Determination of Optimum Ethanolic Extraction Conditions and Phenolic Profiles of Thyme, Mint, Uckun, Grape Seeds and Green Tea Waste Fiber
Yıl 2020,
, 605 - 614, 21.12.2020
Menekşe Bulut
,
Hacer Akpolat
,
Yusuf Tunçtürk
,
Duried Alwazeer
,
Ayşe Türkhan
Öz
The objective of this study was to investigate the effect of different ethanol ratios in extraction solvent as well as the antioxidant properties of five plants. Thyme, mint, uckun, grape seeds and green tea waste fiber was analyzed to determine total phenolic content (TPC) and antioxidant activity by ABTS and DPPH radical scavenging activity assays. Individual phenolic components were analyzed with reverse phase high performance liquid chromatography (HPLC). TPC varied significantly from 2.00±0.27 to 172.68±0.19 mg GAE g-1 dw depending on the plant type and ethanol ratio of the solvent. The effect of ethanol ratio also varied among different plants. HPLC analysis was performed for the extracts showing highest antioxidant activity, and green tea waste fiber (699.89 mg 100 g-1 dw) had the highest concentration of phenolic compounds overall, while mint (173.67 mg 100 g-1 dw) had the lowest amount. Correlations between TPC and antioxidant activity was significant which is comparable to the previous report.
Destekleyen Kurum
Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
FDK-2018-6762
Teşekkür
This study was supported by Van Yüzüncü Yıl University, Scientific Research Projects Coordination Unit (BAP) (Project number, FDK-2018-6762).
Kaynakça
- Altmann, H. J., Grunow, W., Mohr, U., Richter-Reichhelm, H.B., & Wester, P.W. (1986). Effects of BHA and related phenols on the forestomach of rats. Food and Chemical Toxicology, 24, 1183–1188.
- Arnao, M. B. (2001). Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends in Food Science and Technology, 11, 419–421.
- Alwazeer, D., & Dham, S. (2018). Presumptive Relationship between Oxidoreduction Potential and Both Antibacterial and Antioxidant Activities of Herbs and Spices: Oxidoreduction Potential as a Companion Tool for Measuring the Antioxidant Activity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47, 506–514.
- Bahadori, M. B. (2018). Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). International Journal of Food Properties, 21, 183-193.
- Barizão, É. O., de Cinque Almeida, V., de Silva, B. C., Visentainer, J. V., Montanher, P. F., & Boeing, J. S. (2014). Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal, 8, 1–9.
- Beato, V. M., Orgaz, F., Mansilla, F., & Montañon, A. (2011). Changes in Phenolic Compounds in Garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods for Human Nutrition, 66, 218–223.
- Blois, M. S. (1958) Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181, 1199–1200.
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensmittel-Wissenschaft & Technologie, 28, 25–30.
- Brito, A., Ramirez, J. E., Areche, C., Sepúlveda, B., & Simirgiotis, M. J. (2014). HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules, 19, 17400–17421.
- Dalia, Y., & El-Adawi, H. (2006). Study on grape seeds extraction and optimization: An approach. Journal of Applied Sciences, 6, 2944-2947.
- Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313–7352.
- Fatiha, B., Didier, H., Naima, G., Khodir, M., Martin, K., Léocadie, K., Caroline, S., Mohamed, C., & Pierre, D. (2015). Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Industrial Crops and Products, 74, 722–730.
- Gedikoğlu, A., Sökmen, M., & Çivit, A. (2019). Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Science & Nutrition, 7, 1704–1714.
- Ghouila, Z., Laurent, S., Boutry, S., Vander Elst, L, Nateche, F., Muller, R. N., & Baaliouamer, A. (2017). Antioxidant, antibacterial and cell toxicity effects of polyphenols Fromahmeur bouamer grape seed extracts. Journal of Fundamental and Applied Sciences, 9, 392.
- Goli, A. H., Barzegar, M., & Sahari, M. A. (2005). Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chemistry, 92, 521–525.
- Haraguchi, H., Saito, T., Ishikawa, H., Date, H., Kataoka, S., Tamura, Y., & Mizutani, K. (1996). Antiperoxidative components in Thymus vulgaris. Planta Medica, 62, 217–221.
- Kim, D. O., Lee, K. W., Lee, H. J., & C. Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural and Food Chemistry, 50, 3713–3717.
- Krishnaiah, D. Sarbatly, R., & Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, 89, 217–233.
- Kumar, Y., Yadav, D. N., Ahmad, T., & Narsaiah, K. (2015). Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Comprehensive Reviews in Food Science and Food Safety, 14, 796–812.
- Mariutti, L. R. B., Barreto, G. P. D. M., Bragagnolo, N., & Mercadante, A. Z. (2008). Free radical scavenging activity of ethanolic extracts from herbs and spices commercialized in Brazil. Brazilian Archives of Biology and Technology, 51, 1225–1232.
- Mišan, A. Č., Mimica-Dukić, N. M., Mandić, A. I., Sakač, M. B., Milovanović, I. L., & Sedej, I. J. (2011). Development of a Rapid Resolution HPLC method for the separation and determination of 17 phenolic compounds in crude plant extracts. Central European Journal of Chemistry, 9, 133–142.
- Nadiah, N. I., & Uthumporn, U. (2015). Determination of phenolic and antioxidant properties in tea and spent tea under various extraction method and determination of catechins, caffeine and gallic acid by HPLC. International Journal on Advanced Science, Engineering and Information Technology, 5, 158–164.
- Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of Agricultural and Food Chemistry, 52. 15: 4669-4674.
- Nguyen, D. T., Guillarme, D., Rudaz, S., & Veuthey, J. L. (2006). Fast Analysis in Liquid Chromatography Using Small Particle Size and High Pressure. Journal of Seperation Science, 29, 1836–1848.
- Oboh, G., Ademiluyi, A. O., Ogunsuyi, O. B., Oyeleye, S.I., Dada, A.F., & Boligon, A. A. (2017). Cabbage and cucumber extracts exhibited anticholinesterase, antimonoamine oxidase and antioxidant properties. Journal of Food Biochemistry, 41, 1–7.
- Ozgen, M., Reese, R. N., Tulio, A.Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1- picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54, 1151–1157.
- Pfeffer, U., Ferrari, N., Morini, M., Benelli, R., Noonan, D. M., & Albini, A. (2003) Antiangiogenic activity of chemopreventive drugs. The International Journal of Biological Markers, 18, 70–74.
- Piluzza, G., & Bullitta, S. (2011). Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmaceutical Biology, 49, 240–247.
- Puangpronpitag, D., & Sittiwet, C. (2009). Antimicrobial properties of Cinnamomum Verum aqueous extract. Asian Journal of Biological Sciences, 249-53.
- Roby, M. H. H., Sarhan, M. A., Selim, K. A. H., & Khalel, K. I. (2013). Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827–831.
- Shi, J., Yu, J., Pohorly, J., Young, J. C., Bryan, M., & Wu, Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Journal of Food, Agriculture and Environment, 1, 42-47.
- Singleton, V. L, & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16, 144–158.
- Sridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH [rad] and ABTS [rad] assays: Estimation methods for EC 50 using advanced statistical programs. Food Chemistry, 275, 41–49.
- Turkmen, N., Sari, F., & Velioglu, Y. S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry, 99, 835–841.
- Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940–949.
Kekik, Nane, Uçkun, Üzüm Çekirdeği ve Yeşil Çay Çöpü Lifinde Optimum Etanolik Ekstraksiyon Şartlarının ve Fenolik Profillerinin Belirlenmesi
Yıl 2020,
, 605 - 614, 21.12.2020
Menekşe Bulut
,
Hacer Akpolat
,
Yusuf Tunçtürk
,
Duried Alwazeer
,
Ayşe Türkhan
Öz
Bu çalışmanın amacı beş bitkinin antioksidan özelliklerini ve farklı etanol oranlarının ektraksiyona etkisini belirlemektir. Kekik, nane, uçkun, üzüm çekirdeği ve yeşil çay çöpü lifinin toplam fenolik madde içeriği (TPC) ve ABTS ve DPPH radikal giderme aktivitesi testleri kullanılarak antioksidan aktiviteleri ölçülmüştür. Bireysel fenolik maddeler ters faz yüksek performanslı sıvı kromotografisi (HPLC) kullanılarak analiz edildi. TPC bitki türü ve çözücü etanol oranına bağlı olarak 2.00±0.27 ile 172.68±0.19 mg GAE g-1 dw arasında değişti. Etanol oranının etkisi farklı bitkiler için değişiklik gösterdi. En yüksek antioksidan aktiviteye sahip ekstraktların HPLC analizleri en yüksek fenolik bileşen konsantrasyonu yeşil çay çöpü lifinde (699.89 mg 100 g-1 dw), en düşük ise nanede (173.67 g 100 g-1 dw) bulundu. Toplam fenolik madde içeriği ve antioksidan aktivite arasında daha önceki çalışmalarda da gösterildiği gibi kayda değer bir korelasyon belirlendi.
Proje Numarası
FDK-2018-6762
Kaynakça
- Altmann, H. J., Grunow, W., Mohr, U., Richter-Reichhelm, H.B., & Wester, P.W. (1986). Effects of BHA and related phenols on the forestomach of rats. Food and Chemical Toxicology, 24, 1183–1188.
- Arnao, M. B. (2001). Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends in Food Science and Technology, 11, 419–421.
- Alwazeer, D., & Dham, S. (2018). Presumptive Relationship between Oxidoreduction Potential and Both Antibacterial and Antioxidant Activities of Herbs and Spices: Oxidoreduction Potential as a Companion Tool for Measuring the Antioxidant Activity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47, 506–514.
- Bahadori, M. B. (2018). Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). International Journal of Food Properties, 21, 183-193.
- Barizão, É. O., de Cinque Almeida, V., de Silva, B. C., Visentainer, J. V., Montanher, P. F., & Boeing, J. S. (2014). Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: application of principal component analysis. Chemistry Central Journal, 8, 1–9.
- Beato, V. M., Orgaz, F., Mansilla, F., & Montañon, A. (2011). Changes in Phenolic Compounds in Garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods for Human Nutrition, 66, 218–223.
- Blois, M. S. (1958) Antioxidant Determinations by the Use of a Stable Free Radical. Nature, 181, 1199–1200.
- Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensmittel-Wissenschaft & Technologie, 28, 25–30.
- Brito, A., Ramirez, J. E., Areche, C., Sepúlveda, B., & Simirgiotis, M. J. (2014). HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules, 19, 17400–17421.
- Dalia, Y., & El-Adawi, H. (2006). Study on grape seeds extraction and optimization: An approach. Journal of Applied Sciences, 6, 2944-2947.
- Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313–7352.
- Fatiha, B., Didier, H., Naima, G., Khodir, M., Martin, K., Léocadie, K., Caroline, S., Mohamed, C., & Pierre, D. (2015). Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Industrial Crops and Products, 74, 722–730.
- Gedikoğlu, A., Sökmen, M., & Çivit, A. (2019). Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Science & Nutrition, 7, 1704–1714.
- Ghouila, Z., Laurent, S., Boutry, S., Vander Elst, L, Nateche, F., Muller, R. N., & Baaliouamer, A. (2017). Antioxidant, antibacterial and cell toxicity effects of polyphenols Fromahmeur bouamer grape seed extracts. Journal of Fundamental and Applied Sciences, 9, 392.
- Goli, A. H., Barzegar, M., & Sahari, M. A. (2005). Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chemistry, 92, 521–525.
- Haraguchi, H., Saito, T., Ishikawa, H., Date, H., Kataoka, S., Tamura, Y., & Mizutani, K. (1996). Antiperoxidative components in Thymus vulgaris. Planta Medica, 62, 217–221.
- Kim, D. O., Lee, K. W., Lee, H. J., & C. Y. (2002). Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural and Food Chemistry, 50, 3713–3717.
- Krishnaiah, D. Sarbatly, R., & Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, 89, 217–233.
- Kumar, Y., Yadav, D. N., Ahmad, T., & Narsaiah, K. (2015). Recent Trends in the Use of Natural Antioxidants for Meat and Meat Products. Comprehensive Reviews in Food Science and Food Safety, 14, 796–812.
- Mariutti, L. R. B., Barreto, G. P. D. M., Bragagnolo, N., & Mercadante, A. Z. (2008). Free radical scavenging activity of ethanolic extracts from herbs and spices commercialized in Brazil. Brazilian Archives of Biology and Technology, 51, 1225–1232.
- Mišan, A. Č., Mimica-Dukić, N. M., Mandić, A. I., Sakač, M. B., Milovanović, I. L., & Sedej, I. J. (2011). Development of a Rapid Resolution HPLC method for the separation and determination of 17 phenolic compounds in crude plant extracts. Central European Journal of Chemistry, 9, 133–142.
- Nadiah, N. I., & Uthumporn, U. (2015). Determination of phenolic and antioxidant properties in tea and spent tea under various extraction method and determination of catechins, caffeine and gallic acid by HPLC. International Journal on Advanced Science, Engineering and Information Technology, 5, 158–164.
- Nenadis, N., Wang, L. F., Tsimidou, M., & Zhang, H. Y. (2004). Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of Agricultural and Food Chemistry, 52. 15: 4669-4674.
- Nguyen, D. T., Guillarme, D., Rudaz, S., & Veuthey, J. L. (2006). Fast Analysis in Liquid Chromatography Using Small Particle Size and High Pressure. Journal of Seperation Science, 29, 1836–1848.
- Oboh, G., Ademiluyi, A. O., Ogunsuyi, O. B., Oyeleye, S.I., Dada, A.F., & Boligon, A. A. (2017). Cabbage and cucumber extracts exhibited anticholinesterase, antimonoamine oxidase and antioxidant properties. Journal of Food Biochemistry, 41, 1–7.
- Ozgen, M., Reese, R. N., Tulio, A.Z., Scheerens, J. C., & Miller, A. R. (2006). Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1- picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54, 1151–1157.
- Pfeffer, U., Ferrari, N., Morini, M., Benelli, R., Noonan, D. M., & Albini, A. (2003) Antiangiogenic activity of chemopreventive drugs. The International Journal of Biological Markers, 18, 70–74.
- Piluzza, G., & Bullitta, S. (2011). Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmaceutical Biology, 49, 240–247.
- Puangpronpitag, D., & Sittiwet, C. (2009). Antimicrobial properties of Cinnamomum Verum aqueous extract. Asian Journal of Biological Sciences, 249-53.
- Roby, M. H. H., Sarhan, M. A., Selim, K. A. H., & Khalel, K. I. (2013). Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827–831.
- Shi, J., Yu, J., Pohorly, J., Young, J. C., Bryan, M., & Wu, Y. (2003). Optimization of the extraction of polyphenols from grape seed meal by aqueous ethanol solution. Journal of Food, Agriculture and Environment, 1, 42-47.
- Singleton, V. L, & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16, 144–158.
- Sridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH [rad] and ABTS [rad] assays: Estimation methods for EC 50 using advanced statistical programs. Food Chemistry, 275, 41–49.
- Turkmen, N., Sari, F., & Velioglu, Y. S. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry, 99, 835–841.
- Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940–949.