasts. Food Technol Biotechnol, 47.
  • Karasu-Yalcin, S., Senses-Ergul, S., Ozbas, Z.Y. (2012). Identification and enzymatic characterization of the yeasts isolated from Erzincan tulum cheese. Mljekarstvo, 62:53–61.
  • Kaya, M., Çinar, K., Fettahoğlu, K., Kaban, G. (2017). Genotypic identification of yeast from pastırma. 3nd International Symposium on Fermented Meat, 27-29 September, Clermont-Ferrand, France.
  • Klein, R.D., Favreaou, M.A. (1995). The Candida species: Biochemistry, molecular biology and industrial applications. In: Food biotechnology microorganisms. Hui, Y.H., Khactatourians, G.G. (Eds.), Wiley-VCH Inc, pp. 297-372.
  • Liu, X., Jia, B., Sun, X., Ai, J., Wang, L., Wang, C., Zhao, F., Zhan, J., Huang, W. (2015). Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. J Food Sci, 80:M800–M808.
  • Lowry, P.D., Gill, C.O. (1984). Development of a yeast microflora on frozen lamb stored at -5°C. J Food Prot, 47:309–311.
  • Luo, G., Samaranayake, L.P., Yau, J.Y.Y. (2001). Candida species exhibit differential in vitro hemolytic activities. J Clin Microbiol, 39:2971-2974.
  • Martins, M.A.M., Cardoso, M.H., Queiroz, M.J., Ramalho, M.T., Campus, A.M.O. (1999). Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures. Chemosphere, 38:2455-2460.
  • Mitrea, L., Ranga, F., Fetea, F., Dulf, F.V., Rusu, A., Trif, M., Vodnar, D.C. (2019). Biodiesel-derived glycerol obtained from renewable biomass-a suitable substrate for the growth of Candida zeylanoides yeast strain ATCC 20367. Microorganisms, 7:265.
  • Mortensen, H.D., Jacobsen, T., Koch, A.G., Arneborg, N. (2008). Intracellular pH homeostasis plays a role in the tolerance of Debaryomyces hansenii and Candida zeylanoides to acidified nitrite. Appl Environ Microbiol, 74:4835–4840.
  • NCCLS. (2004). Reference method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline. NCCLS document M44-A. Wayne: National Committee for Clinical Laboratory Standards.
  • Núñez, F., Rodríguez, M.M., Córdoba, J.J., Bermúdez, M.E., Asensio, M.A. (1996). Yeast population during ripening of dry-cured Iberian ham. Int J Food Microbiol, 29:271-280.
  • Ok, T., Hashinaga, F. (1997). Identification of sugar-tolerant fermented yeasts vegetable isolated extracts. J Gen Microbiol, 43:39–47.
  • Oliveira, T., Ramalhosa, E., Nunes, L., Pereira, J.A., Colla, E., Pereira, E.L. (2017). Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov Food Sci Emerg Technol, 44:167–172.
  • Ough, C.S., Huang, Z., An, D., Stevens, D. (1991). Amino acid uptake by four commercial yeasts at two different temperatures of growth and fermentation: Effects on urea excretion and reabsorption. Am J Enol Vitic, 42:26–40.
  • Öztürk, I. (2015). Presence, changes and technological properties of yeast species during processing of pastirma, a Turkish dry-cured meat product. Food Control, 50:76–84.
  • Öztürk, I., Sağdıç, O. (2014). Biodiversity of yeast mycobiota in “sucuk,” a traditional Turkish fermented dry sausage: Phenotypic and genotypic identification, functional and technological properties. J Food Sci, 79:M2315–M2322.
  • Pereira-Dias, S., Potes, M.E., Marinho, A., Malfeito-Ferreira, M., Loureiro, V. (2000). Characterisation of yeast flora isolated from an artisanal Portuguese ewes’ cheese. Int J Food Microbiol, 60:55–63.
  • Perricone, M., Bevilacqua, A., Corbo, M.R., Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiol, 38:26–35.
  • Persike, D.S., Bonfim, T.M.B., Santos, M.H.R., Lyng, S.M.O., Chiarello, M.D., Fontana, J.D. (2002). Invertase and urease activities in the carotenogenic yeast Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma). Bioresour Technol, 82:79–85.
  • Praphailong, W., Fleet, G.H. (1997). The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiol, 14:459–468.
  • Psomas, E., Andrighetto, C., Litopoulou-Tzanetaki, E., Lombardi, A., Tzanetakis, N. (2001). Some probiotic properties of yeast isolates from infant faeces and Feta cheese. Int J Food Microbiol, 69:125–133.
  • Rajkowska, K., Kunicka-Styczyńska, A. (2018). Typing and virulence factors of food-borne Candida spp. isolates. Int J Food Microbiol, 279:57–63.
  • Ramage, G., Vande Walle, K., Wickes, B.L., López-Ribot, J.L. (2001). Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother, 45:2475–2479.
  • Ramalho, P.A., Scholze, H., Cardoso, M.H., Ramalho, M.T., Oliveira-Campos, A.M. (2002). Improved conditions for the aerobic reductive decolourisation of azo dyes by Candida zeylanoides. Enzyme Microb Technol, 31:848-854.
  • Raveendran, S., Parameswaran, B., Ummalyma, S.B., Abraham, A., Mathew, A.K., Madhavan, A., Rebello, S., Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technol Biotechnol, 56:16–30.
  • Reed, G., Nagodawithana, T.W. (1988). Technology of yeast usage in winemaking. Am J Enol Vitic, 39:83–90.
  • Reynolds, T.B., Fink, G.R. (2001). Bakers’ yeast, a model for fungal biofilm formation. Science, 291:878-881.
  • Rohm, H., Lechner, F. (1990). Evaluation and reliability of a simplified method for identification of food-borne yeasts. Appl Environ Microbiol, 56:1290-1295.
  • Sağdıç, O., Öztürk, I., Bayram, O., Kesmen, Z., Yilmaz, M.T. (2010). Characterization of butter spoiling yeasts and their inhibition by some spices. J Food Sci, 75:597–603.
  • Sayın Börekçi, B. (2020). Yerel Candida zeylanoides suşlarının sitrik asit üretim kapasitelerinin belirlenmesi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Erzurum, Türkiye, 71 s.
  • Scully, C., Ei-Kabir, M., Samaranayake, L.P. (1994). Candida and oral candidosis: A review. Crit Rev Oral Biol Med, 5:125–157.
  • Sen, K., Komagata, K. (1979). Distribution of urease and extracellular dnase in yeast species. J Gen Appl Microbiol, 25:127–135.
  • Shakira, G., Qubtia, M., Ahmed, I., Hasan, F., Anjum, M.I., Imran, M. (2018). Effect of indigenously isolated Saccharomyces cerevisiae probiotics on milk production, nutrient digestibility, blood chemistry and fecal microbiota in lactating dairy cows. J Anim Plant Sci, 28:407–420.
  • Shokri, H. (2014). Genotypic variation and antifungal susceptibly of Candida zeylanoides clinical isolates. J Mycol Med, 24:179-184.
  • Sida, H., Shah, P., Pethani, J., Patel, L., Shah, H. (2016). Study of biofilm formation as a virulence marker in Candida species isolated from various clinical specimens. Int J Med Sci Public Health, 5:842.
  • Silver, W.S. (1957). Pyridine nucleotide-nitrate reductase from Hansenula anomala, a nitrate reducing yeast. J Bacteriol, 73:241–246.
  • Siverio, J.M. (2002). Assimilation of nitrate by yeasts. FEMS Microbiol Rev, 26:277–284.
  • Šlosarčíková, P., Plachá, D., Malachová, K., Rybková, Z., Novotný, Č. (2020). Biodegradation of reactive orange 16 azo dye by simultaneous action of Pleurotus ostreatus and the yeast Candida zeylanoides. Folia Microbiol, 65:629-638.
  • Sørensen, B.B. (1997). Lipolysis of pork fat by the meat starter culture Debaryomyces hansenii at various environmental conditions. Int J Food Microbiol, 34:187–193.
  • Stead, D. (1986). Microbial lipases: their characteristics, role in food spoilage and industrial uses. J Dairy Res, 53:481–505.
  • Suzzi, G., Lanorte, M.T., Galgano, F., Andrighetto, C., Lombardi, A., Lanciotti, R., Guerzoni, M.E. (2001). Proteolytic, lipolytic and molecular characterisation of Yarrowia lipolytica isolated from cheese. Int J Food Microbiol, 69:69–77.
  • Ugliano, M., Kolouchova, R., Henschke, P. A. (2011). Occurrence of hydrogen sulfide in wine and in fermentation: influence of yeast strain and supplementation of yeast available nitrogen. J Ind Microbiol Biotechnol, 38(3):423-429.
  • Verduyn, C., Giuseppin, M.L.F., Scheffers, W.A., Van Dijken, J.P. (1988). Hydrogen peroxide metabolism in yeasts. Appl Environ Microbiol, 54:2086–2090.
  • Viljoen, B.C., Geornaras, I., Lamprecht, A., Von Holy, A. (1998). Yeast populations associated with processed poultry. Food Microbiol, 15:113–117.
  • Watson, T.G. (1970). Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. J Gen Microbiol, 64:91–99.
  • Xiberras, J., Klein, M., Nevoigt, E. (2019). Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses–knowledge gaps regarding the central carbon catabolism of this ‘non-fermentable’ carbon source. Biotechnol Adv, 37:107378.
  • Yalcin, H.T., Ucar, F.B. (2009). Isolation and characterization of cheese spoiler yeast isolated from Turkish white cheeses. Ann Microbiol, 59:477–483.
  • Yalcin, S. K., Bozdemir, M. T. and Ozbas, Z. Y. (2010). Citric acid production by yeasts: fermentation conditions, process optimization and strain improvement. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol, 9:1374-1382.
  • You, K.M., Knipple, D.C., Rosenfield, C. (2003). Ethanol tolerance in the yeast. Society, 69:1499–1503.

PASTIRMADAN İZOLE EDİLEN CANDIDA ZEYLANOIDES SUŞLARININ FONKSİYONEL VE TEKNOLOJİK ÖZELLİKLERİ

Yıl 2022, Cilt: 47 Sayı: 4, 564 - 575, 30.08.2022

Öz

Bu çalışmanın amacı, geleneksel kuru kür edilmiş bir et ürünü olan pastırmadan izole edilen ve tanımlanan 16 yerel Candida zeylanoides suşunun bazı teknolojik ve fonksiyonel özelliklerinin araştırılmasıdır. Sonuç olarak, bazı suşların yüksek şeker konsantrasyonlarında (%45) gelişebildiği, tüm suşların %10 NaCl konsantrasyonuna dirençli olduğu ve suşların çoğunun %10 etanol ve %0.5 safra tuzu seviyelerine toleranslı olduğu tespit edilmiştir. Ayrıca, belirli suşlar pH 3.0’te çok iyi gelişme göstermiş ve 42°C’de sadece 6 suş gelişebilmiştir. Tüm suşlar katalaz aktivitesi göstermiştir. Suşların hidrojen sülfür (H2S) oluşturmadığı ve ayrıca DNaz, nitrat redüktaz, proteolitik ve lipolitik aktivitelerine sahip olmadığı tespit edilmiştir. Bazı suşların üreaz aktivitesi sergilediği ve 37°C’de gelişebilen tüm suşların β-hemolitik aktiviteye sahip olduğu ve biyofilm oluşturduğu belirlenmiştir. Ayrıca, test edilen C. zeylanoides suşları nistatin, flukonazol, vorikonazol ve ketokonazole karşı hassasiyet göstermiştir.

Kaynakça

  • Anastassiadis, S., Morgunov, I.G., Kamzolova, S.V., Finogenova, T.V. (2008). Citric acid production patent review. Recent Pat Biotechnol, 2(2), 107-123.
  • Andrade, M.J., Rodríguez, M., Sánchez, B., Aranda, E., Córdoba, J.J. (2006). DNA typing methods for differentiation of yeasts related to dry-cured meat products. Int J Food Microbiol, 107:48–58.
  • Asefa, D.T., Møretrø, T., Gjerde, R.O., Langsrud, S., Kure, C.F., Sidhu, M.S., Nesbakken, T., Skaar, I. (2009). Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products. Int J Food Microbiol, 133:135–140.
  • Bai, M., Qing, M., Guo, Z., Zhang, Y., Chen, X., Bao, Q., Zhang, H., Song Sun, T. (2010). Occurrence and dominance of yeast species in naturally fermented milk from the Tibetan Plateau of China. Can J Microbiol, 56:707–714.
  • Barnes, E.M., Impey, C.S., Geeson, J.D., Buhagiar, R.W.M. (1978). The effect of storage temperature on the shelf-life of eviscerated air-chilled turkeys. Br Poult Sci, 19:77–84.
  • Bharathi, N., Meyyappan, R. (2015). Production of urease enzyme from ureolytic yeast cell. Int J Eng Res Gen Sci, 3:643–647.
  • Brilhante, R.S.N., Oliveira, J.S., Evangelista, A.J.J., Serpa, R., Silva, A.L.D., Aguiar, F.R.M., Pereira, V.S., Castelo-Branco, D.S.C.M., Pereira-Neto, W.A., Cordeiro, R.A., Sidrim, J.J.C., Rocha, M.F.G. (2016). Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Vet Microbiol, 192:213-219.
  • Buxton, R. (2011). Nitrate and nitrite reduction test protocols. Am Soc Microb, 1-20.
  • Čanak, I., Berkics, A., Bajcsi, N., Kovacs, M., Belak, A., Teparić, R., Maraz, A., Mrša, V. (2015). Purification and characterization of a novel cold-active lipase from the yeast Candida zeylanoides. Microb Physiol, 25(6), 403-411.
  • Casey, G.P., Ingledew, W.M.M. (1986). Ethanol tolerance in yeasts. CRC Crit Rev Microbiol, 13: 219–280.
  • Cavalheiro, M., Teixeira, M.C. (2018). Candida Biofilms: Threats, challenges, and promising strategies. Front Med, 5:1–15.
  • Corbo, M.R., Lanciotti, R., Albenzio, M., Sinigaglia, M. (2001). Occurrence and characterization of yeasts isolated from milks and dairy products of Apulia region. Int J Food Microbiol, 69:147–152.
  • D’amore, T., Panchal, C.J., Russell, I., Stewart, G.G. (1990). A study of ethanol tolerance in yeast. Crit Rev Biotechnol, 9:287–304.
  • Dallé da Rosa, P., Mattanna, P., Carboni, D., Amorim, L., Richards, N., Valente, P. (2014). Candida zeylanoides as a new yeast model for lipid metabolism studies: Effect of nitrogen sources on fatty acid accumulation. Folia microbiol, 59:477-484.
  • Danis Vijay, D., Jayanthi, S., Meenakshi, N., Meharaj, S.H.S., Sujhithra, A., Perumal, J. (2019). Characterization of virulence factors, antifungal resistance with ERG-11 gene among Candida species isolated from pulmonary samples. Microb Pathog, 137:103750.
  • Diriye, F.U., Scorzetti, G., Martini, A. (1993). Methods for the separation of yeast cells from the surfaces of processed, frozen foods. Int J Food Microbiol, 19:27-37.
  • Durá, M.A., Flores, M., Toldrá, F. (2004). Effect of Debaryomyces spp. on the proteolysis of dry-fermented sausages. Meat Sci, 68:319-328.
  • Encinas, J.P., López-Díaz, T.M., García-López, M.L., Otero, A., Moreno, B. (2000). Yeast populations on Spanish fermented sausages. Meat Sci, 54:203-208.
  • Espinel-Ingroff, A. (2007). Standardized disk diffusion method for yeasts. Clin Microbiol Newsl, 29:97-100.
  • Furukawa, S. (2015). Studies on formation, control and application of biofilm formed by food related microorganisms. Biosci Biotechnol Biochem, 79:1050-1056.
  • Giarratana, F., Muscolino, D., Beninati, C., Giuffrida, A., Ziino, G., Panebianco, A. (2014). Characterisation of yeasts isolated from ’Nduja of spilinga. Ital J Food Saf, 3:78–80.
  • Gomar-Alba, M., Morcillo-Parra, M.Á., del Olmo, M lí. (2015). Response of yeast cells to high glucose involves molecular and physiological differences when compared to other osmostress conditions. FEMS Yeast Res, 15:1-14.
  • Guerrero, M.G., Gutierrez, M. (1977). Purification and properties of the NAD (P) H: nitrate reductase of the yeast Rhodotorula glutinis. Biochim Biophys Acta (BBA)-Enzymology, 482:272–285.
  • Hammes, W.P., Knauf, H.J. (1994). Starters in the processing of meat products. Biochim Biophys Acta (BBA)-Enzymology, 36:155-168.
  • Hattori, K., Suzuki, T. (1974). Large scale production of erythritol and its conversion to D-mannitol production by n-alkane-grown Candida zeylanoides. Agric Biol Chem, 38:1203-1208.
  • Hernández, A., Martín A., Aranda, E., Pérez-Nevado, F., Córdoba, M.G. (2007). Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol, 24:346–351.
  • Ismail, S.A.S., Deak, T., Abd El-Rahman, H.A., Yassien, M.A.M., Beuchat, L.R. (2000). Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature. Int J Food Microbiol, 62:113–121.
  • Jafari, N., Soudi, M.R., Kasra-Kermanshahi, R. (2014). Biodegradation perspectives of azo dyes by yeasts. Microbiology, 83:484-497.
  • Johnson, E.A., Echavarri-Erasun, C. (2011). Yeast biotechnology. In: The yeasts, Kurtzman, C.P., Fell, J.W., Boekhout, T. (Eds.), 5th edition, Elsevier, pp. 21-44.
  • Kaban, G. (2013). Sucuk and pastırma: Microbiological changes and formation of volatile compounds. Meat Sci, 95:912–918.
  • Kamzolova, S.V., Fatykhova, A.R., Dedyukhina, E.G., Anastassiadis, S.G., Golovchenko, N.P., Morgunov, I.G. (2011). Citric acid production by yeast grown on glycerol-containing waste from biodiesel industry. Food Technol Biotechnol, 49:65-74.
  • Kamzolova, S.V., Yusupova, A.I., Dedyukhina, E.G., Chistyakova, T.I., Kozyreva, T.M. and Morgunov, I.G. (2009). Succinic acid synthesis by ethanol-grown yeasts. Food Technol Biotechnol, 47.
  • Karasu-Yalcin, S., Senses-Ergul, S., Ozbas, Z.Y. (2012). Identification and enzymatic characterization of the yeasts isolated from Erzincan tulum cheese. Mljekarstvo, 62:53–61.
  • Kaya, M., Çinar, K., Fettahoğlu, K., Kaban, G. (2017). Genotypic identification of yeast from pastırma. 3nd International Symposium on Fermented Meat, 27-29 September, Clermont-Ferrand, France.
  • Klein, R.D., Favreaou, M.A. (1995). The Candida species: Biochemistry, molecular biology and industrial applications. In: Food biotechnology microorganisms. Hui, Y.H., Khactatourians, G.G. (Eds.), Wiley-VCH Inc, pp. 297-372.
  • Liu, X., Jia, B., Sun, X., Ai, J., Wang, L., Wang, C., Zhao, F., Zhan, J., Huang, W. (2015). Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. J Food Sci, 80:M800–M808.
  • Lowry, P.D., Gill, C.O. (1984). Development of a yeast microflora on frozen lamb stored at -5°C. J Food Prot, 47:309–311.
  • Luo, G., Samaranayake, L.P., Yau, J.Y.Y. (2001). Candida species exhibit differential in vitro hemolytic activities. J Clin Microbiol, 39:2971-2974.
  • Martins, M.A.M., Cardoso, M.H., Queiroz, M.J., Ramalho, M.T., Campus, A.M.O. (1999). Biodegradation of azo dyes by the yeast Candida zeylanoides in batch aerated cultures. Chemosphere, 38:2455-2460.
  • Mitrea, L., Ranga, F., Fetea, F., Dulf, F.V., Rusu, A., Trif, M., Vodnar, D.C. (2019). Biodiesel-derived glycerol obtained from renewable biomass-a suitable substrate for the growth of Candida zeylanoides yeast strain ATCC 20367. Microorganisms, 7:265.
  • Mortensen, H.D., Jacobsen, T., Koch, A.G., Arneborg, N. (2008). Intracellular pH homeostasis plays a role in the tolerance of Debaryomyces hansenii and Candida zeylanoides to acidified nitrite. Appl Environ Microbiol, 74:4835–4840.
  • NCCLS. (2004). Reference method for antifungal disk diffusion susceptibility testing of yeasts; approved guideline. NCCLS document M44-A. Wayne: National Committee for Clinical Laboratory Standards.
  • Núñez, F., Rodríguez, M.M., Córdoba, J.J., Bermúdez, M.E., Asensio, M.A. (1996). Yeast population during ripening of dry-cured Iberian ham. Int J Food Microbiol, 29:271-280.
  • Ok, T., Hashinaga, F. (1997). Identification of sugar-tolerant fermented yeasts vegetable isolated extracts. J Gen Microbiol, 43:39–47.
  • Oliveira, T., Ramalhosa, E., Nunes, L., Pereira, J.A., Colla, E., Pereira, E.L. (2017). Probiotic potential of indigenous yeasts isolated during the fermentation of table olives from Northeast of Portugal. Innov Food Sci Emerg Technol, 44:167–172.
  • Ough, C.S., Huang, Z., An, D., Stevens, D. (1991). Amino acid uptake by four commercial yeasts at two different temperatures of growth and fermentation: Effects on urea excretion and reabsorption. Am J Enol Vitic, 42:26–40.
  • Öztürk, I. (2015). Presence, changes and technological properties of yeast species during processing of pastirma, a Turkish dry-cured meat product. Food Control, 50:76–84.
  • Öztürk, I., Sağdıç, O. (2014). Biodiversity of yeast mycobiota in “sucuk,” a traditional Turkish fermented dry sausage: Phenotypic and genotypic identification, functional and technological properties. J Food Sci, 79:M2315–M2322.
  • Pereira-Dias, S., Potes, M.E., Marinho, A., Malfeito-Ferreira, M., Loureiro, V. (2000). Characterisation of yeast flora isolated from an artisanal Portuguese ewes’ cheese. Int J Food Microbiol, 60:55–63.
  • Perricone, M., Bevilacqua, A., Corbo, M.R., Sinigaglia, M. (2014). Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products. Food Microbiol, 38:26–35.
  • Persike, D.S., Bonfim, T.M.B., Santos, M.H.R., Lyng, S.M.O., Chiarello, M.D., Fontana, J.D. (2002). Invertase and urease activities in the carotenogenic yeast Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma). Bioresour Technol, 82:79–85.
  • Praphailong, W., Fleet, G.H. (1997). The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiol, 14:459–468.
  • Psomas, E., Andrighetto, C., Litopoulou-Tzanetaki, E., Lombardi, A., Tzanetakis, N. (2001). Some probiotic properties of yeast isolates from infant faeces and Feta cheese. Int J Food Microbiol, 69:125–133.
  • Rajkowska, K., Kunicka-Styczyńska, A. (2018). Typing and virulence factors of food-borne Candida spp. isolates. Int J Food Microbiol, 279:57–63.
  • Ramage, G., Vande Walle, K., Wickes, B.L., López-Ribot, J.L. (2001). Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother, 45:2475–2479.
  • Ramalho, P.A., Scholze, H., Cardoso, M.H., Ramalho, M.T., Oliveira-Campos, A.M. (2002). Improved conditions for the aerobic reductive decolourisation of azo dyes by Candida zeylanoides. Enzyme Microb Technol, 31:848-854.
  • Raveendran, S., Parameswaran, B., Ummalyma, S.B., Abraham, A., Mathew, A.K., Madhavan, A., Rebello, S., Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technol Biotechnol, 56:16–30.
  • Reed, G., Nagodawithana, T.W. (1988). Technology of yeast usage in winemaking. Am J Enol Vitic, 39:83–90.
  • Reynolds, T.B., Fink, G.R. (2001). Bakers’ yeast, a model for fungal biofilm formation. Science, 291:878-881.
  • Rohm, H., Lechner, F. (1990). Evaluation and reliability of a simplified method for identification of food-borne yeasts. Appl Environ Microbiol, 56:1290-1295.
  • Sağdıç, O., Öztürk, I., Bayram, O., Kesmen, Z., Yilmaz, M.T. (2010). Characterization of butter spoiling yeasts and their inhibition by some spices. J Food Sci, 75:597–603.
  • Sayın Börekçi, B. (2020). Yerel Candida zeylanoides suşlarının sitrik asit üretim kapasitelerinin belirlenmesi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı Doktora Tezi, Erzurum, Türkiye, 71 s.
  • Scully, C., Ei-Kabir, M., Samaranayake, L.P. (1994). Candida and oral candidosis: A review. Crit Rev Oral Biol Med, 5:125–157.
  • Sen, K., Komagata, K. (1979). Distribution of urease and extracellular dnase in yeast species. J Gen Appl Microbiol, 25:127–135.
  • Shakira, G., Qubtia, M., Ahmed, I., Hasan, F., Anjum, M.I., Imran, M. (2018). Effect of indigenously isolated Saccharomyces cerevisiae probiotics on milk production, nutrient digestibility, blood chemistry and fecal microbiota in lactating dairy cows. J Anim Plant Sci, 28:407–420.
  • Shokri, H. (2014). Genotypic variation and antifungal susceptibly of Candida zeylanoides clinical isolates. J Mycol Med, 24:179-184.
  • Sida, H., Shah, P., Pethani, J., Patel, L., Shah, H. (2016). Study of biofilm formation as a virulence marker in Candida species isolated from various clinical specimens. Int J Med Sci Public Health, 5:842.
  • Silver, W.S. (1957). Pyridine nucleotide-nitrate reductase from Hansenula anomala, a nitrate reducing yeast. J Bacteriol, 73:241–246.
  • Siverio, J.M. (2002). Assimilation of nitrate by yeasts. FEMS Microbiol Rev, 26:277–284.
  • Šlosarčíková, P., Plachá, D., Malachová, K., Rybková, Z., Novotný, Č. (2020). Biodegradation of reactive orange 16 azo dye by simultaneous action of Pleurotus ostreatus and the yeast Candida zeylanoides. Folia Microbiol, 65:629-638.
  • Sørensen, B.B. (1997). Lipolysis of pork fat by the meat starter culture Debaryomyces hansenii at various environmental conditions. Int J Food Microbiol, 34:187–193.
  • Stead, D. (1986). Microbial lipases: their characteristics, role in food spoilage and industrial uses. J Dairy Res, 53:481–505.
  • Suzzi, G., Lanorte, M.T., Galgano, F., Andrighetto, C., Lombardi, A., Lanciotti, R., Guerzoni, M.E. (2001). Proteolytic, lipolytic and molecular characterisation of Yarrowia lipolytica isolated from cheese. Int J Food Microbiol, 69:69–77.
  • Ugliano, M., Kolouchova, R., Henschke, P. A. (2011). Occurrence of hydrogen sulfide in wine and in fermentation: influence of yeast strain and supplementation of yeast available nitrogen. J Ind Microbiol Biotechnol, 38(3):423-429.
  • Verduyn, C., Giuseppin, M.L.F., Scheffers, W.A., Van Dijken, J.P. (1988). Hydrogen peroxide metabolism in yeasts. Appl Environ Microbiol, 54:2086–2090.
  • Viljoen, B.C., Geornaras, I., Lamprecht, A., Von Holy, A. (1998). Yeast populations associated with processed poultry. Food Microbiol, 15:113–117.
  • Watson, T.G. (1970). Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. J Gen Microbiol, 64:91–99.
  • Xiberras, J., Klein, M., Nevoigt, E. (2019). Glycerol as a substrate for Saccharomyces cerevisiae based bioprocesses–knowledge gaps regarding the central carbon catabolism of this ‘non-fermentable’ carbon source. Biotechnol Adv, 37:107378.
  • Yalcin, H.T., Ucar, F.B. (2009). Isolation and characterization of cheese spoiler yeast isolated from Turkish white cheeses. Ann Microbiol, 59:477–483.
  • Yalcin, S. K., Bozdemir, M. T. and Ozbas, Z. Y. (2010). Citric acid production by yeasts: fermentation conditions, process optimization and strain improvement. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol, 9:1374-1382.
  • You, K.M., Knipple, D.C., Rosenfield, C. (2003). Ethanol tolerance in the yeast. Society, 69:1499–1503.
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Bilge Sayın Börekçi 0000-0002-1898-0428

Güzin Kaban 0000-0001-6720-7231

Mükerrem Kaya 0000-0001-6340-828X

Yayımlanma Tarihi 30 Ağustos 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 47 Sayı: 4

Kaynak Göster

APA Sayın Börekçi, B., Kaban, G., & Kaya, M. (2022). FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA. Gıda, 47(4), 564-575.
AMA Sayın Börekçi B, Kaban G, Kaya M. FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA. GIDA. Ağustos 2022;47(4):564-575.
Chicago Sayın Börekçi, Bilge, Güzin Kaban, ve Mükerrem Kaya. “FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA”. Gıda 47, sy. 4 (Ağustos 2022): 564-75.
EndNote Sayın Börekçi B, Kaban G, Kaya M (01 Ağustos 2022) FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA. Gıda 47 4 564–575.
IEEE B. Sayın Börekçi, G. Kaban, ve M. Kaya, “FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA”, GIDA, c. 47, sy. 4, ss. 564–575, 2022.
ISNAD Sayın Börekçi, Bilge vd. “FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA”. Gıda 47/4 (Ağustos 2022), 564-575.
JAMA Sayın Börekçi B, Kaban G, Kaya M. FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA. GIDA. 2022;47:564–575.
MLA Sayın Börekçi, Bilge vd. “FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA”. Gıda, c. 47, sy. 4, 2022, ss. 564-75.
Vancouver Sayın Börekçi B, Kaban G, Kaya M. FUNCTIONAL AND TECHNOLOGICAL PROPERTIES OF CANDIDA ZEYLANOIDES STRAINS ISOLATED FROM PASTIRMA. GIDA. 2022;47(4):564-75.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/