Research Article
BibTex RIS Cite

Impact of Non-physiological Incubation Temperatures on Spermatological and Functional of Thawed Buffalo Spermatozoa

Year 2025, Volume: 9 Issue: 3, 759 - 767, 27.09.2025
https://doi.org/10.31015/2025.3.14

Abstract

Cryopreservation is a widely accepted technique for preserving male gametes; however, post-thaw incubation conditions may substantially affect sperm quality and function. This study aimed to investigate the influence of different post-thaw incubation temperatures on the spermatological and functional parameters of buffalo bull spermatozoa. Fifteen semen straws from the same bull were thawed at 37°C for 30 seconds, pooled to eliminate inter-straw variation, and equally divided into three groups: control (37°C), cold shock (4°C), and thermal stress (45°C). All samples were incubated for 30 minutes before evaluation. Sperm motility and kinematics were analyzed using a computer-assisted sperm analysis system (CASA). Viability was assessed with eosin-nigrosin staining, plasma membrane integrity with the hypoosmotic swelling test, acrosome integrity via SpermBlue®️ staining, and chromatin condensation using Toluidine Blue staining. Incubation temperature had a statistically significant effect on all examined parameters (P<0.05). Both the cold shock and thermal stress groups exhibited a significant decrease in motility and progressive motility, kinematic parameters (VCL, VSL, VAP), viability, and membrane integrity when compared to the control group (P<0.05 to P<0.001). Chromatin decondensation levels were significantly higher in both groups compared to the control, and acrosome integrity was significantly compromised. Furthermore, thermal stress induced a significantly decrease in progressive motility, chromatin integrity, and acrosomal structure compared to cold shock (P<0.001). In conclusion, post-thaw exposure to non-physiological temperatures was observed to negatively affect buffalo sperm quality, highlighting the importance of thermal regulation in post-thaw handling during assisted reproduction procedures. Further studies are needed to evaluate the effects on live fertility outcomes.

Ethical Statement

This study is not subject to the permission of HADYEK in accordance with the “Regulation on Working Procedures and Principles of Animal Experiments Ethics Committees” 8 (k). The data, information, and documents presented in this article were obtained within the framework of academic and ethical rules.

References

  • Ahirwar, M. K., Kataktalware, M. A., Pushpadass, H. A., Jeyakumar, S., Jash, S., Nazar, S., Kastelic, J. P., & Ramesha, K. P. (2018). Scrotal infrared digital thermography predicts effects of thermal stress on buffalo (Bubalus bubalis) semen. Journal of Thermal Biology, 78, 51–57.
  • Almadaly, E. A., Abdel-Salam, A.-B. S., Sahwan, F. M., Kahilo, K. A., Abouzed, T. K., & El-Domany, W. B. (2023). Fertility-associated biochemical components in seminal plasma and serum of buffalo (Bubalus bubalis) bulls. Frontiers in Veterinary Science, 9, 1043379.
  • Barth, A., Perry, V. E. A., Hamilton, L. E., Sutovsky, P., & Oko, R. (2025). Mechanisms of Development of Sperm Defects. Abnormal Morphology of Bovine Spermatozoa, 281–296.
  • Beletti, M. E., & Mello, M. L. S. (2004). Comparison between the toluidine blue stain and the Feulgen reaction for evaluation of rabbit sperm chromatin condensation and their relationship with sperm morphology. Theriogenology, 62(3–4), 398–402.
  • Besbaci, M., Abdelli, A., Mebarki, M., Lounas, A., Sellali, S., Ketfi, N., Bouguelmani, A., & Belhenniche, I. (2023). Effect of different thawing temperatures on viability, kinematic parameters and progressive motility of frozen goat sperm. Large Animal Review, 29(5), 209–213.
  • Bianchi, E., & Wright, G. J. (2020). Find and fuse: Unsolved mysteries in sperm–egg recognition. PLoS Biology, 18(11), e3000953.
  • Bucak, M. N., Tuncer, P. B., Sarıözkan, S., Başpınar, N., Taşpınar, M., Çoyan, K., ... & Öztuna, D. (2010). Effects of antioxidants on post-thawed bovine sperm and oxidative stress parameters: antioxidants protect DNA integrity against cryodamage. Cryobiology, 61(3), 248-253.
  • Capela, L., Leites, I., Romão, R., Lopes-da-Costa, L., & Pereira, R. M. L. N. (2022). Impact of heat stress on bovine sperm quality and competence. Animals, 12(8), 975.
  • Chen, L., Zhang, K., Cui, X., & Jalilvand, A. (2024). The effect of temperature shock on enhancing sperm motility: A new insight into molecular and cellular mechanisms through current procedures. Medical Hypotheses, 188, 111377.
  • Cheshmedjieva, S. B., Vaisberg, C. N., & Kolev, S. I. (1996). On the lipid composition of buffalo spermatozoa frozen in different cryoprotective media.
  • Chianese, R., & Pierantoni, R. (2021). Mitochondrial reactive oxygen species (ROS) production alters sperm quality. Antioxidants, 10(1), 92.
  • Gonçalves, A. A., Garcia, A. R., Rolim Filho, S. T., da Silva, J. A. R., de Melo, D. N., Guimarães, T. C., Tavares, H. R., Silva, T. V. G., de Souza, E. B., & Santos, S. do S. D. (2021). Scrotal thermoregulation and sequential sperm abnormalities in buffalo bulls (Bubalus bubalis) under short-term heat stress. Journal of Thermal Biology, 96, 102842.
  • IBM, Corp. (2011). IBM SPSS Statistics for Windows, Version 21.0. IBM Corporation, Armonk, NY.
  • Jain, Y. C., & Anand, S. R. (1976). The lipids of buffalo spermatozoa and seminal plasma. Reproduction, 47(2), 255–260.
  • Jeyendran, R. S., Van der Ven, H. H., Perez-Pelaez, M., Crabo, B. G., & Zaneveld, L. J. D. (1984). Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. Reproduction, 70(1), 219–228.
  • Medeiros, C. M. O., Forell, F., Oliveira, A. T. D., & Rodrigues, J. L. (2002). Current status of sperm cryopreservation: why isn't it better?. Theriogenology, 57(1), 327-344.
  • Melendez, C. O., Quintero-Moreno, A., Nava-Trujillo, H., Guillen, J. R., & Añez, J. C. G. (2016). Evaluation of the sperm acrosome integrity in cryopreserved buffalo semen using two staining methods: Sperm-blue [R] and eosin-nigrosin. Revista CES Medicina Veterinaria y Zootecnia, 11(3), 192-193.
  • Mittal, P. K., Madan, A. K., Sharma, V., Gottam, G. S., & Gupta, B. (2019). Cryopreservation of buffalo bull semen-restriction and expectation: A review. International Journal of Current Microbiology and Applied Sciences, 8(1), 1351–1368.
  • Nguyen, H. T., Do, S. Q., Athurupana, R., Wakai, T., & Funahashi, H. (2023). Rapid thawing of frozen bull spermatozoa by transient exposure to 70° C improves the viability, motility and mitochondrial health. Animal Reproduction, 20, e20220127.
  • Nur, Z., Ileri, I. K., & Ak, K. (2006). Effects of different temperature treatments applied to deep stored bull semen on post-thaw cold shocked spermatozoa. Bulletin-Veterinary Institute In Pulawy, 50(1), 79.
  • Peña, F. J., Johannisson, A., Wallgren, M., & Martinez, H. R. (2004). Antioxidant supplementation of boar spermatozoa from different fractions of the ejaculate improves cryopreservation: changes in sperm membrane lipid architecture. Zygote, 12(2), 117-124.
  • Pezo, F., Contreras, M. J., Zambrano, F., Uribe, P., Risopatron, J., de Andrade, A. F. C., Yeste, M., & Sánchez, R. (2024). Thawing of cryopreserved sperm from domestic animals: Impact of temperature, time, and addition of molecules to thawing/insemination medium. Animal Reproduction Science, 107572.
  • Purdy, P. H. (2006). A review on goat sperm cryopreservation. Small ruminant research, 63(3), 215-225.
  • Purnawan, A. B., Rimayanti, R., Susilowati, S., Safitri, E., Hernawati, T., Mustofa, I., Rosyada, Z. N. A., Akintunde, A. O., & Khairullah, A. R. (2025). Kinematic and morphological evaluation of frozen Friesian Holstein semen stored for 33, 30, 27, and 24 years. Open Veterinary Journal, 15(4), 1747.
  • Ram, K. L., Sahasrabudhe, S. A., Tiwari, R. P., Mishra, G. K., & Nair, A. K. (2017). Effect of heat stress on seminal characteristics of Murrah buffalo bull semen. Buffalo Bulletin, 36(2), 369–378.
  • Rastegarnia, A., Shahverdi, A., Topraggaleh, T. R., Ebrahimi, B., & Shafipour, V. (2013). Effect of different thawing rates on post-thaw viability, kinematic parameters and chromatin structure of buffalo (Bubalus bubalis) spermatozoa. Cell Journal (Yakhteh), 14(4), 306.
  • Salamon, S., & Maxwell, W. M. C. (2000). Storage of ram semen. Animal reproduction science, 62(1-3), 77-111.
  • Sriranga, K. R., Singh, P., Singh, R., Satpute, T., Vivek, P., Mohanty, T. K., Kumar, P., Kataria, R. S., Pande, M., & Mukesh, M. (2023). Exploring the effect of cold stress on the semen quality parameters of buffalo bulls. Revista Cientifica de La Facultade de Veterinaria, 33.
  • Sui, H., Wang, S., Liu, G., Meng, F., Cao, Z., & Zhang, Y. (2022). Effects of heat stress on motion characteristics and metabolomic profiles of boar spermatozoa. Genes, 13(9), 1647.
  • Vale, W. G., Castro, S. R. S., Almeida-Silva, A. O., Gutiérrez-Añez, J. C., & Singh, P. (2022). Advances in Cryopreservation of Buffalo Semen. In Biotechnological Applications in Buffalo Research (pp. 333–376). Springer.
  • Venkatesh, S., Murugavel, K., Hemalatha, H., Kantharaj, S., & Shalini, G. (2024). PERSPECTIVE: Semen additives for improving frozen-thawed buffalo and cattle semen‐a review. CryoLetters, 45(4), 194–211.
  • Watson, P. F. (2000). The causes of reduced fertility with cryopreserved semen. Animal reproduction science, 60, 481-492.
  • William, N., Mangan, S., Ben, R. N., & Acker, J. P. (2023). Engineered compounds to control ice nucleation and recrystallization. Annual Review of Biomedical Engineering, 25(1), 333–362.
There are 33 citations in total.

Details

Primary Language English
Subjects Veterinary Urology
Journal Section Research Article
Authors

Burcu Esin 0000-0002-5728-1478

Cumali Kaya 0000-0002-0666-5359

Publication Date September 27, 2025
Submission Date July 21, 2025
Acceptance Date August 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Esin, B., & Kaya, C. (2025). Impact of Non-physiological Incubation Temperatures on Spermatological and Functional of Thawed Buffalo Spermatozoa. International Journal of Agriculture Environment and Food Sciences, 9(3), 759-767. https://doi.org/10.31015/2025.3.14

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27