Derleme
BibTex RIS Kaynak Göster

Impacts of Cold Plasma Treatment on the Food Quality and Safety during Storage

Yıl 2025, Cilt: 3 Sayı: 2, 71 - 90, 01.10.2025

Öz

Food quality is critically important for the acceptability of any food product by consumers. This quality consists of a combination of physical, chemical, sensory, and microbiological parameters. To prevent any adverse effects on human health during storage, foods must undergo the necessary processing before reaching consumers. For this purpose, many traditional processing methods are used in the industry. The primary objectives of all these methods are to enhance product quality, ensure food safety, and extend shelf life. However, considering the high temperature and long-duration conditions of traditional processing methods, they negatively impact the nutritional and sensory properties of foods. In this context, non-thermal technologies have recently gained interest in the food industry to minimize the disadvantages of thermal treatments. The impact of novel food processing methods has become an increasingly researched topic in both the literature and the food industry. Cold plasma treatment is a novel non-thermal food processing technology that offers numerous advantages and has attracted significant attention from researchers and the food sector. It is a well-explored, non-destructive technique used in various applications, including preserving or enhancing nutritional and sensory quality, microbial inactivation, and sterilization. Researchers have tested different cold plasma applications on various food products, and the results have been evaluated. Findings indicate that novel methods such as cold plasma, due to their non-thermal properties, are more effective in maintaining the nutritional and sensory quality of the final product during food sterilization while extending shelf life. This review investigates the effects of cold plasma treatment on sensorial quality, nutritional value, and microbial characteristics during the storage of various foods. Based on the study results, it has been concluded that cold plasma is a promising method for the future of the food processing industry.

Kaynakça

  • Aguilar Uscanga, B. R., Calderón Santoyo, M., Ragazzo Sánchez, J. A., Alemán Duarte, M. I., Pérez Montaño, J. A., Balcázar-López, E., & Solís Pacheco, J. R. (2022). Effect of the Application of Cold Plasma Energy on the Inactivation of Microorganisms, Proteins, and Lipids Deterioration in Adobera Cheese. Journal of Food Quality, 2022(1), 8230955. https://doi.org/10.1155/2022/8230955
  • Albertos, I., Martín-Diana, A. B., Cullen, P. J., Tiwari, B. K., Ojha, S. K., Bourke, P., Álvarez, C., & Rico, D. (2017). Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science & Emerging Technologies, 44, 117–122. https://doi.org/10.1016/j.ifset.2017.07.006
  • Ali, M., Cheng, J.-H., & Sun, D.-W. (2021). Effects of dielectric barrier discharge cold plasma treatments on degradation of anilazine fungicide and quality of tomato (Lycopersicon esculentum Mill) juice. International Journal of Food Science & Technology, 56(1), 69–75. https://doi.org/10.1111/ijfs.14600
  • Amini, M., & Ghoranneviss, M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT, 73, 178–184.
  • Banwo, K., Olojede, A. O., Adesulu-Dahunsi, A. T., Verma, D. K., Thakur, M., Tripathy, S., Singh, S., Patel, A. R., Gupta, A. K., & Aguilar, C. N. (2021). Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Bioscience, 43, 101320.
  • Bao, T., Hao, X., Shishir, M. R. I., Karim, N., & Chen, W. (2021). Cold plasma: An emerging pretreatment technology for the drying of jujube slices. Food Chemistry, 337, 127783. https://doi.org/10.1016/j.foodchem.2020.127783
  • Bermudez-Aguirre, D. (2019). Advances in Cold Plasma Applications for Food Safety and Preservation. Academic Press.
  • Birania, S., Attkan, A. K., Kumar, S., Kumar, N., & Singh, V. K. (2022). Cold plasma in food processing and preservation: A review. Journal of Food Process Engineering, 45(9), e14110. https://doi.org/10.1111/jfpe.14110
  • Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(6), 615–626. https://doi.org/10.1016/j.tibtech.2017.11.001
  • Butscher, D., Van Loon, H., Waskow, A., Rudolf von Rohr, P., & Schuppler, M. (2016). Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. International Journal of Food Microbiology, 238, 222–232. https://doi.org/10.1016/j.ijfoodmicro.2016.09.006
  • Chen, C., Liu, C., Jiang, A., Guan, Q., Sun, X., Liu, S., Hao, K., & Hu, W. (2019a). The effects of cold plasma-activated water treatment on the microbial growth and antioxidant properties of fresh-cut pears. Food and Bioprocess Technology, 12, 1842–1851.
  • Chen, D., Peng, P., Zhou, N., Cheng, Y., Min, M., Ma, Y., Mao, Q., Chen, P., Chen, C., & Ruan, R. (2019b). Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry, 290, 270–276. https://doi.org/10.1016/j.foodchem.2019.03.149
  • Chen, J., & Rosenthal, A. (2015). 1—Food texture and structure. In J. Chen & A. Rosenthal (Eds.), Modifying Food Texture (pp. 3–24). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-333-1.00001-2
  • Chen, J., Wang, S., Chen, J., Chen, D., Deng, S., & Xu, B. (2019c). Effect of cold plasma on maintaining the quality of chub mackerel (Scomber japonicus): Biochemical and sensory attributes. Journal of the Science of Food and Agriculture, 99(1), 39–46. https://doi.org/10.1002/jsfa.9138
  • Chen, Y.-Q., Cheng, J.-H., & Sun, D.-W. (2020). Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Critical Reviews in Food Science and Nutrition, 60(16), 2676–2690. https://doi.org/10.1080/10408398.2019.1654429
  • Cherif, M. M., Assadi, I., Khezami, L., Ben Hamadi, N., Assadi, A. A., & Elfalleh, W. (2023). Review on Recent Applications of Cold Plasma for Safe and Sustainable Food Production: Principles, Implementation, and Application Limits. Applied Sciences, 13(4), Article 4. https://doi.org/10.3390/app13042381
  • Dasan, B. G., & Boyaci, I. H. (2018). Effect of Cold Atmospheric Plasma on Inactivation of Escherichia coli and Physicochemical Properties of Apple, Orange, Tomato Juices, and Sour Cherry Nectar. Food and Bioprocess Technology, 11(2), 334–343. https://doi.org/10.1007/s11947-017-2014-0
  • Dharini, M., Jaspin, S., & Mahendran, R. (2023). Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chemistry, 405, 134746. https://doi.org/10.1016/j.foodchem.2022.134746
  • Dong, X. Y., & Yang, Y. L. (2019). A Novel Approach to Enhance Blueberry Quality During Storage Using Cold Plasma at Atmospheric Air Pressure. Food and Bioprocess Technology, 12(8), 1409–1421. https://doi.org/10.1007/s11947-019-02305-y
  • Figueroa-Pinochet, M. F., Castro-Alija, M. J., Tiwari, B. K., Jiménez, J. M., López-Vallecillo, M., Cao, M. J., & Albertos, I. (2022). Dielectric Barrier Discharge for Solid Food Applications. Nutrients, 14(21), Article 21. https://doi.org/10.3390/nu14214653
  • Gavahian, M., & Cullen, P. J. (2020). Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. Food Reviews International, 36(2), 193–214. https://doi.org/10.1080/87559129.2019.1630638
  • Gavahian, M., Sheu, F.-H., Tsai, M.-J., & Chu, Y.-H. (2020). The effects of dielectric barrier discharge plasma gas and plasma-activated water on texture, color, and bacterial characteristics of shiitake mushroom. Journal of Food Processing and Preservation, 44(1), e14316. https://doi.org/10.1111/jfpp.14316
  • Giannoglou, M., Stergiou, P., Dimitrakellis, P., Gogolides, E., Stoforos, N. G., & Katsaros, G. (2020). Effect of Cold Atmospheric Plasma processing on quality and shelf-life of ready-to-eat rocket leafy salad. Innovative Food Science & Emerging Technologies, 66, 102502. https://doi.org/10.1016/j.ifset.2020.102502
  • Grunert, K. G. (2005). Food quality and safety: Consumer perception and demand. European Review of Agricultural Economics, 32(3), 369–391. https://doi.org/10.1093/eurrag/jbi011
  • Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P. (2016). Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458. https://doi.org/10.1128/AEM.02660-15
  • Herceg, Z., Kovačević, D. B., Kljusurić, J. G., Jambrak, A. R., Zorić, Z., & Dragović-Uzelac, V. (2016). Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chemistry, 190, 665–672.
  • Hou, Y., Wang, R., Gan, Z., Shao, T., Zhang, X., He, M., & Sun, A. (2019). Effect of cold plasma on blueberry juice quality. Food Chemistry, 290, 79–86. https://doi.org/10.1016/j.foodchem.2019.03.123
  • Illera, A. E., Chaple, S., Sanz, M. T., Ng, S., Lu, P., Jones, J., Carey, E., & Bourke, P. (2019). Effect of cold plasma on polyphenol oxidase inactivation in cloudy apple juice and on the quality parameters of the juice during storage. Food Chemistry: X, 3, 100049. https://doi.org/10.1016/j.fochx.2019.100049
  • Imran, M., Khan, M., Javed, M. A., Ahmad, S., & Qayyum, A. (2023). Spectroscopic investigation of atmospheric pressure cold plasma jet produced in dielectric barrier discharge. Current Applied Physics, 50, 81–91. https://doi.org/10.1016/j.cap.2023.04.001
  • Kandemir, H., Aydın, F., Güler, B., & Gürel, A. (2021). Soğuk Plazma Teknolojisi ve Tarımdaki Çeşitli Uygulama Alanları. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 35(1), Article 1.
  • Ke, Z., Bai, Y., Bai, Y., Chu, Y., Gu, S., Xiang, X., Ding, Y., & Zhou, X. (2022). Cold plasma treated air improves the characteristic flavor of Dry-cured black carp through facilitating lipid oxidation. Food Chemistry, 377, 131932. https://doi.org/10.1016/j.foodchem.2021.131932
  • Kim, J. E., Lee, D.-U., & Min, S. C. (2014). Microbial decontamination of red pepper powder by cold plasma. Food Microbiology, 38, 128–136. https://doi.org/10.1016/j.fm.2013.08.019
  • Kodaira, F. V. de P., Almeida, A. C. de P. L., Tavares, T. F., Quade, A., Hein, L. R. de O., & Kostov, K. G. (2023). Study of a Conical Plasma Jet with a Cloth-Covered Nozzle for Polymer Treatment. Polymers, 15(16), Article 16. https://doi.org/10.3390/polym15163344
  • Kumar, S., Pipliya, S., & Srivastav, P. P. (2023). Effect of cold plasma on different polyphenol compounds: A review. Journal of Food Process Engineering, 46(1), e14203. https://doi.org/10.1111/jfpe.14203
  • Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B., & Carciofi, B. A. M. (2022). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312, 110748. https://doi.org/10.1016/j.jfoodeng.2021.110748
  • Lee, H., Kim, J. E., Chung, M.-S., & Min, S. C. (2015). Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiology, 51, 74–80. https://doi.org/10.1016/j.fm.2015.05.004
  • Lee, T.-A., Lin, Y.-H., Li, P.-H., & Ho, J.-H. (2024). The effects of corona discharge from a cold plasma source on the physicochemical properties and shelf-life of milk. Food Bioscience, 62, 103980. https://doi.org/10.1016/j.fbio.2024.103980
  • Li, M., Li, X., Han, C., Ji, N., Jin, P., & Zheng, Y. (2019). Physiological and Metabolomic Analysis of Cold Plasma Treated Fresh-Cut Strawberries. Journal of Agricultural and Food Chemistry, 67(14), 4043–4053. https://doi.org/10.1021/acs.jafc.9b00656
  • Liao, X., Su, Y., Liu, D., Chen, S., Hu, Y., Ye, X., Wang, J., & Ding, T. (2018). Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food Control, 94, 307–314.
  • Luo, J., Muhammad Nasiru, M., Yan, W., Zhuang, H., Zhou, G., & Zhang, J. (2020). Effects of dielectric barrier discharge cold plasma treatment on the structure and binding capacity of aroma compounds of myofibrillar proteins from dry-cured bacon. LWT, 117, 108606. https://doi.org/10.1016/j.lwt.2019.108606
  • Ma, R., Yu, S., Tian, Y., Wang, K., Sun, C., Li, X., Zhang, J., Chen, K., & Fang, J. (2016). Effect of Non-Thermal Plasma-Activated Water on Fruit Decay and Quality in Postharvest Chinese Bayberries. Food and Bioprocess Technology, 9(11), 1825–1834. https://doi.org/10.1007/s11947-016-1761-7
  • Mahnot, N. K., Siyu, L.-P., Wan, Z., Keener, K. M., & Misra, N. N. (2020). In-package cold plasma decontamination of fresh-cut carrots: Microbial and quality aspects. Journal of Physics D: Applied Physics, 53(15), 154002. https://doi.org/10.1088/1361-6463/ab6cd3
  • Mishra, R., Mishra, A., Jangra, S., Pandey, S., Chhabra, M., & Prakash, R. (2024). Process parameters optimization for red globe grapes to enhance shelf-life using non-equilibrium cold plasma jet. Postharvest Biology and Technology, 210, 112778. https://doi.org/10.1016/j.postharvbio.2024.112778
  • Misra, N. N., Schlüter, O., & Cullen, P. J. (2016b). Plasma in Food and Agriculture. In Cold Plasma in Food and Agriculture (pp. 1–16). Elsevier. https://doi.org/10.1016/B978-0-12-801365-6.00001-9
  • Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews, 3(3), 159–170. https://doi.org/10.1007/s12393-011-9041-9
  • Mol, S., Akan, T., Kartal, S., Coşansu, S., Tosun, Ş. Y., Alakavuk, D. Ü., Ulusoy, Ş., Doğruyol, H., & Bostan, K. (2023). Effects of Air and Helium Cold Plasma on Sensory Acceptability and Quality of Fresh Sea Bass (Dicentrarchus labrax). Food and Bioprocess Technology, 16(3), 537–548. https://doi.org/10.1007/s11947-022-02950-w
  • Moutiq, R., Misra, N. N., Mendonça, A., & Keener, K. (2020). In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Science, 159, 107942. https://doi.org/10.1016/j.meatsci.2019.107942
  • Nemati, V., & Guimarães, J. T. (2024). The effects of dielectric barrier discharge cold plasma on the safety and shelf life parameters of mozzarella cheese. Food Chemistry Advances, 5, 100756. https://doi.org/10.1016/j.focha.2024.100756
  • Neuenfeldt, N. H., Silva, L. P., Pessoa, R. S., & Rocha, L. O. (2023). Cold plasma technology for controlling toxigenic fungi and mycotoxins in food. Current Opinion in Food Science, 52, 101045.
  • Olatunde, O. O., Benjakul, S., & Vongkamjan, K. (2020). Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging. International Journal of Food Microbiology, 324, 108612. https://doi.org/10.1016/j.ijfoodmicro.2020.108612
  • Pan, Y., Cheng, J., & Sun, D. (2019). Cold Plasma‐Mediated Treatments for Shelf-Life Extension of Fresh Produce: A Review of Recent Research Developments. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1312–1326. https://doi.org/10.1111/1541-4337.12474
  • Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1), Article 1. https://doi.org/10.3390/foods7010004
  • Pérez-Andrés, J. M., De Alba, M., Harrison, S. M., Brunton, N. P., Cullen, P. J., & Tiwari, B. K. (2020). Effects of cold atmospheric plasma on mackerel lipid and protein oxidation during storage. LWT, 118, 108697. https://doi.org/10.1016/j.lwt.2019.108697
  • Pipliya, S., Kumar, S., & Srivastav, P. P. (2024). Impact of cold plasma and thermal treatment on the storage stability and shelf-life of pineapple juice: A comprehensive postharvest quality assessment. Food Physics, 1, 100025. https://doi.org/10.1016/j.foodp.2024.100025
  • Rana, S., Mehta, D., Bansal, V., Shivhare, U. S., & Yadav, S. K. (2020). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57, 102–112.
  • Rathod, N. B., Ranveer, R. C., Bhagwat, P. K., Ozogul, F., Benjakul, S., Pillai, S., & Annapure, U. S. (2021). Cold plasma for the preservation of aquatic food products: An overview. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4407–4425. https://doi.org/10.1111/1541-4337.12815
  • Rodríguez, Ó., Gomes, W. F., Rodrigues, S., & Fernandes, F. A. N. (2017). Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT, 84, 457–463. https://doi.org/10.1016/j.lwt.2017.06.010
  • Saremnezhad, S., Soltani, M., Faraji, A., & Hayaloglu, A. A. (2021). Chemical changes of food constituents during cold plasma processing: A review. Food Research International, 147, 110552. https://doi.org/10.1016/j.foodres.2021.110552
  • Schnabel, U., Niquet, R., Krohmann, U., Winter, J., Schlüter, O., Weltmann, K.-D., & Ehlbeck, J. (2012). Decontamination of Microbiologically Contaminated Specimen by Direct and Indirect Plasma Treatment. Plasma Processes and Polymers, 9(6), 569–575. https://doi.org/10.1002/ppap.201100088
  • Sharma, R., Nath, P. C., Rustagi, S., Sharma, M., Inbaraj, B. S., Dikkala, P. K., Nayak, P. K., & Sridhar, K. (2025). Cold Plasma—A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. International Journal of Food Science, 2025(1), 4166141. https://doi.org/10.1155/ijfo/4166141
  • Shirani, K., Shahidi, F., & Mortazavi, S. A. (2020). Investigation of decontamination effect of argon cold plasma on physicochemical and sensory properties of almond slices. International Journal of Food Microbiology, 335, 108892. https://doi.org/10.1016/j.ijfoodmicro.2020.108892
  • Shishir, M. R. I., Karim, N., Bao, T., Gowd, V., Ding, T., Sun, C., & Chen, W. (2020). Cold plasma pretreatment–A novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Drying Technology, 38(16), 2134-2150. https://doi.org/10.1080/07373937.2019.1683860
  • Sonawane, S. K., T, M., & Patil, S. (2020). Non-thermal plasma: An advanced technology for food industry. Food Science and Technology International, 26(8), 727–740. https://doi.org/10.1177/1082013220929474
  • Sreelakshmi, V. P., Vendan, S. E., & Negi, P. S. (2024). The effect of cold plasma treatment on quality attributes and shelf life of apples. Postharvest Biology and Technology, 214, 112975. https://doi.org/10.1016/j.postharvbio.2024.112975
  • Sruthi, N. U., Josna, K., Pandiselvam, R., Kothakota, A., Gavahian, M., & Mousavi Khaneghah, A. (2022). Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chemistry, 368, 130809. https://doi.org/10.1016/j.foodchem.2021.130809
  • Starek, A., Paw\lat, J., Chudzik, B., Kwiatkowski, M., Terebun, P., Sagan, A., & Andrejko, D. (2019). Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage. Scientific Reports, 9(1), 8407.
  • Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225–233. https://doi.org/10.1016/j.ifset.2015.12.022
  • Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold Plasma: A novel Non-Thermal Technology for Food Processing. Food Biophysics, 10(1), 1–11. https://doi.org/10.1007/s11483-014-9382-z
  • Wan, Z., Misra, N. N., Li, G., & Keener, K. M. (2021). High voltage atmospheric cold plasma treatment of Listeria innocua and Escherichia coli K-12 on Queso Fresco (fresh cheese). LWT, 146, 111406. https://doi.org/10.1016/j.lwt.2021.111406
  • Wielogorska, E., Ahmed, Y., Meneely, J., Graham, W. G., Elliott, C. T., & Gilmore, B. F. (2019). A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chemistry, 301, 125281.
  • Wu, X., Zhao, W., Zeng, X., Zhang, Q.-A., Gao, G., & Song, S. (2021a). Effects of cold plasma treatment on cherry quality during storage. Food Science and Technology International, 27(5), 441–455. https://doi.org/10.1177/1082013220957134
  • Wu, Y., Cheng, J.-H., & Sun, D.-W. (2021b). Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends in Food Science & Technology, 109, 647–661. https://doi.org/10.1016/j.tifs.2021.01.053
  • Yu, X., Huang, S., Nie, C., Deng, Q., Zhai, Y., & Shen, R. (2020). Effects of atmospheric pressure plasma jet on the physicochemical, functional, and antioxidant properties of flaxseed protein. Journal of Food Science, 85(7), 2010–2019. https://doi.org/10.1111/1750-3841.15184
  • Zhang, B., Tan, C., Zou, F., Sun, Y., Shang, N., & Wu, W. (2022). Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods, 11(18), 2818. https://doi.org/10.3390/foods11182818
  • Ziuzina, D., Han, L., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 210, 53–61. https://doi.org/10.1016/j.ijfoodmicro.2015.05.019

Soğuk Plazma İşleminin Depolama Süresince Gıda Kalitesi ve Güvenliği Üzerindeki Etkileri

Yıl 2025, Cilt: 3 Sayı: 2, 71 - 90, 01.10.2025

Öz

Gıda kalitesi herhangi bir gıda ürününün tüketiciler tarafından kabul edilebilirliği açısından kritik bir önem taşımaktadır. Söz konusu bu gıda kalitesi fiziksel, kimyasal, duyusal ve mikrobiyolojik parametrelerin bütününden meydana gelmektedir. Gıdaların raf ömrü süresince insan sağlığında herhangi bir olumsuz etkiye neden olmaması açısından tüketiciye ulaşıncaya dek gerekli proseslere tabii tutulması gerekmektedir. Bu amaçla endüstride birçok geleneksel işleme yöntemleri kullanılmaktadır. Tüm bu gıda işleme yöntemlerinin temel amacı ürünün kalitesini artırmak, gıda güvenliğini sağlamak ve raf ömrünü uzatmaktır. Ancak bu geleneksel işleme yöntemlerinin yüksek sıcaklık ve süre koşulları göz önüne alındığında gıdaların besinsel ve duyusal özellikleri üzerindeki olumsuz etkilere neden olmaktadırlar. Bu anlamda son zamanlarda, gıda endüstrisinde ısıl işlemlerin dezavantajlarını en aza indirmek amacıyla ısıl olmayan teknolojilerin kullanımı ilgi görmeye başlamıştır ve yenilikçi yöntemlerin gıdalar üzerindeki etkisi literatürde ve gıda endüstrisinde giderek daha fazla araştırılan bir konu haline gelmiştir. Soğuk plazma işlemi, birçok avantaj sunan ve araştırmacılar ile gıda endüstrisinin büyük ilgisini çeken yenilikçi ısıl olmayan bir gıda işleme teknolojisidir. Soğuk plazma prosesi, besinsel ve duyusal kaliteyi koruma veya artırma, mikrobiyal inaktivasyon ve gıda ürünlerinin sterilizasyonu gibi çeşitli alanlarda kullanılan, tahribatsız ve iyi araştırılmış bir gıda işleme tekniğidir. Farklı gıda ürünleri üzerinde çeşitli soğuk plazma uygulamaları araştırmacılar tarafından test edilmiş ve sonuçlar değerlendirilmiştir. Çalışmalardan elde edilen bulgular, soğuk plazma gibi yeni yöntemlerin, ısıl olmayan özellikleri sayesinde gıda sterilizasyonu sırasında nihai ürünün besin ve duyusal kalitesini korumada daha etkili olduğunu ve gıdaların raf ömrünü uzattığını göstermektedir. Bu derleme, soğuk plazma uygulamasının çeşitli gıdaların depolanması süresince duyusal kalite, besin değeri ve mikrobiyal özellikler üzerindeki etkilerini incelemektedir. Çalışma sonuçlarına dayanarak, soğuk plazmanın gıda işleme endüstrisinin geleceği için umut verici bir yöntem olduğu sonucuna varılmıştır.

Kaynakça

  • Aguilar Uscanga, B. R., Calderón Santoyo, M., Ragazzo Sánchez, J. A., Alemán Duarte, M. I., Pérez Montaño, J. A., Balcázar-López, E., & Solís Pacheco, J. R. (2022). Effect of the Application of Cold Plasma Energy on the Inactivation of Microorganisms, Proteins, and Lipids Deterioration in Adobera Cheese. Journal of Food Quality, 2022(1), 8230955. https://doi.org/10.1155/2022/8230955
  • Albertos, I., Martín-Diana, A. B., Cullen, P. J., Tiwari, B. K., Ojha, S. K., Bourke, P., Álvarez, C., & Rico, D. (2017). Effects of dielectric barrier discharge (DBD) generated plasma on microbial reduction and quality parameters of fresh mackerel (Scomber scombrus) fillets. Innovative Food Science & Emerging Technologies, 44, 117–122. https://doi.org/10.1016/j.ifset.2017.07.006
  • Ali, M., Cheng, J.-H., & Sun, D.-W. (2021). Effects of dielectric barrier discharge cold plasma treatments on degradation of anilazine fungicide and quality of tomato (Lycopersicon esculentum Mill) juice. International Journal of Food Science & Technology, 56(1), 69–75. https://doi.org/10.1111/ijfs.14600
  • Amini, M., & Ghoranneviss, M. (2016). Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT, 73, 178–184.
  • Banwo, K., Olojede, A. O., Adesulu-Dahunsi, A. T., Verma, D. K., Thakur, M., Tripathy, S., Singh, S., Patel, A. R., Gupta, A. K., & Aguilar, C. N. (2021). Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Bioscience, 43, 101320.
  • Bao, T., Hao, X., Shishir, M. R. I., Karim, N., & Chen, W. (2021). Cold plasma: An emerging pretreatment technology for the drying of jujube slices. Food Chemistry, 337, 127783. https://doi.org/10.1016/j.foodchem.2020.127783
  • Bermudez-Aguirre, D. (2019). Advances in Cold Plasma Applications for Food Safety and Preservation. Academic Press.
  • Birania, S., Attkan, A. K., Kumar, S., Kumar, N., & Singh, V. K. (2022). Cold plasma in food processing and preservation: A review. Journal of Food Process Engineering, 45(9), e14110. https://doi.org/10.1111/jfpe.14110
  • Bourke, P., Ziuzina, D., Boehm, D., Cullen, P. J., & Keener, K. (2018). The Potential of Cold Plasma for Safe and Sustainable Food Production. Trends in Biotechnology, 36(6), 615–626. https://doi.org/10.1016/j.tibtech.2017.11.001
  • Butscher, D., Van Loon, H., Waskow, A., Rudolf von Rohr, P., & Schuppler, M. (2016). Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge. International Journal of Food Microbiology, 238, 222–232. https://doi.org/10.1016/j.ijfoodmicro.2016.09.006
  • Chen, C., Liu, C., Jiang, A., Guan, Q., Sun, X., Liu, S., Hao, K., & Hu, W. (2019a). The effects of cold plasma-activated water treatment on the microbial growth and antioxidant properties of fresh-cut pears. Food and Bioprocess Technology, 12, 1842–1851.
  • Chen, D., Peng, P., Zhou, N., Cheng, Y., Min, M., Ma, Y., Mao, Q., Chen, P., Chen, C., & Ruan, R. (2019b). Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry, 290, 270–276. https://doi.org/10.1016/j.foodchem.2019.03.149
  • Chen, J., & Rosenthal, A. (2015). 1—Food texture and structure. In J. Chen & A. Rosenthal (Eds.), Modifying Food Texture (pp. 3–24). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-333-1.00001-2
  • Chen, J., Wang, S., Chen, J., Chen, D., Deng, S., & Xu, B. (2019c). Effect of cold plasma on maintaining the quality of chub mackerel (Scomber japonicus): Biochemical and sensory attributes. Journal of the Science of Food and Agriculture, 99(1), 39–46. https://doi.org/10.1002/jsfa.9138
  • Chen, Y.-Q., Cheng, J.-H., & Sun, D.-W. (2020). Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Critical Reviews in Food Science and Nutrition, 60(16), 2676–2690. https://doi.org/10.1080/10408398.2019.1654429
  • Cherif, M. M., Assadi, I., Khezami, L., Ben Hamadi, N., Assadi, A. A., & Elfalleh, W. (2023). Review on Recent Applications of Cold Plasma for Safe and Sustainable Food Production: Principles, Implementation, and Application Limits. Applied Sciences, 13(4), Article 4. https://doi.org/10.3390/app13042381
  • Dasan, B. G., & Boyaci, I. H. (2018). Effect of Cold Atmospheric Plasma on Inactivation of Escherichia coli and Physicochemical Properties of Apple, Orange, Tomato Juices, and Sour Cherry Nectar. Food and Bioprocess Technology, 11(2), 334–343. https://doi.org/10.1007/s11947-017-2014-0
  • Dharini, M., Jaspin, S., & Mahendran, R. (2023). Cold plasma reactive species: Generation, properties, and interaction with food biomolecules. Food Chemistry, 405, 134746. https://doi.org/10.1016/j.foodchem.2022.134746
  • Dong, X. Y., & Yang, Y. L. (2019). A Novel Approach to Enhance Blueberry Quality During Storage Using Cold Plasma at Atmospheric Air Pressure. Food and Bioprocess Technology, 12(8), 1409–1421. https://doi.org/10.1007/s11947-019-02305-y
  • Figueroa-Pinochet, M. F., Castro-Alija, M. J., Tiwari, B. K., Jiménez, J. M., López-Vallecillo, M., Cao, M. J., & Albertos, I. (2022). Dielectric Barrier Discharge for Solid Food Applications. Nutrients, 14(21), Article 21. https://doi.org/10.3390/nu14214653
  • Gavahian, M., & Cullen, P. J. (2020). Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends. Food Reviews International, 36(2), 193–214. https://doi.org/10.1080/87559129.2019.1630638
  • Gavahian, M., Sheu, F.-H., Tsai, M.-J., & Chu, Y.-H. (2020). The effects of dielectric barrier discharge plasma gas and plasma-activated water on texture, color, and bacterial characteristics of shiitake mushroom. Journal of Food Processing and Preservation, 44(1), e14316. https://doi.org/10.1111/jfpp.14316
  • Giannoglou, M., Stergiou, P., Dimitrakellis, P., Gogolides, E., Stoforos, N. G., & Katsaros, G. (2020). Effect of Cold Atmospheric Plasma processing on quality and shelf-life of ready-to-eat rocket leafy salad. Innovative Food Science & Emerging Technologies, 66, 102502. https://doi.org/10.1016/j.ifset.2020.102502
  • Grunert, K. G. (2005). Food quality and safety: Consumer perception and demand. European Review of Agricultural Economics, 32(3), 369–391. https://doi.org/10.1093/eurrag/jbi011
  • Han, L., Patil, S., Boehm, D., Milosavljević, V., Cullen, P. J., & Bourke, P. (2016). Mechanisms of Inactivation by High-Voltage Atmospheric Cold Plasma Differ for Escherichia coli and Staphylococcus aureus. Applied and Environmental Microbiology, 82(2), 450–458. https://doi.org/10.1128/AEM.02660-15
  • Herceg, Z., Kovačević, D. B., Kljusurić, J. G., Jambrak, A. R., Zorić, Z., & Dragović-Uzelac, V. (2016). Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chemistry, 190, 665–672.
  • Hou, Y., Wang, R., Gan, Z., Shao, T., Zhang, X., He, M., & Sun, A. (2019). Effect of cold plasma on blueberry juice quality. Food Chemistry, 290, 79–86. https://doi.org/10.1016/j.foodchem.2019.03.123
  • Illera, A. E., Chaple, S., Sanz, M. T., Ng, S., Lu, P., Jones, J., Carey, E., & Bourke, P. (2019). Effect of cold plasma on polyphenol oxidase inactivation in cloudy apple juice and on the quality parameters of the juice during storage. Food Chemistry: X, 3, 100049. https://doi.org/10.1016/j.fochx.2019.100049
  • Imran, M., Khan, M., Javed, M. A., Ahmad, S., & Qayyum, A. (2023). Spectroscopic investigation of atmospheric pressure cold plasma jet produced in dielectric barrier discharge. Current Applied Physics, 50, 81–91. https://doi.org/10.1016/j.cap.2023.04.001
  • Kandemir, H., Aydın, F., Güler, B., & Gürel, A. (2021). Soğuk Plazma Teknolojisi ve Tarımdaki Çeşitli Uygulama Alanları. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 35(1), Article 1.
  • Ke, Z., Bai, Y., Bai, Y., Chu, Y., Gu, S., Xiang, X., Ding, Y., & Zhou, X. (2022). Cold plasma treated air improves the characteristic flavor of Dry-cured black carp through facilitating lipid oxidation. Food Chemistry, 377, 131932. https://doi.org/10.1016/j.foodchem.2021.131932
  • Kim, J. E., Lee, D.-U., & Min, S. C. (2014). Microbial decontamination of red pepper powder by cold plasma. Food Microbiology, 38, 128–136. https://doi.org/10.1016/j.fm.2013.08.019
  • Kodaira, F. V. de P., Almeida, A. C. de P. L., Tavares, T. F., Quade, A., Hein, L. R. de O., & Kostov, K. G. (2023). Study of a Conical Plasma Jet with a Cloth-Covered Nozzle for Polymer Treatment. Polymers, 15(16), Article 16. https://doi.org/10.3390/polym15163344
  • Kumar, S., Pipliya, S., & Srivastav, P. P. (2023). Effect of cold plasma on different polyphenol compounds: A review. Journal of Food Process Engineering, 46(1), e14203. https://doi.org/10.1111/jfpe.14203
  • Laroque, D. A., Seó, S. T., Valencia, G. A., Laurindo, J. B., & Carciofi, B. A. M. (2022). Cold plasma in food processing: Design, mechanisms, and application. Journal of Food Engineering, 312, 110748. https://doi.org/10.1016/j.jfoodeng.2021.110748
  • Lee, H., Kim, J. E., Chung, M.-S., & Min, S. C. (2015). Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiology, 51, 74–80. https://doi.org/10.1016/j.fm.2015.05.004
  • Lee, T.-A., Lin, Y.-H., Li, P.-H., & Ho, J.-H. (2024). The effects of corona discharge from a cold plasma source on the physicochemical properties and shelf-life of milk. Food Bioscience, 62, 103980. https://doi.org/10.1016/j.fbio.2024.103980
  • Li, M., Li, X., Han, C., Ji, N., Jin, P., & Zheng, Y. (2019). Physiological and Metabolomic Analysis of Cold Plasma Treated Fresh-Cut Strawberries. Journal of Agricultural and Food Chemistry, 67(14), 4043–4053. https://doi.org/10.1021/acs.jafc.9b00656
  • Liao, X., Su, Y., Liu, D., Chen, S., Hu, Y., Ye, X., Wang, J., & Ding, T. (2018). Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis). Food Control, 94, 307–314.
  • Luo, J., Muhammad Nasiru, M., Yan, W., Zhuang, H., Zhou, G., & Zhang, J. (2020). Effects of dielectric barrier discharge cold plasma treatment on the structure and binding capacity of aroma compounds of myofibrillar proteins from dry-cured bacon. LWT, 117, 108606. https://doi.org/10.1016/j.lwt.2019.108606
  • Ma, R., Yu, S., Tian, Y., Wang, K., Sun, C., Li, X., Zhang, J., Chen, K., & Fang, J. (2016). Effect of Non-Thermal Plasma-Activated Water on Fruit Decay and Quality in Postharvest Chinese Bayberries. Food and Bioprocess Technology, 9(11), 1825–1834. https://doi.org/10.1007/s11947-016-1761-7
  • Mahnot, N. K., Siyu, L.-P., Wan, Z., Keener, K. M., & Misra, N. N. (2020). In-package cold plasma decontamination of fresh-cut carrots: Microbial and quality aspects. Journal of Physics D: Applied Physics, 53(15), 154002. https://doi.org/10.1088/1361-6463/ab6cd3
  • Mishra, R., Mishra, A., Jangra, S., Pandey, S., Chhabra, M., & Prakash, R. (2024). Process parameters optimization for red globe grapes to enhance shelf-life using non-equilibrium cold plasma jet. Postharvest Biology and Technology, 210, 112778. https://doi.org/10.1016/j.postharvbio.2024.112778
  • Misra, N. N., Schlüter, O., & Cullen, P. J. (2016b). Plasma in Food and Agriculture. In Cold Plasma in Food and Agriculture (pp. 1–16). Elsevier. https://doi.org/10.1016/B978-0-12-801365-6.00001-9
  • Misra, N. N., Tiwari, B. K., Raghavarao, K. S. M. S., & Cullen, P. J. (2011). Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Engineering Reviews, 3(3), 159–170. https://doi.org/10.1007/s12393-011-9041-9
  • Mol, S., Akan, T., Kartal, S., Coşansu, S., Tosun, Ş. Y., Alakavuk, D. Ü., Ulusoy, Ş., Doğruyol, H., & Bostan, K. (2023). Effects of Air and Helium Cold Plasma on Sensory Acceptability and Quality of Fresh Sea Bass (Dicentrarchus labrax). Food and Bioprocess Technology, 16(3), 537–548. https://doi.org/10.1007/s11947-022-02950-w
  • Moutiq, R., Misra, N. N., Mendonça, A., & Keener, K. (2020). In-package decontamination of chicken breast using cold plasma technology: Microbial, quality and storage studies. Meat Science, 159, 107942. https://doi.org/10.1016/j.meatsci.2019.107942
  • Nemati, V., & Guimarães, J. T. (2024). The effects of dielectric barrier discharge cold plasma on the safety and shelf life parameters of mozzarella cheese. Food Chemistry Advances, 5, 100756. https://doi.org/10.1016/j.focha.2024.100756
  • Neuenfeldt, N. H., Silva, L. P., Pessoa, R. S., & Rocha, L. O. (2023). Cold plasma technology for controlling toxigenic fungi and mycotoxins in food. Current Opinion in Food Science, 52, 101045.
  • Olatunde, O. O., Benjakul, S., & Vongkamjan, K. (2020). Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging. International Journal of Food Microbiology, 324, 108612. https://doi.org/10.1016/j.ijfoodmicro.2020.108612
  • Pan, Y., Cheng, J., & Sun, D. (2019). Cold Plasma‐Mediated Treatments for Shelf-Life Extension of Fresh Produce: A Review of Recent Research Developments. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1312–1326. https://doi.org/10.1111/1541-4337.12474
  • Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of Cold Plasma on Food Quality: A Review. Foods, 7(1), Article 1. https://doi.org/10.3390/foods7010004
  • Pérez-Andrés, J. M., De Alba, M., Harrison, S. M., Brunton, N. P., Cullen, P. J., & Tiwari, B. K. (2020). Effects of cold atmospheric plasma on mackerel lipid and protein oxidation during storage. LWT, 118, 108697. https://doi.org/10.1016/j.lwt.2019.108697
  • Pipliya, S., Kumar, S., & Srivastav, P. P. (2024). Impact of cold plasma and thermal treatment on the storage stability and shelf-life of pineapple juice: A comprehensive postharvest quality assessment. Food Physics, 1, 100025. https://doi.org/10.1016/j.foodp.2024.100025
  • Rana, S., Mehta, D., Bansal, V., Shivhare, U. S., & Yadav, S. K. (2020). Atmospheric cold plasma (ACP) treatment improved in-package shelf-life of strawberry fruit. Journal of Food Science and Technology, 57, 102–112.
  • Rathod, N. B., Ranveer, R. C., Bhagwat, P. K., Ozogul, F., Benjakul, S., Pillai, S., & Annapure, U. S. (2021). Cold plasma for the preservation of aquatic food products: An overview. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4407–4425. https://doi.org/10.1111/1541-4337.12815
  • Rodríguez, Ó., Gomes, W. F., Rodrigues, S., & Fernandes, F. A. N. (2017). Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.). LWT, 84, 457–463. https://doi.org/10.1016/j.lwt.2017.06.010
  • Saremnezhad, S., Soltani, M., Faraji, A., & Hayaloglu, A. A. (2021). Chemical changes of food constituents during cold plasma processing: A review. Food Research International, 147, 110552. https://doi.org/10.1016/j.foodres.2021.110552
  • Schnabel, U., Niquet, R., Krohmann, U., Winter, J., Schlüter, O., Weltmann, K.-D., & Ehlbeck, J. (2012). Decontamination of Microbiologically Contaminated Specimen by Direct and Indirect Plasma Treatment. Plasma Processes and Polymers, 9(6), 569–575. https://doi.org/10.1002/ppap.201100088
  • Sharma, R., Nath, P. C., Rustagi, S., Sharma, M., Inbaraj, B. S., Dikkala, P. K., Nayak, P. K., & Sridhar, K. (2025). Cold Plasma—A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. International Journal of Food Science, 2025(1), 4166141. https://doi.org/10.1155/ijfo/4166141
  • Shirani, K., Shahidi, F., & Mortazavi, S. A. (2020). Investigation of decontamination effect of argon cold plasma on physicochemical and sensory properties of almond slices. International Journal of Food Microbiology, 335, 108892. https://doi.org/10.1016/j.ijfoodmicro.2020.108892
  • Shishir, M. R. I., Karim, N., Bao, T., Gowd, V., Ding, T., Sun, C., & Chen, W. (2020). Cold plasma pretreatment–A novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Drying Technology, 38(16), 2134-2150. https://doi.org/10.1080/07373937.2019.1683860
  • Sonawane, S. K., T, M., & Patil, S. (2020). Non-thermal plasma: An advanced technology for food industry. Food Science and Technology International, 26(8), 727–740. https://doi.org/10.1177/1082013220929474
  • Sreelakshmi, V. P., Vendan, S. E., & Negi, P. S. (2024). The effect of cold plasma treatment on quality attributes and shelf life of apples. Postharvest Biology and Technology, 214, 112975. https://doi.org/10.1016/j.postharvbio.2024.112975
  • Sruthi, N. U., Josna, K., Pandiselvam, R., Kothakota, A., Gavahian, M., & Mousavi Khaneghah, A. (2022). Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chemistry, 368, 130809. https://doi.org/10.1016/j.foodchem.2021.130809
  • Starek, A., Paw\lat, J., Chudzik, B., Kwiatkowski, M., Terebun, P., Sagan, A., & Andrejko, D. (2019). Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage. Scientific Reports, 9(1), 8407.
  • Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225–233. https://doi.org/10.1016/j.ifset.2015.12.022
  • Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold Plasma: A novel Non-Thermal Technology for Food Processing. Food Biophysics, 10(1), 1–11. https://doi.org/10.1007/s11483-014-9382-z
  • Wan, Z., Misra, N. N., Li, G., & Keener, K. M. (2021). High voltage atmospheric cold plasma treatment of Listeria innocua and Escherichia coli K-12 on Queso Fresco (fresh cheese). LWT, 146, 111406. https://doi.org/10.1016/j.lwt.2021.111406
  • Wielogorska, E., Ahmed, Y., Meneely, J., Graham, W. G., Elliott, C. T., & Gilmore, B. F. (2019). A holistic study to understand the detoxification of mycotoxins in maize and impact on its molecular integrity using cold atmospheric plasma treatment. Food Chemistry, 301, 125281.
  • Wu, X., Zhao, W., Zeng, X., Zhang, Q.-A., Gao, G., & Song, S. (2021a). Effects of cold plasma treatment on cherry quality during storage. Food Science and Technology International, 27(5), 441–455. https://doi.org/10.1177/1082013220957134
  • Wu, Y., Cheng, J.-H., & Sun, D.-W. (2021b). Blocking and degradation of aflatoxins by cold plasma treatments: Applications and mechanisms. Trends in Food Science & Technology, 109, 647–661. https://doi.org/10.1016/j.tifs.2021.01.053
  • Yu, X., Huang, S., Nie, C., Deng, Q., Zhai, Y., & Shen, R. (2020). Effects of atmospheric pressure plasma jet on the physicochemical, functional, and antioxidant properties of flaxseed protein. Journal of Food Science, 85(7), 2010–2019. https://doi.org/10.1111/1750-3841.15184
  • Zhang, B., Tan, C., Zou, F., Sun, Y., Shang, N., & Wu, W. (2022). Impacts of Cold Plasma Technology on Sensory, Nutritional and Safety Quality of Food: A Review. Foods, 11(18), 2818. https://doi.org/10.3390/foods11182818
  • Ziuzina, D., Han, L., Cullen, P. J., & Bourke, P. (2015). Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar Typhimurium, Listeria monocytogenes and Escherichia coli. International Journal of Food Microbiology, 210, 53–61. https://doi.org/10.1016/j.ijfoodmicro.2015.05.019
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Derlemeler
Yazarlar

Buse Sezer

Fatma Betül Sakarya

Sevde Savaş

Anı Kuşçu

Fatma Duygu Ceylan

Gülay Özkan 0000-0002-6375-1608

Yayımlanma Tarihi 1 Ekim 2025
Gönderilme Tarihi 13 Şubat 2025
Kabul Tarihi 23 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 3 Sayı: 2

Kaynak Göster

APA Sezer, B., Sakarya, F. B., Savaş, S., … Kuşçu, A. (2025). Impacts of Cold Plasma Treatment on the Food Quality and Safety during Storage. ITU Journal of Food Science and Technology, 3(2), 71-90.