Sustainable Nanoparticle Synthesis of Palladium and Platinum Using Mung Bean (Vigna radiata L.) for Circular Metal Recovery
Year 2025,
Volume: 9 Issue: 3, 801 - 810, 27.09.2025
Gülay Arslan Çene
,
Burcu Nilgün Çetiner
Abstract
The increasing demand for precious metals and the rising volume of electronic waste highlight the need for environmentally sustainable recovery techniques. This study explores the green synthesis of palladium (Pd) and platinum (Pt) nanoparticles from spent plating solutions using mung bean (Vigna radiata L.) extract as a natural bioreducing and stabilizing agent. The phytochemical constituents of mung bean polyphenols, amino acids, and flavonoids facilitate the reduction of metal ions and the formation of bio-capped nanoparticles. Characterization via UV–Vis spectroscopy, FTIR, SEM, and zeta potential measurements confirmed nanoparticle formation and morphology. The synthesized nanoparticles exhibited sizes ranging from 70 to 100 nm and demonstrated good stability. This work aligns with Sustainable Development Goal (SDG) 12 by promoting responsible production, consumption, and waste management, and supports the circular economy by recovering valuable metals from waste streams through eco-friendly processes. The results indicate that mung bean extract is a promising candidate for nanoparticle synthesis, with potential applications in environmental and agricultural fields.
Thanks
We are very grateful and would like to acknowledge Aris Demir of F.A.N.C.Y. Jewellery Co. Ltd. for kindly providing the waste platinum and palladium solution that was utilized in this study.
The FTIR and SEM analyses of this study were conducted at the Center for Nanotechnology & Biomaterials Applications and Research (NBUAM) of Marmara University, and by Prof. Dr. Oğuzhan Gündüz as well as Res. Ass. Eryan Altan and Res. Ass. Dr. Rıdvan Yıldırım nd played an important role in rendering their aid. We would like to thank you on behalf of Türkiye. We are also appreciative of Assoc. Prof. Dr. Esra Erken from the Environmental Engineering Department of the Faculty of Engineering, Marmara University, and M.Sc. Engineer Ceren Hür and Specialist Serap Yıldırım Akyel for the provided assistance on the UV-VIS and Malvern Nano Sizer analyses.
References
-
Ali, H. S. H. M., Anwar, Y., & Khan, S. A. (2022). Vigna radiata Impregnated Zero-Valent CuAg NPs: Applications in Nitrophenols Reduction, Dyes Discoloration and Antibacterial Activity. Journal of Cluster Science, 33(4), 1407–1416. https://doi.org/10.1007/s10876-021-02067-8.
-
Aloufi, A. S. (2023). Assessment of structural, optical, and antibacterial properties of green Sn (Fe: Ni) O2 nanoparticles synthesized using Azadirachta indica leaf extract. Bioinorganic Chemistry and Applications, 2023(1), 5494592.
-
Amatya, S. P., & Joshi, L. P. (2020). Bio-synthesis of copper nanoparticles (CuNPs) using garlic extract to investigate antibacterial activity. Bibechana, 17, 13-19.
-
Anju, T. R., Parvathy, S., Sruthimol, S., Jomol, J., & Mahi, M. (2022). Assessment of Seed Germination and Growth of Vigna radiata L in the Presence of Green Synthesised and chemically Synthesised Nanoparticles. Current Trends in Biotechnology and Pharmacy, 16, 38–46. https://doi.org/10.5530/ctbp.2022.2s.29.
-
Anwar, N., Mehmood, A., Ahmad, K. S., & Hussain, K. (2021). Biosynthesized silver nanoparticles induce phytotoxicity in Vigna radiata L. Physiology and Molecular Biology of Plants, 27(9), 2115–2126. https://doi.org/10.1007/s12298-021-01073-4.
-
Chen, F., Aqeel, M., Maqsood, M. F., Khalid, N., Irshad, M. K., Ibrahim, M., Akhter, N., Afzaal, M., Ma, J., Hashem, M., Alamri, S., Noman, A., & Lam, S. S. (2022). Mitigation of lead toxicity in Vigna radiata genotypes by silver nanoparticles. Environmental Pollution, 308. https://doi.org/10.1016/j.envpol.2022.119606.
-
Chen, Y., Hu, W., Li, P., Liu, Y., Chen, X., Xie, H., Wang, J., Xie, Y., Wang, Y., & Zhang, Y. (2021). Phytoremediation of hexavalent chromium by mung bean through bio-accumulation and bio-stabilization in a short duration. International Journal of Environmental Science and Technology, 18(10), 3023–3034. https://doi.org/10.1007/s13762-020-03001-7.
-
Choudhary, M. K., Kataria, J., Cameotra, S. S., & Singh, J. (2016). A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity. Applied Nanoscience (Switzerland), 6(1), 105–111. https://doi.org/10.1007/s13204-015-0418-6.
-
Dahiya, P. K., Linnemann, A. R., Van Boekel, M. A. J. S., Khetarpaul, N., Grewal, R. B., & Nout, M. J. R. (2015). Mung Bean: Technological and Nutritional Potential. Critical Reviews in Food Science and Nutrition, 55(5), 670–688. https://doi.org/10.1080/10408398.2012.671202.
-
Das, A. K., Marwal, A., Sain, D., & Pareek, V. (2015). One-step green synthesis and characterization of plant protein-coated mercuric oxide (HgO) nanoparticles: antimicrobial studies. International Nano Letters, 5(3), 125-132.
-
Djordjevic, T. M., Šiler-Marinkovic, S. S., & Dimitrijevic-Brankovic, S. I. (2011). Antioxidant activity and total phenolic content in some cereals and legumes. International Journal of Food Properties, 14(1), 175–184. https://doi.org/10.1080/10942910903160364.
-
Dobrucka, R., Dlugaszewska, J., & Kaczmarek, M. (2019). Antimicrobial and cytostatic activity of biosynthesized nanogold prepared using fruit extract of Ribes nigrum. Arabian journal of chemistry, 12(8), 3902-3910.
-
Fahmy, S. A., Fawzy, I. M., Saleh, B. M., Issa, M. Y., Bakowsky, U., & Azzazy, H. M. E. S. (2021). Green synthesis of platinum and palladium nanoparticles using Peganum harmala L. seed alkaloids: Biological and computational studies. Nanomaterials, 11(4), 965.
-
Ganesan, K., & Xu, B. (2018). A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). In Food Science and Human Wellness (Vol. 7, Issue 1, pp. 11–33). Elsevier B.V. https://doi.org/10.1016/j.fshw.2017.11.002.
-
Gurunathan, S., Kim, E., Han, J. W., Park, J. H., & Kim, J. H. (2015). Green chemistry approach for synthesis of effective anticancer palladium nanoparticles. Molecules, 20(12), 22476-22498.
-
Jain, S., Yadav, N., Kesarwani, A., Mathur, P., Nimesh, S., Gupta, N., & Chatterjee, S. (2023). From scraps to sprouts: Boosting Vigna radiata growth with kitchen waste-synthesized iron nanoparticles. South African Journal of Botany, 162, 29–40. https://doi.org/10.1016/j.sajb.2023.08.072.
-
Joshi, A., Kaur, S., Singh, P., Singh, H., Dharamvir, K., Nayyar, H., & Verma, G. (2025). Investigating the effect of synthetic cobalt and nickel oxide nanoparticles on the growth and physiology of Mungbean (Vigna radiata L.) seedlings, and exploring tunable magnetism switching behaviour. Plant Nano Biology, 11. https://doi.org/10.1016/j.plana.2025.100140.
-
Jung, E. S., Sivakumar, S., Hong, S. C., Yi, P. I., Jang, S. H., & Suh, J. M. (2020). Influence of relative humidity on germination and metal accumulation in Vigna radiata exposed to metal-based nanoparticles. Sustainability (Switzerland), 12(4). https://doi.org/10.3390/su12041347.
-
Katiyar, P., Yadu, B., Korram, J., Satnami, M. L., Kumar, M., & Keshavkant, S. (2020). Titanium nanoparticles attenuates arsenic toxicity by up-regulating expressions of defensive genes in Vigna radiata L. Journal of Environmental Sciences (China), 92, 18–27. https://doi.org/10.1016/j.jes.2020.02.013.
-
Kaur, N., Sharma, V., Tiwari, P., Saini, A. K., & Mobin, S. M. (2019). “Vigna radiata” based green C-dots: Photo-triggered theranostics, fluorescent sensor for extracellular and intracellular iron (III) and multicolor live cell imaging probe. Sensors and Actuators, B: Chemical, 291, 275–286. https://doi.org/10.1016/j.snb.2019.04.039.
-
Kumar, D., Soundhararajan, R., & Srinivasan, H. (2024). Screening the efficacy of platinum-based nanomaterial synthesized from Allium sativum to control plant pathogens. Journal of Materials Science: Materials in Engineering, 19(1). https://doi.org/10.1186/s40712-024-00165-9.
-
Kumar, M., Dandapat, S., Ranjan, R., Kumar, A., & Prasad Sinha, M. (2018). Plant mediated synthesis of silver nanoparticles using Punica granatum aqueous leaf extract. Journal of Microbiology & Experimentation, 6(4). https://doi.org/10.15406/jmen.2018.06.00211.
-
Kumari, R., Singh, J. S., & Singh, D. P. (2017). Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.). Plant Physiology and Biochemistry, 110, 158–166. https://doi.org/10.1016/j.plaphy.2016.06.001.
-
Mirza, F. S., Aftab, Z. E. H., Ali, M. D., Aftab, A., Anjum, T., Rafiq, H., & Li, G. (2022). Green synthesis and application of GO nanoparticles to augment growth parameters and yield in mungbean (Vigna radiata L.). Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1040037.
-
Nair, P. M. G., & Chung, I. M. (2015). Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.). Acta Physiologiae Plantarum, 37(1). https://doi.org/10.1007/s11738-014-1719-1.
-
Nisar, M., Khan, S. A., Shah, M. R., Khan, A., Farooq, U., Uddin, G., & Ahmad, B. (2015). Moxifloxacin-capped noble metal nanoparticles as potential urease inhibitors. New Journal of Chemistry, 39(10), 8080-8086.
-
Raliya, R., Biswas, P., & Tarafdar, J. C. (2015). TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnology Reports, 5(1), 22–26. https://doi.org/10.1016/j.btre.2014.10.009.
-
Rani, P., Kaur, G., Rao, K. V., Singh, J., & Rawat, M. (2020). Impact of Green Synthesized Metal Oxide Nanoparticles on Seed Germination and Seedling Growth of Vigna radiata (Mung Bean) and Cajanus cajan (Red Gram). Journal of Inorganic and Organometallic Polymers and Materials, 30(10), 4053–4062. https://doi.org/10.1007/s10904-020-01551-4.
-
Rani, S., Kumari, N., & Sharma, V. (2023). Biosynthesized Zinc Oxide Nanoparticles as a Novel Nanofertilizer Influence Growth, Yield, Antioxidant Enzymes, and Arsenic Accumulation in Mungbean (Vigna radiata L.) Under Arsenic Stress. Journal of Soil Science and Plant Nutrition, 23(2), 2360–2380. https://doi.org/10.1007/s42729-023-01188-5.
-
Rattan, S., Leal, A., Sharma, M., Kumar, S., & Goswamy, J. K. (2021). Comparative Study of Gold Nanoparticles Synthesized via Wet Chemical and Green Chemistry approach. IOP Conference Series: Materials Science and Engineering, 1033(1). https://doi.org/10.1088/1757-899X/1033/1/012051.
-
Sahoo, S. K., Dwivedi, G. K., Dey, P., & Praharaj, S. (2021). Green synthesized ZnO nanoparticles for sustainable production and nutritional biofortification of green gram. Environmental Technology and Innovation, 24. https://doi.org/10.1016/j.eti.2021.101957.
-
Samrot, A. V., Sai Priya, C., Jenifer Selvarani, A., Venket Subbu, R., Jane Cypriyana, P. J., Lavanya, Y., Shehanaz Afreen, R., Soundarya, P., Sherly Priyanka, R. B., Sangeetha, P., Varghese, R. J., & Suresh Kumar, S. (2020). A study on influence of superparamagnetic iron oxide nanoparticles (SPIONs) on green gram (Vigna radiata L.) and earthworm (Eudrilus eugeniae L.). Materials Research Express, 7(5). https://doi.org/10.1088/2053-1591/ab8b17.
-
Shaik, S., Mkize, L., Khumalo, M., & Singh, N. (2015). Green synthesis of nano-silver particles from leaf and stem extracts of Iboza (Tetradenia Riparia). African Journal of Traditional, Complementary and Alternative Medicines, 12(6), 33-38.
-
Singh, D., & Kumar, A. (2015). Effects of Nano Silver Oxide and Silver Ions on Growth of Vigna radiata. Bulletin of Environmental Contamination and Toxicology, 95(3), 379–384. https://doi.org/10.1007/s00128-015-1595-4.
-
Sivakumar, T. (2019). Phytochemical screening and gas chromatography-mass spectroscopy analysis of bioactive compounds and biosynthesis of silver nanoparticles using sprout extracts of Vigna radiata L. and their antioxidant and antibacterial activity. Asian Journal of Pharmaceutical and Clinical Research, 180-184.
-
Sorahinobar, M., Deldari, T., Nazem Bokaeei, Z., & Mehdinia, A. (2023). Effect of zinc nanoparticles on the growth and biofortification capability of mungbean (Vigna radiata) seedlings. Biologia, 78(4), 951–960. https://doi.org/10.1007/s11756-022-01269-3.
-
Sunny, N. E., Mathew, S. S., Venkat Kumar, S., Saravanan, P., Rajeshkannan, R., Rajasimman, M., & Vasseghian, Y. (2022). Effect of green synthesized nano-titanium synthesized from Trachyspermum ammi extract on seed germination of Vigna radiate. Chemosphere, 300. https://doi.org/10.1016/j.chemosphere.2022.134600.
-
Üstünoğlu, U., Yetim, S., Sarı, Y. M., & Çetiner, B. N. (2025). Nohut Özütünden Platin Nano Parçacık Sentezinin Araştırılması (in Turkish). Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 37(1), 263-273.
-
Velgosova, O., Dolinská, S., Podolská, H., Mačák, L., & Čižmárová, E. (2024). Impact of plant extract phytochemicals on the synthesis of silver nanoparticles. Materials, 17(10), 2252.
-
Verma, N., Sehrawat, K. D., Sehrawat, A. R., & Pandey, D. (2022). Effective Green Synthesis, Characterization and Antibacterial Efficacy of Silver Nanoparticles from Seaweed Treated Sprouts of Moth Bean (Vigna aconitifolia Jacq.). Regenerative Engineering and Translational Medicine, 8(1), 152–165. https://doi.org/10.1007/s40883-021-00217-y.
-
Vignesh, A., Amal, T. C., Kalaiyarasan, J., Selvakumar, S., & Vasanth, K. (2023). An effective bio-inspired synthesis of palladium nanoparticles using Crateva religiosa G.Forst. leaf extract: a multi-functional approach for environmental and biomedical applications. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-05031-w.
-
Villagrán, Z., Anaya-Esparza, L. M., Velázquez-Carriles, C. A., Silva-Jara, J. M., Ruvalcaba-Gómez, J. M., Aurora-Vigo, E. F., Rodríguez-Lafitte, E., Rodríguez-Barajas, N., Balderas-León, I., & Martínez-Esquivias, F. (2024). Plant-Based Extracts as Reducing, Capping, and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles. In Resources (Vol. 13, Issue 6). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/resources13060070.
-
Vinodhini, S., Vithiya, B. S. M., & Prasad, T. A. A. (2022). Green synthesis of palladium nanoparticles using aqueous plant extracts and its biomedical applications. Journal of King Saud University - Science, 34(4). https://doi.org/10.1016/j.jksus.2022.102017.
-
Ye, H., Zhao, B., Zhou, Y., Du, J., & Huang, M. (2021). Recent advances in adsorbents for the removal of phthalate esters from water: Material, modification, and application. In Chemical Engineering Journal (Vol. 409). Elsevier B.V. https://doi.org/10.1016/j.cej.2020.128127.