Araştırma Makalesi
BibTex RIS Kaynak Göster

Ortaöğretim Öğrencilerinin Geometrik Kavramlara İlişkin Bilgi Oluşturma Süreçlerinin APOS Teorisi Çerçevesinde İncelenmesi

Yıl 2024, , 666 - 688, 21.10.2024
https://doi.org/10.18009/jcer.1512998

Öz

Bu çalışmanın amacı 10. sınıf öğrencilerinin çokgen ve dörtgen, 11. sınıf öğrencilerinin ise çember kavramına ilişkin bilgi oluşturma süreçlerini APOS teorisi çerçevesinde incelemektir. Çalışma durum çalışması ile desenlenmiştir. Araştırmanın çalışma grubunu bir devlet ortaöğretim kurumunda 10. ve 11. sınıfa devam etmekte olan 10 öğrenci oluşturmaktadır. Çalışma sonunda öğrencilerin çoğunluğunun çokgen kavramını etkin bir şekilde kullanamadığı görülmüştür. Öğrencilerin çoğunluğunun eşkenar dörtgenin alanı ile üçgenin alanı, yamuğun alanı ile üçgen ve dikdörtgenin alanları arasında ilişki kuramadıkları tespit edilmiştir. Hiçbir öğrencinin dikdörtgenin alanı ile üçgenin alanı, karenin alanı ile üçgenin alanı ve dikdörtgenin alanı ile karenin alanı arasında ilişki kuramadığı görülmüştür. Öğrencilerin çoğunluğunun çemberin açısı ile üçgenin açısı, yay parçasının uzunluğu ile "oran–orantı" arasında ilişki kuramadığı tespit edilmiştir. Öğrencilerin hiçbirinin daire diliminin alanı ile oran–orantı arasındaki koordinasyonu sağlayamadıkları görülmüştür.

Etik Beyan

Etik Kurul Belgesi Etik Kurul Komisyon Adı: Bursa Uludağ Üniversitesi Sosyal ve Beşeri Bilimler Araştırma ve Yayın Etiği Kurulu Etik Kurul Belge Tarihi ve Protokol No: 27/10/2023-2023/09

Kaynakça

  • Açıl, E. (2015). Ortaokul 3. sınıf öğrencilerin denklem kavramına yönelik soyutlama süreçlerinin incelenmesi: Apos teorisi [Doktora tezi]. Atatürk Üniversitesi.
  • Akdemir, M., & Narlı, S. (2022). Ortaokul öğrencilerinin çokgenler konusundaki algılarının incelenmesi. Uluslararası Karamanoğlu Mehmetbey Eğitim Araştırmaları Dergisi, 4(1), 74-92. https://doi.org/10.47770/ukmead.1123023
  • Baturo, A., & Nason, R. (1996). Student teachers’ subject matter knowledge within the domain of area measurement. Educational Studies in Mathematics, 31(3), 235–268.
  • Bekdemir, M. (2012). Öğretmen adaylarının çember ve daire konularında kavram ve işlem bilgilerinin değerlendirilmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 43, 83-95.
  • Borji, V., Alamolhodaei, H., & Radmehr, F. (2018). Application of the apos-ace theory to improve students’ graphical understanding of derivative. Eurasıa Journal of Mathematics, Science and Technology Education, 14(7), 2947–2967. https://doi.org/10.29333/ejmste/91451
  • Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247-285.
  • Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2016). Bilimsel araştırma yöntemleri (20. baskı). Pegem Akademi.
  • Chimhande, T., Naidoo, A., & Stols, G. (2017). An analysis of grade 11 learners’ levels of understanding of functions in terms of apos theory. Africa Education Review, 14, 1-19. https://doi.org/10.1080/18146627.2016.1224562
  • Çetin, İ., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. Journal of Mathematical Behavior,47(1), 70-80. https://doi.org/10.1016/j.jmathb.2017.06.004
  • Çepni, S. (2018). Araştırma ve proje çalışmalarına giriş. Celepler Matbaacılık.
  • Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Eds.), Advanced mathematical thinking (pp. 25 - 41). Kluwer Academic Publishers.
  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Eds.), Advanced mathematical thinking (pp. 95 - 126). Kluwer Academic Publishing.
  • Dubinsky, E., & Lewin, P. (1986). Reflective abstraction and mathematics education: The genetic decomposition of induction and compactness. The Journal of Mathematical Behavior, 5(1), 55–92.
  • Dubinsky, E., & McDonald, M. A. (2001). Apos: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton (Eds.), The teaching and learning of mathematics at university level (pp. 273 - 280). Kluwer Academic Publishers.
  • Dubınsky, E., Weller, K., Mcdonald, M. A., & Brown, A. (2005). Some historical ıssues and paradoxes regarding the concept of infinity: An apos-based analysıs: Part 1. Educational Studies in Mathematics, 58(3), 335-359.
  • Fujita, T., & Jones, K. (2006). Primary trainee teachers’ understanding of basic geometrical figures in Scotland. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings 30th conference of the ınternational group for the psychology of mathematics education (Vol. 3). Prague: Charles University. https://eric.ed.gov/?id=ED496933'dan alınmıştır (Erıc number: ED496933).
  • Gürefe, N. (2018). Ortaokul öğrencilerinin alan ölçüm problemlerinde kullandıkları stratejilerin belirlenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33(2), 417-438. https://doi.org/10.16986/HUJE.2017032703
  • Huang, H. M. E., & Witz, K. G. (2011). Developing children's conceptual understanding of area measurement: A curriculum and teaching experiment. Learning and İnstruction, 21(1), 1-13.
  • Kemp, A., & Vidakovic, D. (2023). Students’ understanding and development of the definition of circle in taxicab and euclidean geometries: An apos perspective with schema interaction. Educational Studies in Mathematics, 112(3), 567-588. https://doi.org/10.1007/s10649-022-10180-2
  • Manizade, A. G., & Mason, M. M. (2014). Developing the area of a trapezoid. The Mathematics Teacher, 107(7), 508-514.
  • Milli Eğitim Bakanlığı. (2018). Ortaöğretim matematik dersi öğretim programı.
  • O'Dell, J. R., Rupnow, T. J., Cullen, C. J., Barrett, J. E., Clements, D. H., Sarama, J., & Van Dine, D. W. (2016). Developing an understanding of children's justifications for the circle area formula. In M. B. Wood, E. E. Turner, M. Civil & J. A. Eli (Eds.), Proceedings of the 38th annual meeting of the north american chapter of the ınternational group for the psychology of mathematics education (pp. 235 – 242). Tucson: The University of Arizona.
  • Olkun, S., Çelebi, Ö., Fidan, E., Engin, Ö., & Gökgün, C. (2014). Birim kare ve alan formülünün Türk öğrenciler için anlamı. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 29(1), 180-195.
  • Öksüz, C., & Başışık, H. (2019). 5. sınıf öğrencilerinin çokgenler ve dörtgenler konularında sahip oldukları kavram yanılgılarının belirlenmesi. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 20, 413-430. https://doi.org/10.17494/ogusbd.548525
  • Özsoy, N., & Kemankaşlı, N. (2004). Ortaöğretim öğrencilerinin çember konusundaki temel hataları ve kavram yanılgıları. TOJET: The Turkish Online Journal of Educational Technology, 3(4), 140-147. Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of apos theory. Linear Algebra and İts Applications, 432(8), 2112-2124.
  • Paschos, T., & Farmaki, V. (2006). The reflective abstraction in the construction of the concept of the definite integral: A case study. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings of the 30th conference of ınternacional group for the psychology of mathematics education (vol. 4). Prague: Charles University.
  • Pirie, S., & Kieren, T. (1989). A recursive theory of mathematical understanding. For the Learning of Mathematics, 9(3), 7-11.
  • Reed, B. (2007). The effects of studying the history of the concept of function on student understanding of the concept [Doctoral dissertation, Kent State University]. ProQuest Dissertations & Theses Global.
  • Salgado, H., & Trigueros, M. (2015). Teaching eigenvalues and eigenvectors using models and apos theory. The Journal of Mathematical Behavior, 39, 100-120. https://doi.org/10.1016/j.jmathb.2015.06.005
  • Selden, A., & Selden, J. (1992). Research perspectives on conceptions of function: Summary and overview. In E. Dubinsky & G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy (MAA notes and series 25). Mathematical Association of America.
  • Stacey, K., & Vincent, J. (2009). Finding the area of a circle: Didactic explanations in school mathematics. The Australian Mathematics Teacher, 65(3), 6-9.
  • Stewart, S. (2008). Understanding linear algebra concepts through the embodied, symbolic and formal worlds of mathematical thinking [Doctoral dissertation, The University of Auckland]. The University of Auckland Libraries.
  • Tall, D. (1999). Reflections on apos theory in elementary and advanced mathematical thinking. In O. Zaslavsky (Eds.), Proceedings of the 23 rd Conference of the International Group for the Psychology of Mathematics Education (vol 1, pp. 111-118). Haifa: Israel Institute of Technology.
  • Tziritas, M. (2011). Apos theory as a framework to study the conceptual stages of related rates problems [Master’s thesis, Concordia University]. Concordia University Library.
  • Vincent, J., & Stacey, K. (2009). Finding the area of a trapezium: Theme and variations. The Australian Mathematics Teacher, 65(2), 13-16.
  • Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics and Technology Education, 9(1), 5-28.
  • Yıldırım, A., & Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Yin, R. K. (2009). Case study research, designs and methods. Sage Publications.
  • Zacharos, K. (2006). Prevailing educational practices for area measurement and students’ failure in measuring areas. The Journal of Mathematical Behavior, 25(3), 224-239.

Examination of Secondary School Students' Knowledge Construction Processes Related to Geometric Concepts within the Framework of APOS Theory

Yıl 2024, , 666 - 688, 21.10.2024
https://doi.org/10.18009/jcer.1512998

Öz

The aim of this study is to examine the knowledge construction processes of 10th grade students about the concepts of polygon and quadrilateral and 11th grade students about the concept of circle within the framework of APOS theory. The study was designed with a case study. At the end of the study, it was seen that the majority of students could not use the concept of polygon effectively. It was determined that the majority of the students could not establish a relationship between the angle of the circle and the angle of the triangle, the length of the arc segment and "ratio-proportion". It was observed that none of the students could ensure the coordination between the area of the circle slice and ratio. At the end of the study, some results were obtained regarding the areas of special quadrilaterals.

Etik Beyan

Etik Kurul Belgesi Etik Kurul Komisyon Adı: Bursa Uludağ Üniversitesi Sosyal ve Beşeri Bilimler Araştırma ve Yayın Etiği Kurulu Etik Kurul Belge Tarihi ve Protokol No: 27/10/2023-2023/09

Kaynakça

  • Açıl, E. (2015). Ortaokul 3. sınıf öğrencilerin denklem kavramına yönelik soyutlama süreçlerinin incelenmesi: Apos teorisi [Doktora tezi]. Atatürk Üniversitesi.
  • Akdemir, M., & Narlı, S. (2022). Ortaokul öğrencilerinin çokgenler konusundaki algılarının incelenmesi. Uluslararası Karamanoğlu Mehmetbey Eğitim Araştırmaları Dergisi, 4(1), 74-92. https://doi.org/10.47770/ukmead.1123023
  • Baturo, A., & Nason, R. (1996). Student teachers’ subject matter knowledge within the domain of area measurement. Educational Studies in Mathematics, 31(3), 235–268.
  • Bekdemir, M. (2012). Öğretmen adaylarının çember ve daire konularında kavram ve işlem bilgilerinin değerlendirilmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 43, 83-95.
  • Borji, V., Alamolhodaei, H., & Radmehr, F. (2018). Application of the apos-ace theory to improve students’ graphical understanding of derivative. Eurasıa Journal of Mathematics, Science and Technology Education, 14(7), 2947–2967. https://doi.org/10.29333/ejmste/91451
  • Breidenbach, D., Dubinsky, E., Hawks, J., & Nichols, D. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247-285.
  • Büyüköztürk, Ş., Kılıç-Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2016). Bilimsel araştırma yöntemleri (20. baskı). Pegem Akademi.
  • Chimhande, T., Naidoo, A., & Stols, G. (2017). An analysis of grade 11 learners’ levels of understanding of functions in terms of apos theory. Africa Education Review, 14, 1-19. https://doi.org/10.1080/18146627.2016.1224562
  • Çetin, İ., & Dubinsky, E. (2017). Reflective abstraction in computational thinking. Journal of Mathematical Behavior,47(1), 70-80. https://doi.org/10.1016/j.jmathb.2017.06.004
  • Çepni, S. (2018). Araştırma ve proje çalışmalarına giriş. Celepler Matbaacılık.
  • Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Eds.), Advanced mathematical thinking (pp. 25 - 41). Kluwer Academic Publishers.
  • Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Eds.), Advanced mathematical thinking (pp. 95 - 126). Kluwer Academic Publishing.
  • Dubinsky, E., & Lewin, P. (1986). Reflective abstraction and mathematics education: The genetic decomposition of induction and compactness. The Journal of Mathematical Behavior, 5(1), 55–92.
  • Dubinsky, E., & McDonald, M. A. (2001). Apos: A constructivist theory of learning in undergraduate mathematics education research. In D. Holton (Eds.), The teaching and learning of mathematics at university level (pp. 273 - 280). Kluwer Academic Publishers.
  • Dubınsky, E., Weller, K., Mcdonald, M. A., & Brown, A. (2005). Some historical ıssues and paradoxes regarding the concept of infinity: An apos-based analysıs: Part 1. Educational Studies in Mathematics, 58(3), 335-359.
  • Fujita, T., & Jones, K. (2006). Primary trainee teachers’ understanding of basic geometrical figures in Scotland. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings 30th conference of the ınternational group for the psychology of mathematics education (Vol. 3). Prague: Charles University. https://eric.ed.gov/?id=ED496933'dan alınmıştır (Erıc number: ED496933).
  • Gürefe, N. (2018). Ortaokul öğrencilerinin alan ölçüm problemlerinde kullandıkları stratejilerin belirlenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 33(2), 417-438. https://doi.org/10.16986/HUJE.2017032703
  • Huang, H. M. E., & Witz, K. G. (2011). Developing children's conceptual understanding of area measurement: A curriculum and teaching experiment. Learning and İnstruction, 21(1), 1-13.
  • Kemp, A., & Vidakovic, D. (2023). Students’ understanding and development of the definition of circle in taxicab and euclidean geometries: An apos perspective with schema interaction. Educational Studies in Mathematics, 112(3), 567-588. https://doi.org/10.1007/s10649-022-10180-2
  • Manizade, A. G., & Mason, M. M. (2014). Developing the area of a trapezoid. The Mathematics Teacher, 107(7), 508-514.
  • Milli Eğitim Bakanlığı. (2018). Ortaöğretim matematik dersi öğretim programı.
  • O'Dell, J. R., Rupnow, T. J., Cullen, C. J., Barrett, J. E., Clements, D. H., Sarama, J., & Van Dine, D. W. (2016). Developing an understanding of children's justifications for the circle area formula. In M. B. Wood, E. E. Turner, M. Civil & J. A. Eli (Eds.), Proceedings of the 38th annual meeting of the north american chapter of the ınternational group for the psychology of mathematics education (pp. 235 – 242). Tucson: The University of Arizona.
  • Olkun, S., Çelebi, Ö., Fidan, E., Engin, Ö., & Gökgün, C. (2014). Birim kare ve alan formülünün Türk öğrenciler için anlamı. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 29(1), 180-195.
  • Öksüz, C., & Başışık, H. (2019). 5. sınıf öğrencilerinin çokgenler ve dörtgenler konularında sahip oldukları kavram yanılgılarının belirlenmesi. Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 20, 413-430. https://doi.org/10.17494/ogusbd.548525
  • Özsoy, N., & Kemankaşlı, N. (2004). Ortaöğretim öğrencilerinin çember konusundaki temel hataları ve kavram yanılgıları. TOJET: The Turkish Online Journal of Educational Technology, 3(4), 140-147. Parraguez, M., & Oktaç, A. (2010). Construction of the vector space concept from the viewpoint of apos theory. Linear Algebra and İts Applications, 432(8), 2112-2124.
  • Paschos, T., & Farmaki, V. (2006). The reflective abstraction in the construction of the concept of the definite integral: A case study. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings of the 30th conference of ınternacional group for the psychology of mathematics education (vol. 4). Prague: Charles University.
  • Pirie, S., & Kieren, T. (1989). A recursive theory of mathematical understanding. For the Learning of Mathematics, 9(3), 7-11.
  • Reed, B. (2007). The effects of studying the history of the concept of function on student understanding of the concept [Doctoral dissertation, Kent State University]. ProQuest Dissertations & Theses Global.
  • Salgado, H., & Trigueros, M. (2015). Teaching eigenvalues and eigenvectors using models and apos theory. The Journal of Mathematical Behavior, 39, 100-120. https://doi.org/10.1016/j.jmathb.2015.06.005
  • Selden, A., & Selden, J. (1992). Research perspectives on conceptions of function: Summary and overview. In E. Dubinsky & G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy (MAA notes and series 25). Mathematical Association of America.
  • Stacey, K., & Vincent, J. (2009). Finding the area of a circle: Didactic explanations in school mathematics. The Australian Mathematics Teacher, 65(3), 6-9.
  • Stewart, S. (2008). Understanding linear algebra concepts through the embodied, symbolic and formal worlds of mathematical thinking [Doctoral dissertation, The University of Auckland]. The University of Auckland Libraries.
  • Tall, D. (1999). Reflections on apos theory in elementary and advanced mathematical thinking. In O. Zaslavsky (Eds.), Proceedings of the 23 rd Conference of the International Group for the Psychology of Mathematics Education (vol 1, pp. 111-118). Haifa: Israel Institute of Technology.
  • Tziritas, M. (2011). Apos theory as a framework to study the conceptual stages of related rates problems [Master’s thesis, Concordia University]. Concordia University Library.
  • Vincent, J., & Stacey, K. (2009). Finding the area of a trapezium: Theme and variations. The Australian Mathematics Teacher, 65(2), 13-16.
  • Weller, K., Arnon, I., & Dubinsky, E. (2009). Preservice teachers’ understanding of the relation between a fraction or integer and its decimal expansion. Canadian Journal of Science, Mathematics and Technology Education, 9(1), 5-28.
  • Yıldırım, A., & Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Yin, R. K. (2009). Case study research, designs and methods. Sage Publications.
  • Zacharos, K. (2006). Prevailing educational practices for area measurement and students’ failure in measuring areas. The Journal of Mathematical Behavior, 25(3), 224-239.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik Eğitimi
Bölüm Araştırma Makalesi
Yazarlar

Şafak Yıldız

Rıdvan Ezentaş 0000-0001-8619-8334

Erken Görünüm Tarihi 24 Eylül 2024
Yayımlanma Tarihi 21 Ekim 2024
Gönderilme Tarihi 9 Temmuz 2024
Kabul Tarihi 10 Eylül 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Yıldız, Ş., & Ezentaş, R. (2024). Ortaöğretim Öğrencilerinin Geometrik Kavramlara İlişkin Bilgi Oluşturma Süreçlerinin APOS Teorisi Çerçevesinde İncelenmesi. Journal of Computer and Education Research, 12(24), 666-688. https://doi.org/10.18009/jcer.1512998

Creative Commons Lisansı


Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.


Değerli Yazarlar,

JCER dergisi 2018 yılından itibaren yayımlanacak sayılarda yazarlarından ORCID bilgilerini isteyecektir. Bu konuda hassasiyet göstermeniz önemle rica olunur.

Önemli: "Yazar adından yapılan yayın/atıf taramalarında isim benzerlikleri, soyadı değişikliği, Türkçe harf içeren isimler, farklı yazımlar, kurum değişiklikleri gibi durumlar sorun oluşturabilmektedir. Bu nedenle araştırmacıların tanımlayıcı kimlik/numara (ID) edinmeleri önem taşımaktadır. ULAKBİM TR Dizin sistemlerinde tanımlayıcı ID bilgilerine yer verilecektir.

Standardizasyonun sağlanabilmesi ve YÖK ile birlikte yürütülecek ortak çalışmalarda ORCID kullanılacağı için, TR Dizin’de yer alan veya yer almak üzere başvuran dergilerin, yazarlardan ORCID bilgilerini talep etmeleri ve dergide/makalelerde bu bilgiye yer vermeleri tavsiye edilmektedir. ORCID, Open Researcher ve Contributor ID'nin kısaltmasıdır.  ORCID, Uluslararası Standart Ad Tanımlayıcı (ISNI) olarak da bilinen ISO Standardı (ISO 27729) ile uyumlu 16 haneli bir numaralı bir URI'dir. http://orcid.org adresinden bireysel ORCID için ücretsiz kayıt oluşturabilirsiniz. "