Araştırma Makalesi
BibTex RIS Kaynak Göster

Biogenic Iron Oxide Nanoparticles Based on Algal Biofilm Formed in the Wastewater Treatment Plant and Their Dye Removal Performance

Yıl 2024, Cilt: 9 Sayı: 2, 174 - 183, 30.06.2024
https://doi.org/10.35229/jaes.1421336

Öz

In the field of environmental pollution removal, bioremediation plays a crucial role in removing or converting toxic substances from the environment. Bacteria, yeasts, molds, algae, and plants are widely used in bioremediation events. Recently, green-synthesized nanoparticles have also been employed in bioremediation applications. In this study, iron oxide nanoparticles (FeONPs) were synthesized from algal biofilms that are naturally formed in the settling ponds of the Gümüşhane Municipality Wastewater Treatment Plant. These biological nanoparticles were utilized to investigate their adsorption efficiency for water-polluting dyes such as methylene blue (MB), malachite green (MG), and phenol red (PR). The synthesized FeONPs were characterized using Fourier transform infrared spectroscopy (FTIR) scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). To test their efficacy, MB, MG, and PR dye solutions were treated with 5.0, 10.0, and 20 g/L FeONP concentrations. The remaining dye concentrations were quantified with a UV-VIS spectrophotometer after filtration. The results showed that FeONPs obtained from algal biofilms effectively removed MB, MG, and PR, with the highest efficiency observed for PR.

Etik Beyan

Ethics Committee Approval Certificate is not required for this study.

Kaynakça

  • Abbas, M., Rao, B.P., Naga, S.M., Takahashi, M. & Kim, C. (2013). Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction-surfactantless polyol process. Ceramics International, 39(7), 7605-7611. DOI: 10.1016/j.ceramint.2013.03.015
  • Akar, B., Akar, Z. & Şahin, B. (2019). Identification of antioxidant activity by different methods of a freshwater alga Microspora sp. collected from a high mountain lake. Hittite Journal of Science and Engineering, 6(1), 25-29. DOI: 10.17350/HJSE19030000129
  • Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A. & Lin, M. (2018). Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171, 398- 405. DOI: 10.1016/j.colsurfb.2018.07.059
  • Amlani, M., & Yetgin, S. (2022). Seaweeds: Bioactive components and properties, potential risk factors, uses, extraction and purification methods. Marine Science and Technology Bulletin, 11(1), 9-31. Andersen, R.A. (1992). Diversity of eukaryotic algae. Biodiversity and Conservation, 1, 267-292. DOI: 10.1007/BF00693765
  • Arabi, S. & Sohrabi, M., (2014). Removal of methylene blue, a basic dye, from aqueous solutions using nano-zerovalent iron. Water Science and Technology. 70, 24-31. DOI: 10.2166/wst.2014.189
  • Azubuike, C.C., Chikere, C.B. & Okpokwasili, G.C. (2020). Bioremediation: An eco-friendly sustainable technology for environmental management. In: Saxena, G., Bharagava, R. (Ed) Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management, 19-39p, Springer, Singapore. DOI: 10.1007/978-981-13-1891-7_2
  • Badawi, A.K., Abd Elkodous, M. & Ali, G.A. (2021). Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: an overview. RSC Advances, 11(58), 36528-36553. DOI: 10.1039/D1RA06892J
  • Banerjee, S. & Chattopadhyaya, M.C. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry, 10, 1629-1638. DOI: 10.1016/j.arabjc.2013.06.005
  • Berger, P., Adelman, N. B., Beckman, K. J., Campbell, D. J., Ellis, A.B. & Lisensky, G.C. (1999). Preparation and properties of an aqueous ferrofluid. Journal of Chemical Education, 76(7), 943-948. DOI: 10.1021/ed076p943
  • Bozbeyoglu, P., Duran, C., Baltaci, C. & Gundogdu, A. (2020). Adsorption of Methylene Blue from Aqueous Solution with Sulfuric Acid Activated Corn Cobs: Equilibrium, Kinetics, and Thermodynamics Assessment. Hittite Journal of Science and Engineering, 7(3), 239-256. DOI: 10.17350/HJSE19030000193
  • Carballo, T., Gil, M. V., Gómez, X., González-Andrés, F. & Morán, A. (2008). Characterization of different compost extracts using Fouriertransform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation, 19, 815-830. DOI: 10.1007/s10532-008-9184-4
  • Chekroun, K.B., Sánchez, E. & Baghour, M. (2014). The role of algae in bioremediation of organic pollutants. International Research Journal of Public and Environmental Health, 1, 19-32.
  • Demirezen, D.A., Yıldız, Y.Ş., Yılmaz, Ş. & Yılmaz, D.D. (2019). Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. Journal of Bioscience and Bioengineering, 127(2), 241-245. DOI: 10.1016/j.jbiosc.2018.07.024
  • Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A.K., Taghizadeh, S., Ghasemi, Y. & Berenjian, A. (2018). Plant-mediated synthesis and applications of iron nanoparticles. Molecular Biotechnology, 60, 154-168. DOI: 10.1007/s12033-017-0053-4
  • Fan, S., Wang, Y., Li, Y., Tang, J., Wang, Z., Tang, J., Li, X. & Hu, K. (2017). Facile synthesis of tea waste/Fe3O4 nanoparticle composite for hexavalent chromium removal from aqueous solution. RSC Advances, 7(13), 7576-7590. DOI: 10.1039/C6RA27781K
  • Gedikli, H., Akdogan, A., Karpuz, O., Akmese, O., Kobya, H. N. & Baltaci, C. (2024). Aflatoxin detoxification by biosynthesized iron oxide nanoparticles using green and black tea extracts, BioResources, 19(1), 380-404. DOI: 10.15376/biores.19.1.380-404
  • Golshahi, S., Ahangar, A,G., Mir, N. & Ghorbani, M. (2018). A comparison of the use of different sources of nanoscale iron particles on the concentration of micronutrients and plasma membrane stability in sorghum. Journal of Soil Science and Plant Nutrition, 18(1), 236-252. DOI: 10.4067/S0718-95162018005000902
  • Gong, J. & Lin, X. (2003). Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. Microchemical Journal, 75(1), 51-57. DOI: 10.1016/S0026-265X(03)00053-5
  • Hamdy, A., Mostafa, M. K. & Nasr, M. (2018). Zerovalent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Water Science and Technology, 78(2), 367-378. DOI: 10.2166/wst.2018.306
  • Hoffmann, L. (1989). Algae of terrestrial habitats. The Botanical Review, 55, 77-105. DOI: 10.1007/BF02858529
  • Jain, R., Mendiratta, S., Kumar, L. & Srivastava, A. (2021). Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye. Current Research in Green and Sustainable Chemistry, 4, 100086. DOI: 10.1016/j.crgsc.2021.100086
  • Joshi, S., Garg, V.K., Kataria, N. & Kadirvelu, K. (2019). Applications of Fe3O4@AC nanoparticles for dye removal from simulated wastewater, Chemosphere, 236, 1-11. DOI: 10.1016/j.chemosphere.2019.07.011
  • Karakullukcu, V., Akar, B., Baltacı, C., Duzgun, A.O. & Karpuz, O. (2023). Characterization, antioxidant and antimicrobial activities of iron nanoparticles synthesized using firethorn fruit (Pyracantha coccinea Roemer) extracts, Karaelmas Science Journal, 13(2), 255-265. DOI: 10.7212/karaelmasfen.1297963
  • Kesaano, M. & Sims, R.C. (2014). Algal biofilm based technology for wastewater treatment. Algal Research, 5, 231-240. DOI: 10.1016/j.algal.2014.02.003
  • Khan, I., Saeed, K. & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of Chemistry, 12(7), 908-931. DOI: 10.1016/j.arabjc.2017.05.011
  • Khan, Y., Sadia, H., Ali Shah, S.Z., Khan, M.N., Shah, A.A., Ullah, N., Ullah, M.F. Bibi, H., Bafakeeh, O.T., Khedher, N.B., Eldin, S.M. Fadhl, B.M. & Khan, M.I. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386. DOI: 10.3390/catal12111386
  • Kumar, S.R. & Gopinath, P. (2017). Nanobioremediation applications of nanotechnology for bioremediation. In: Wang, L.K., Wang, M.S., Hung, Y.T., Shammas, N.K., Chen,J.P. (Ed), Handbook of advanced industrial and hazardous wastes management, 27-48p, CRC Press, New York.
  • Leadbeater, B.S.C. & Callow, M.E. (1992). Formation, composition and physiology of algal biofilms. In: Melo, L.F., Bott, T.R., Fletcher, M., Capdeville, B. (Ed) Biofilms-science and technology, 149- 162p. Springer, Netherlands.
  • Lewis Oscar, F., Vismaya, S., Arunkumar, M., Thajuddin, N., Dhanasekaran, D. & Nithya, C. (2016). Algal nanoparticles: synthesis and biotechnological potentials. In: Thajuddin, N., Dhanasekaran, D. (Ed), Algae-organisms for imminent biotechnology, 157-182p. Intechopen, Croatia.
  • Mahdavinia, G.R., Aghaie, H., Sheykhloie, H., Vardini, M.T. & Etemadi, H. (2013). Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydrate Polymers, 98(1), 358-365. DOI: 10.1016/j.carbpol.2013.05.096
  • Naidu, R., Biswas, B., Willett, I.R., Cribb, J., Singh, B.K., Nathanail, C.P., Coulon, F., Semple, K.T., Jones, K.C., Barclay, A. & Aitken, R.J. (2021). Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International, 156, 106616. DOI: 10.1016/j.envint.2021.106616
  • Nwodika, C. & Onukwuli, D.O. (2017). Adsorption study of kinetics and equilibrium of basic dye on kola nut pod carbon. Gazi University Journal of Science, 30(4), 86-102.
  • Plaza, M., Santoyo, S., Jaime, L., Reina, G.G.B., Herrero, M., Señoráns, F.J. & Ibáñez, E. (2010). Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 450-455. DOI: 10.1016/j.jpba.2009.03.016
  • Rueden, C., Dietz, C., Horn, M., Schindelin, J., Northan, B., Berthold, M. & Eliceiri, K. (2021). ImageJ Ops [Software]. https://imagej.net/Ops
  • Saravanan, A., Kumar, P.S., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P.R. & Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595. DOI: 10.1016/j.chemosphere.2021.130595
  • Ścieszka, S. & Klewicka, E. (2019). Algae in food: A general review. Critical Reviews in Food Science and Nutrition, 59(21), 3538-3547.
  • Shah, S.A.A., Hassan, S.S.U., Bungau, S., Si, Y., Xu, H., Rahman, M.H., Behl, T., Gitea, D., Pavel, F.M., Aron, R.A.C., Pasca, B. & Nemeth, S. (2020). Chemically diverse and biologically active secondary metabolites from marine Phylum chlorophyta. Marine Drugs, 18(10), 493. DOI: 10.3390/md18100493
  • Shojaei, T.R., Soltani, S. & Derakhshani, M. (2022). Synthesis, properties, and biomedical applications of inorganic bionanomaterials. In: Barhoum A., Danquah, M.K. (Ed), Fundamentals of bionanomaterials, 139-174p. Elsevier, Netherlands.
  • Sulaiman, S., Azis, R.A.S., Ismail, I., Man, H.C., Yusof, K.F.M., Abba, M.U. & Katibi, K.K. (2021). Adsorptive removal of copper (II) ions from aqueous solution using a magnetite nanoadsorbent from mill scale waste: synthesis, characterization, adsorption and kinetic modeling studies. Nanoscale Research Letters, 16, 1-17. DOI: 10.1186/s11671-021-03622-y
  • Thapa, S., Bharti, A. & Prasanna, R. (2017). Algal biofilms and their biotechnological significance. In: Rastogi, R.P., Madamwar, D. Pandey, A. (Ed), Algal Green Chemistry, 285-303p. Elsiever, Netherlands.
  • Tripathi, S., Sanjeevi, R., Anuradha, J., Chauhan, D.S. & Rathoure, A.K. (2022). Nano-bioremediation: nanotechnology and bioremediation. In: Khosrow, M. (Ed), Research Anthology on Emerging Techniques in Environmental Remediation, 135-149p. IGI Global.
  • Vázquez-Núñez, E., Molina-Guerrero, C.E., PeñaCastro, J. M., Fernández-Luqueño, F. & de la Rosa-Álvarez, M. (2020). Use of nanotechnology for the bioremediation of contaminants: A review, Processes, 8(7), 826. DOI: 10.3390/pr8070826
  • Wang, C.Y., Zhu, G.M., Chen, Z.Y. & Lin, Z.G. (2002). The preparation of magnetite Fe3O4 and its morphology control by a novel arcelectrodeposition method. Materials Research Bulletin, 37(15), 2525-2529. DOI:10.1016/S0025-5408(01)00787-5
  • Westra, L., Miller, P., Karr, J.R., Rees, W.E. & Ulanowicz, R.E. (2000). Ecological integrity and the aims of the Global Integrity Project. In: Pimentel, D., Westra, L., Noss R.F., (Ed), Ecological Integrity: Integrating Environment, Conservation and Health, 19-41p., Island Press, Washington, DC, USA.
  • Yusefi, M., Shameli, K., Rasit, A.R., Pang, S.W. & Teow, S.Y. (2020). Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. Journal of Molecular Structure, 1204. DOI: 10.1016/j.molstruc.2019.127539.

Atık Su Arıtma Tesisinde Oluşan Algal Biyofilm Kökenli Biyojenik Demir Nanopartiküller ve Boya Giderim Performansları

Yıl 2024, Cilt: 9 Sayı: 2, 174 - 183, 30.06.2024
https://doi.org/10.35229/jaes.1421336

Öz

Çevre kirliliği giderimi çalışmalarında biyoremediasyon, toksik maddelerin çevreden uzaklaştırılmasında veya dönüştürülmesinde çok önemli bir rol oynamaktadır. Bakteriler, mayalar, küfler, algler ve bitkiler biyoremediasyonda yaygın olarak kullanılmaktadır. Son zamanlarda, yeşil sentezle elde edilmiş nanopartiküller de biyoremediasyon uygulamalarında tercih edilmektedir. Bu çalışmada, Gümüşhane Belediyesi Atıksu Arıtma Tesisi çökeltme havuzlarında doğal olarak oluşan alg biyofilmlerinden demir oksit nanopartikülleri (FeONP'ler) sentezlenmiştir. Bu biyolojik nanopartiküller, metilen mavisi (MB), malaşit yeşili (MG) ve fenol kırmızısı (PR) gibi suyu kirleten boyaların adsorpsiyon verimliliklerini araştırmak için kullanılmıştır. Sentezlenen FeONP'ler, Fourier dönüşümü kızılötesi spektroskopisi (FTIR) taramalı elektron mikroskobu (SEM), enerji dağılımlı X-ışını spektrometrisi (EDX) ve X-ışını kırınımı (XRD) kullanılarak karakterize edilmiştir. Etkinliklerini test etmek için MB, MG ve PR boya çözeltileri 5.0, 10.0 ve 20 g/L FeONP konsantrasyonları ile muamele edilmiş ve çözeltide kalan boya konsantrasyonları UV-VIS spektrofotometresi ile ölçülmüştür. Sonuçlar, algal biyofilmlerden elde edilen FeONP'lerin MB, MG ve PR'yi etkili bir şekilde ortadan kaldırdığını ve en yüksek verimliliğin PR’de elde edildiğini göstermiştir.

Kaynakça

  • Abbas, M., Rao, B.P., Naga, S.M., Takahashi, M. & Kim, C. (2013). Synthesis of high magnetization hydrophilic magnetite (Fe3O4) nanoparticles in single reaction-surfactantless polyol process. Ceramics International, 39(7), 7605-7611. DOI: 10.1016/j.ceramint.2013.03.015
  • Akar, B., Akar, Z. & Şahin, B. (2019). Identification of antioxidant activity by different methods of a freshwater alga Microspora sp. collected from a high mountain lake. Hittite Journal of Science and Engineering, 6(1), 25-29. DOI: 10.17350/HJSE19030000129
  • Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A. & Lin, M. (2018). Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171, 398- 405. DOI: 10.1016/j.colsurfb.2018.07.059
  • Amlani, M., & Yetgin, S. (2022). Seaweeds: Bioactive components and properties, potential risk factors, uses, extraction and purification methods. Marine Science and Technology Bulletin, 11(1), 9-31. Andersen, R.A. (1992). Diversity of eukaryotic algae. Biodiversity and Conservation, 1, 267-292. DOI: 10.1007/BF00693765
  • Arabi, S. & Sohrabi, M., (2014). Removal of methylene blue, a basic dye, from aqueous solutions using nano-zerovalent iron. Water Science and Technology. 70, 24-31. DOI: 10.2166/wst.2014.189
  • Azubuike, C.C., Chikere, C.B. & Okpokwasili, G.C. (2020). Bioremediation: An eco-friendly sustainable technology for environmental management. In: Saxena, G., Bharagava, R. (Ed) Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management, 19-39p, Springer, Singapore. DOI: 10.1007/978-981-13-1891-7_2
  • Badawi, A.K., Abd Elkodous, M. & Ali, G.A. (2021). Recent advances in dye and metal ion removal using efficient adsorbents and novel nano-based materials: an overview. RSC Advances, 11(58), 36528-36553. DOI: 10.1039/D1RA06892J
  • Banerjee, S. & Chattopadhyaya, M.C. (2017). Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry, 10, 1629-1638. DOI: 10.1016/j.arabjc.2013.06.005
  • Berger, P., Adelman, N. B., Beckman, K. J., Campbell, D. J., Ellis, A.B. & Lisensky, G.C. (1999). Preparation and properties of an aqueous ferrofluid. Journal of Chemical Education, 76(7), 943-948. DOI: 10.1021/ed076p943
  • Bozbeyoglu, P., Duran, C., Baltaci, C. & Gundogdu, A. (2020). Adsorption of Methylene Blue from Aqueous Solution with Sulfuric Acid Activated Corn Cobs: Equilibrium, Kinetics, and Thermodynamics Assessment. Hittite Journal of Science and Engineering, 7(3), 239-256. DOI: 10.17350/HJSE19030000193
  • Carballo, T., Gil, M. V., Gómez, X., González-Andrés, F. & Morán, A. (2008). Characterization of different compost extracts using Fouriertransform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation, 19, 815-830. DOI: 10.1007/s10532-008-9184-4
  • Chekroun, K.B., Sánchez, E. & Baghour, M. (2014). The role of algae in bioremediation of organic pollutants. International Research Journal of Public and Environmental Health, 1, 19-32.
  • Demirezen, D.A., Yıldız, Y.Ş., Yılmaz, Ş. & Yılmaz, D.D. (2019). Green synthesis and characterization of iron oxide nanoparticles using Ficus carica (common fig) dried fruit extract. Journal of Bioscience and Bioengineering, 127(2), 241-245. DOI: 10.1016/j.jbiosc.2018.07.024
  • Ebrahiminezhad, A., Zare-Hoseinabadi, A., Sarmah, A.K., Taghizadeh, S., Ghasemi, Y. & Berenjian, A. (2018). Plant-mediated synthesis and applications of iron nanoparticles. Molecular Biotechnology, 60, 154-168. DOI: 10.1007/s12033-017-0053-4
  • Fan, S., Wang, Y., Li, Y., Tang, J., Wang, Z., Tang, J., Li, X. & Hu, K. (2017). Facile synthesis of tea waste/Fe3O4 nanoparticle composite for hexavalent chromium removal from aqueous solution. RSC Advances, 7(13), 7576-7590. DOI: 10.1039/C6RA27781K
  • Gedikli, H., Akdogan, A., Karpuz, O., Akmese, O., Kobya, H. N. & Baltaci, C. (2024). Aflatoxin detoxification by biosynthesized iron oxide nanoparticles using green and black tea extracts, BioResources, 19(1), 380-404. DOI: 10.15376/biores.19.1.380-404
  • Golshahi, S., Ahangar, A,G., Mir, N. & Ghorbani, M. (2018). A comparison of the use of different sources of nanoscale iron particles on the concentration of micronutrients and plasma membrane stability in sorghum. Journal of Soil Science and Plant Nutrition, 18(1), 236-252. DOI: 10.4067/S0718-95162018005000902
  • Gong, J. & Lin, X. (2003). Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. Microchemical Journal, 75(1), 51-57. DOI: 10.1016/S0026-265X(03)00053-5
  • Hamdy, A., Mostafa, M. K. & Nasr, M. (2018). Zerovalent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation. Water Science and Technology, 78(2), 367-378. DOI: 10.2166/wst.2018.306
  • Hoffmann, L. (1989). Algae of terrestrial habitats. The Botanical Review, 55, 77-105. DOI: 10.1007/BF02858529
  • Jain, R., Mendiratta, S., Kumar, L. & Srivastava, A. (2021). Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye. Current Research in Green and Sustainable Chemistry, 4, 100086. DOI: 10.1016/j.crgsc.2021.100086
  • Joshi, S., Garg, V.K., Kataria, N. & Kadirvelu, K. (2019). Applications of Fe3O4@AC nanoparticles for dye removal from simulated wastewater, Chemosphere, 236, 1-11. DOI: 10.1016/j.chemosphere.2019.07.011
  • Karakullukcu, V., Akar, B., Baltacı, C., Duzgun, A.O. & Karpuz, O. (2023). Characterization, antioxidant and antimicrobial activities of iron nanoparticles synthesized using firethorn fruit (Pyracantha coccinea Roemer) extracts, Karaelmas Science Journal, 13(2), 255-265. DOI: 10.7212/karaelmasfen.1297963
  • Kesaano, M. & Sims, R.C. (2014). Algal biofilm based technology for wastewater treatment. Algal Research, 5, 231-240. DOI: 10.1016/j.algal.2014.02.003
  • Khan, I., Saeed, K. & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of Chemistry, 12(7), 908-931. DOI: 10.1016/j.arabjc.2017.05.011
  • Khan, Y., Sadia, H., Ali Shah, S.Z., Khan, M.N., Shah, A.A., Ullah, N., Ullah, M.F. Bibi, H., Bafakeeh, O.T., Khedher, N.B., Eldin, S.M. Fadhl, B.M. & Khan, M.I. (2022). Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catalysts, 12(11), 1386. DOI: 10.3390/catal12111386
  • Kumar, S.R. & Gopinath, P. (2017). Nanobioremediation applications of nanotechnology for bioremediation. In: Wang, L.K., Wang, M.S., Hung, Y.T., Shammas, N.K., Chen,J.P. (Ed), Handbook of advanced industrial and hazardous wastes management, 27-48p, CRC Press, New York.
  • Leadbeater, B.S.C. & Callow, M.E. (1992). Formation, composition and physiology of algal biofilms. In: Melo, L.F., Bott, T.R., Fletcher, M., Capdeville, B. (Ed) Biofilms-science and technology, 149- 162p. Springer, Netherlands.
  • Lewis Oscar, F., Vismaya, S., Arunkumar, M., Thajuddin, N., Dhanasekaran, D. & Nithya, C. (2016). Algal nanoparticles: synthesis and biotechnological potentials. In: Thajuddin, N., Dhanasekaran, D. (Ed), Algae-organisms for imminent biotechnology, 157-182p. Intechopen, Croatia.
  • Mahdavinia, G.R., Aghaie, H., Sheykhloie, H., Vardini, M.T. & Etemadi, H. (2013). Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet. Carbohydrate Polymers, 98(1), 358-365. DOI: 10.1016/j.carbpol.2013.05.096
  • Naidu, R., Biswas, B., Willett, I.R., Cribb, J., Singh, B.K., Nathanail, C.P., Coulon, F., Semple, K.T., Jones, K.C., Barclay, A. & Aitken, R.J. (2021). Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environment International, 156, 106616. DOI: 10.1016/j.envint.2021.106616
  • Nwodika, C. & Onukwuli, D.O. (2017). Adsorption study of kinetics and equilibrium of basic dye on kola nut pod carbon. Gazi University Journal of Science, 30(4), 86-102.
  • Plaza, M., Santoyo, S., Jaime, L., Reina, G.G.B., Herrero, M., Señoráns, F.J. & Ibáñez, E. (2010). Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis, 51(2), 450-455. DOI: 10.1016/j.jpba.2009.03.016
  • Rueden, C., Dietz, C., Horn, M., Schindelin, J., Northan, B., Berthold, M. & Eliceiri, K. (2021). ImageJ Ops [Software]. https://imagej.net/Ops
  • Saravanan, A., Kumar, P.S., Jeevanantham, S., Karishma, S., Tajsabreen, B., Yaashikaa, P.R. & Reshma, B. (2021). Effective water/wastewater treatment methodologies for toxic pollutants removal: Processes and applications towards sustainable development. Chemosphere, 280, 130595. DOI: 10.1016/j.chemosphere.2021.130595
  • Ścieszka, S. & Klewicka, E. (2019). Algae in food: A general review. Critical Reviews in Food Science and Nutrition, 59(21), 3538-3547.
  • Shah, S.A.A., Hassan, S.S.U., Bungau, S., Si, Y., Xu, H., Rahman, M.H., Behl, T., Gitea, D., Pavel, F.M., Aron, R.A.C., Pasca, B. & Nemeth, S. (2020). Chemically diverse and biologically active secondary metabolites from marine Phylum chlorophyta. Marine Drugs, 18(10), 493. DOI: 10.3390/md18100493
  • Shojaei, T.R., Soltani, S. & Derakhshani, M. (2022). Synthesis, properties, and biomedical applications of inorganic bionanomaterials. In: Barhoum A., Danquah, M.K. (Ed), Fundamentals of bionanomaterials, 139-174p. Elsevier, Netherlands.
  • Sulaiman, S., Azis, R.A.S., Ismail, I., Man, H.C., Yusof, K.F.M., Abba, M.U. & Katibi, K.K. (2021). Adsorptive removal of copper (II) ions from aqueous solution using a magnetite nanoadsorbent from mill scale waste: synthesis, characterization, adsorption and kinetic modeling studies. Nanoscale Research Letters, 16, 1-17. DOI: 10.1186/s11671-021-03622-y
  • Thapa, S., Bharti, A. & Prasanna, R. (2017). Algal biofilms and their biotechnological significance. In: Rastogi, R.P., Madamwar, D. Pandey, A. (Ed), Algal Green Chemistry, 285-303p. Elsiever, Netherlands.
  • Tripathi, S., Sanjeevi, R., Anuradha, J., Chauhan, D.S. & Rathoure, A.K. (2022). Nano-bioremediation: nanotechnology and bioremediation. In: Khosrow, M. (Ed), Research Anthology on Emerging Techniques in Environmental Remediation, 135-149p. IGI Global.
  • Vázquez-Núñez, E., Molina-Guerrero, C.E., PeñaCastro, J. M., Fernández-Luqueño, F. & de la Rosa-Álvarez, M. (2020). Use of nanotechnology for the bioremediation of contaminants: A review, Processes, 8(7), 826. DOI: 10.3390/pr8070826
  • Wang, C.Y., Zhu, G.M., Chen, Z.Y. & Lin, Z.G. (2002). The preparation of magnetite Fe3O4 and its morphology control by a novel arcelectrodeposition method. Materials Research Bulletin, 37(15), 2525-2529. DOI:10.1016/S0025-5408(01)00787-5
  • Westra, L., Miller, P., Karr, J.R., Rees, W.E. & Ulanowicz, R.E. (2000). Ecological integrity and the aims of the Global Integrity Project. In: Pimentel, D., Westra, L., Noss R.F., (Ed), Ecological Integrity: Integrating Environment, Conservation and Health, 19-41p., Island Press, Washington, DC, USA.
  • Yusefi, M., Shameli, K., Rasit, A.R., Pang, S.W. & Teow, S.Y. (2020). Evaluating anticancer activity of plant-mediated synthesized iron oxide nanoparticles using Punica granatum fruit peel extract. Journal of Molecular Structure, 1204. DOI: 10.1016/j.molstruc.2019.127539.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kirlilik ve Kontaminasyon (Diğer)
Bölüm Makaleler
Yazarlar

İlyas Taner Demirel 0000-0002-8417-8943

Bülent Akar 0000-0002-1421-374X

Cemalettin Baltacı 0000-0002-4336-4002

Ömer Karpuz 0000-0002-0546-9831

Esma Gülbahar 0000-0002-3410-8357

Erken Görünüm Tarihi 14 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 22 Ocak 2024
Kabul Tarihi 18 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 2

Kaynak Göster

APA Demirel, İ. T., Akar, B., Baltacı, C., Karpuz, Ö., vd. (2024). Biogenic Iron Oxide Nanoparticles Based on Algal Biofilm Formed in the Wastewater Treatment Plant and Their Dye Removal Performance. Journal of Anatolian Environmental and Animal Sciences, 9(2), 174-183. https://doi.org/10.35229/jaes.1421336


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS