Derleme
BibTex RIS Kaynak Göster

Plant Chitinases: Molecular Structure, Importance and Utilizations

Yıl 2017, Cilt: 7 Sayı: 3, 65 - 71, 30.09.2017

Öz

Chitinase proteins are extensively distributed throughout various biological systems. Plant chitinases
are found in the GH18 and GH19 families of the glycoside hydrolase gene family. Based on structure, substrate
specifty, amino acid sequence similarity, mechanisms of catalysis and sensitivity to inhibitors, plant chitinases are
classifed into seven classes (I–VII). The most important chitinases are pathogenesis-related proteins which class
I, II, IV, VI and VII are found in the GH19 family. In general, plant chitinases are produced by plants as an answer
to pathogens and abiotic factors. They develop antifungal, antibacterial, insecticidal, nematicidal, and antiviral
defence mechanisms in plants. Kitinases are transferred into commercially important plants via gene engineering
applications. In this way, resistant transgenic plants are being developed counter to biotic and abiotic effects. In this
review is giving information about the properties, importance and applications of plant chitinases.



Kaynakça

  • Adrangi S, Faramarzi MA, 2013. From bacteria to human: A journey into the world of chitinases. Biotechnol Adv., 31(8):1786-1785.
  • Antoniw JF, Ritter CE, Pierpoint WS, Van Loon LC, 1980. Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco in- fected with TMV. J. Gen. Virol., 47: 79-87
  • Arie M, Hikichi K, Takahashi K, Esaka M, 2000. Characterisation of basic chitinase which is secreted by cultured pumpkin cells. Plant Physiol, 110(2): 232-239.
  • Bhattacharjee B, Pathaw N, Chrungoo NK, Bhattacharjee A, 2017. Molecular modelling, dynamics simulation and characterization of antifungal chitinase from Sechium edule. Gene, 606: 39-46. doi:10.1016/j.gene.2016.12.007.
  • Bhattacharya D, Nagpure A, Gupta RK, 2007. Bacterial chitinases: properties and potential. Crit. Rev. Biotech., 27(1): 21e8.
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B, 2009. The Carbohydrate- Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res, 37: D233-8
  • Cletus J, Balasubramanian V, Vashisht D, Sakthivel N, 2013. Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol Lett., 35(11): 1719-1732.
  • Di Maro A, Terracciano I, Sticco L, Fiandra L, Ruocco M, Corrado G, Parente A, Rao R, 2010. Purification and characterization of a viral chitinase active against plant pathogens and herbivores from transgenic tobacco. J Biotechnol., 147(1):1-6.
  • Epple P, Apel K, Bohlmann H, 1995. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol., 109: 813-820.
  • Farnesi LC, Menna-Barreto RFS, Martins AJ, Valle D, Rezende GL, 2015. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. J Insect Physiol., 83:43-52.
  • Garcia-Olmedo F, Molina A, Segura A, Moreno M, 1995. The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol., 3: 72-74.
  • Ghag SB, Shekhawat UKS, Ganapathi TR, 2016. Plant Defensins for the Development of Fungal Pathogen Resistance in Transgenic Crops: Production, Safety, Regulation and Public Health. Elsevier Inc., 381-396.
  • Govindsamy V, Gunaratna KR, Balasubramanian R, 1998. Properties of extracellular chitinase from Myrothecium verrucaria, an antagonist to the groundnut rust Puccinia arachidis, Canadian Journal of Plant Pathology, 20(1): 62-68
  • Green TR, Ryan CA, 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science, 175: 776-777.
  • Griffith M, Yaish MWF, 2004. Antifreeze proteins in overwintering plants: A tale of two activities. Trends Plant Sci., 9(8): 399-405.
  • Grover A, 2012. Plant Chitinases: Genetic Diversity and Physiological Roles. CRC Crit Rev Plant Sci., 31: 57-73.
  • Hahn M, Hennig M, Schlesier B, Hohne W, 2000. Structure of jack bean chitinase. Acta Crystallog. Sect D, 56: 1096–1099.
  • Hart PJ, Pfluger HD, Monzingo AF, Hollis T, Robertus JD, 1995. The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8A˚ resolution. J. Mol. Biol., 248: 402–413.
  • Ignacimuthu S, Ceasar SA, 2012. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci 37: 135–147.
  • Ju Y, Wang X, Guan T, Peng D, Li H, 2016. Versatile glycoside hydrolase family 18 chitinases for fungi ingestion and reproduction in the pinewood nematode Bursaphelenchus xylophilus. Int J Parasitol., 46: 819-828.
  • Karthik N, Binod P, Pandey A. Chitinases.; 2017. Chitinases. In book: Current Developments in Biotechnology and Bioengineering, pp.335-368 doi:10.1016/B978-0-444-63662-1.00015-4.
  • Kasprzewska A, 2003. Plant chitinases-regulation and function. Cellular and Molecular Biology Letters, 8(3): 809e24.
  • Khoushab F, Yamabhai M. 2010. Chitin research revisited. Marine Drugs. 8(7): 1988-2012.
  • Kumar SA, Kumari PH, Jawahar G, Prashanth S, Suravajhala P, Katam R, Sivan P, Rao KS, Kirti PB, Kishor KPB, 2016. Beyond just being foot soldiers – osmotin like protein (OLP) and chitinase (Chi11) genes act as sentinels to confront salt, drought, and fungal stress tolerance in tomato. Environ Exp Bot., 132: 53-65.
  • Lagrimini LM, Burkhart W, Moyer M, Rothstein S, 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. U.S.A., 84: 7542-7546.
  • Li H, Wang D, Deng Z, Huang G, Fan S, Zhou D, Liu B, Zhang B, Yu D, 2016. Molecular characterization and expression analysis of chitinase from the pearl oyster Pinctada fucata. Fish Shellfish Immunol., (In press) doi:10.1016/j.cbpb.2016.10.007.
  • Li L, Yi H, 2012. Differential expression of Arabidopsis defense-related genes in response to sulfurdioxide. Chemosphere, 87: 718–24.
  • Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJ, van den Elzen PJ, Linthorst HJ, 1994. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J., 5: 469-480
  • Metraux JP, Streit L, Staub T, 1988. A pathogenesis-related protein in cucumber is a chitinase. Physiol. Mol. Plant Pathol., 33: 1-9.
  • Mizuno R, Fukamizo T, Sugiyama S, Nishizawa Y, Kezuka Y, Nonaka T, Suzuki K, Watanabe T, 2008. Role of the loop structure of the catalytic domain in rice class I chitinase. J Biochem. 143(4): 487-95.
  • Molla KA, Karmakar S, Chanda PK, Sarkar SN, Datta SK, Datta K, 2016. Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. Plant Sci., 250: 105-114.
  • Naumann TA., Wicklow DT, 2013. Chitinase modifying proteins from phyllogenetically distinct lineages of Brassica pathogens. Physiol Mol Plant Pathol., 82: 1-9.
  • Neuhaus JM, 1999. Plant chitinases. In: Datta SK, Muthukrishnan S (eds.) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, USA, 86-114 pp.
  • Nishizawa Y, 2005. Roles of Chitinases and beta-1,3-Glucanases in Plant Defense. http://www.glycoforum.gr.jp/science/word/glycobiology/PS-A04E.html (Erişim tarihi: 10 Kasım, 2016)
  • Okushima Y, Koizumi N, Kusano T, Sano H. Secreted proteins of tobacco cultured BY2 cells: identifica- tion of a new member of pathogenesis-related proteins. Plant Mole. Biol. 2000; 42: 479–488.
  • Ouyang SW, Zhao KJ, Feng LX, 2001. The structure and function, classification and evolution of plant chitinases. Chinese Bulle- tin of Botany, 18(4): 418-426.
  • Pan XQ, Fu DQ, Zhu BZ, Lu CW, Luo YB, 2013. Overexpression of the ethylene response factor SlERF1 gene enhances resistance of tomato fruit to Rhizopus nigricans. Postharv Biol Technol., 75: 28-36.
  • Porat R, Vinokur V, Holland D, McCollum TG, Droby S. 2001. Isolation of a citrus chitinase cDNA and characterization of its expression in response to elicitation of fruit pathogen resistance. J Plant Physiol., 158: 1585-1590. doi:10.1078/0176-1617-00585.
  • Price NPJ, Momany FA, Schnupf U, Naumann TA, 2015. Structure and disulfide bonding pattern of the hevein-like peptide domains from plant class IV chitinases2. Physiol Mol Plant Pathol., 89(1): 25-30.
  • Sarma K, Dehury B, Sahu J, Sarmah R, Sahoo S, Sahu M, Sen P, Modi MK, Barooah M, 2012. A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: a step towards increasing plant fungal resistance. J Mol Model, 18(11): 4761–80.
  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC, 2008. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol Biochem., 46(11): 941-950.
  • Senthhilraja G, Anand T, Kennedy JS, Raguchander T, Samiyappan R, 2013. Plant Growth Promoting Rhizobacteria (PGPR) and Entomopathogenic Fungus Bioformulation Enhance The Expression of Defense Enzymes and Pathogenesis-Related Proteins in Groundnut Plants Against Leafminer Insect and Collar Rot Pathogen, Physiological and Molecular Plant Pathology, 82: 10-19.
  • Sharma N, Sharma KP, Gaur RK, Gupta VK, 2011. Role of Chitinase in Plant Defense. Asian Journal of Biochemistry, 6: 29-37.
  • Sharma V, 2013. Pathogenesis related defence functions of plant chitinases and β-1,3-glucanases. Vegetos., 26: 205-218.
  • Sietsma JH. Wessels JGH, 1979. Evidence for Covalent Linkages between Chitin and β-Glucan in a Fungal Wall. J Gen Microbiol., 114(1): 99-108.
  • Somssich IE, Schmelzer E, Bollmann J, Hahlbrock K, 1986. Rapid activation by fungal elicitor of genes encoding ‘‘pathogenesis-related’’ proteins in cultured parsley cells. Proc. Natl. Acad. Sci. U.S.A., 83: 2427-2430.
  • Suginta W, Sirimontree P, Sritho N, Ohnuma T, Fukamizo T, 2016. The Chitin-Binding Domain of a GH-18 Chitinase from Vibrio harveyi is Crucial for Chitin-Chitinase Interactions. Int J Biol Macromol., 93: 1111-1117.
  • Synowiecki J, Al-Khateeb NA, 2003. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci., 43(2): 145-71.
  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J, 1995. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell, 7: 573-588.
  • Terwisscha van Scheltinga AC, Kalk KH, Beintema JJ, Dijkstra BW, 1994. Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure, 2(12): 1181-1189.
  • Van Loon LC, 1982. Regulation of changes in proteins and enzymes associated with active defense against virus infection, in: R.K.S. Wood (Ed.), Active Defense Mechanisms in Plants, Plenum Press, New York, USA, pp. 247-273.
  • Van Loon LC, 1999. Occurrence and properties of plant pathogenesis related proteins. In: Dutta SK, Muthukrishnan S (eds.) Pathogenesis related proteins in plants. CRC Press, Boca Raton, USA, 1-19 pp.
  • Velazhahan R, Samiyappan R, Vidhyasekaran P, 2000. Purification of an elicitor-inducible antifungal chitinase from suspension-cultured rice cells. Phytoparasitica, 28: 131-139.
  • Vera P, Conejero V, 1988. Pathogenesis-related proteins of tomato P-69 as an alkaline endoproteinase. Plant Physiol., 87: 58-63.
  • Wei Y, Zhang Z, Andersen CH, Schmelzer E, Gregersen PL, Collinge DB, Smedegaard-Petersen V, Thordal-Christensen H, 1998. An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus, Plant Mol. Biol., 36: 101–112.
  • Xayphakatsa K, Tsukiyama T, Inouye K, Okumoto Y, Nakazaki T, Tanisaka T, 2008. Gene cloning, expression, purification and characterization of rice (Oryza sativa L.) class II chitinase CHT11. Enzyme Microb Technol., 43(1): 19-24.
  • Xu F, Fan C, He Y, 2007, Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana, Journal of Genetics and Genomics, 34(2): 138-150.
  • Zhang J, Kopparapu NK, Yan Q, Yang S, Jiang Z, 2013. Purification and characterisation of a novel chitinase from persimmon (Diospyros kaki) with antifungal activity. Food Chem., 138(2-3): 1225-1232.
  • Zhang Z, Collinge DB, Thordal-Christensen H, 1995. Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J., 8: 139–145.

Bitki Kitinazları: Moleküler Yapıları, Önemleri ve Kullanımları

Yıl 2017, Cilt: 7 Sayı: 3, 65 - 71, 30.09.2017

Öz

Kitinaz proteinleri biyolojik sistemlerde doğada yaygın şekilde bulunurlar. Bitki kitinazları, glikozid
hidrolaz gen ailesinden GH18 ve GH19 aileleri içerisinde yer almaktadır. Yedi sınıfa (I-VII) ayrılan bitki kitinazları,
yapıları, amino asit dizi benzerlikleri, substrat spesifteleri, kataliz mekanizmaları ve inhibitör hassasiyetlerine
göre birbirlerinden farklılaşırlar. GH19 ailesinde bulunan sınıf I, II, IV, VI ve VII kitinazlarının en önemlileri
patojen bağlantılı proteinlerden oluşmaktadır. Genel olarak bitki kitinazları patojenlere ve abiyotik faktörlere
yanıt olarak bitkiler tarafından üretilirler. Bunlar, bitkilerde antifungal, antibakteriyel, insektisidal, nematisidal ve
antiviral savunma mekanizmaları geliştirirler. Kitinazlar, gen mühendisliği uygulamaları aracılığıyla ticari öneme
sahip bitkilere aktarılmaktadır. Böylece, biyotik ve abiyotik etkilere karşı dirençli bitkiler geliştirilmektedir. Bu
derlemede, bitki kitinazlarının özellikleri, önemleri ve kullanımları hakkında bilgiler verilmiştir.



Kaynakça

  • Adrangi S, Faramarzi MA, 2013. From bacteria to human: A journey into the world of chitinases. Biotechnol Adv., 31(8):1786-1785.
  • Antoniw JF, Ritter CE, Pierpoint WS, Van Loon LC, 1980. Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco in- fected with TMV. J. Gen. Virol., 47: 79-87
  • Arie M, Hikichi K, Takahashi K, Esaka M, 2000. Characterisation of basic chitinase which is secreted by cultured pumpkin cells. Plant Physiol, 110(2): 232-239.
  • Bhattacharjee B, Pathaw N, Chrungoo NK, Bhattacharjee A, 2017. Molecular modelling, dynamics simulation and characterization of antifungal chitinase from Sechium edule. Gene, 606: 39-46. doi:10.1016/j.gene.2016.12.007.
  • Bhattacharya D, Nagpure A, Gupta RK, 2007. Bacterial chitinases: properties and potential. Crit. Rev. Biotech., 27(1): 21e8.
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B, 2009. The Carbohydrate- Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res, 37: D233-8
  • Cletus J, Balasubramanian V, Vashisht D, Sakthivel N, 2013. Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol Lett., 35(11): 1719-1732.
  • Di Maro A, Terracciano I, Sticco L, Fiandra L, Ruocco M, Corrado G, Parente A, Rao R, 2010. Purification and characterization of a viral chitinase active against plant pathogens and herbivores from transgenic tobacco. J Biotechnol., 147(1):1-6.
  • Epple P, Apel K, Bohlmann H, 1995. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol., 109: 813-820.
  • Farnesi LC, Menna-Barreto RFS, Martins AJ, Valle D, Rezende GL, 2015. Physical features and chitin content of eggs from the mosquito vectors Aedes aegypti, Anopheles aquasalis and Culex quinquefasciatus: Connection with distinct levels of resistance to desiccation. J Insect Physiol., 83:43-52.
  • Garcia-Olmedo F, Molina A, Segura A, Moreno M, 1995. The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol., 3: 72-74.
  • Ghag SB, Shekhawat UKS, Ganapathi TR, 2016. Plant Defensins for the Development of Fungal Pathogen Resistance in Transgenic Crops: Production, Safety, Regulation and Public Health. Elsevier Inc., 381-396.
  • Govindsamy V, Gunaratna KR, Balasubramanian R, 1998. Properties of extracellular chitinase from Myrothecium verrucaria, an antagonist to the groundnut rust Puccinia arachidis, Canadian Journal of Plant Pathology, 20(1): 62-68
  • Green TR, Ryan CA, 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science, 175: 776-777.
  • Griffith M, Yaish MWF, 2004. Antifreeze proteins in overwintering plants: A tale of two activities. Trends Plant Sci., 9(8): 399-405.
  • Grover A, 2012. Plant Chitinases: Genetic Diversity and Physiological Roles. CRC Crit Rev Plant Sci., 31: 57-73.
  • Hahn M, Hennig M, Schlesier B, Hohne W, 2000. Structure of jack bean chitinase. Acta Crystallog. Sect D, 56: 1096–1099.
  • Hart PJ, Pfluger HD, Monzingo AF, Hollis T, Robertus JD, 1995. The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8A˚ resolution. J. Mol. Biol., 248: 402–413.
  • Ignacimuthu S, Ceasar SA, 2012. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci 37: 135–147.
  • Ju Y, Wang X, Guan T, Peng D, Li H, 2016. Versatile glycoside hydrolase family 18 chitinases for fungi ingestion and reproduction in the pinewood nematode Bursaphelenchus xylophilus. Int J Parasitol., 46: 819-828.
  • Karthik N, Binod P, Pandey A. Chitinases.; 2017. Chitinases. In book: Current Developments in Biotechnology and Bioengineering, pp.335-368 doi:10.1016/B978-0-444-63662-1.00015-4.
  • Kasprzewska A, 2003. Plant chitinases-regulation and function. Cellular and Molecular Biology Letters, 8(3): 809e24.
  • Khoushab F, Yamabhai M. 2010. Chitin research revisited. Marine Drugs. 8(7): 1988-2012.
  • Kumar SA, Kumari PH, Jawahar G, Prashanth S, Suravajhala P, Katam R, Sivan P, Rao KS, Kirti PB, Kishor KPB, 2016. Beyond just being foot soldiers – osmotin like protein (OLP) and chitinase (Chi11) genes act as sentinels to confront salt, drought, and fungal stress tolerance in tomato. Environ Exp Bot., 132: 53-65.
  • Lagrimini LM, Burkhart W, Moyer M, Rothstein S, 1987. Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: molecular analysis and tissue-specific expression. Proc. Natl. Acad. Sci. U.S.A., 84: 7542-7546.
  • Li H, Wang D, Deng Z, Huang G, Fan S, Zhou D, Liu B, Zhang B, Yu D, 2016. Molecular characterization and expression analysis of chitinase from the pearl oyster Pinctada fucata. Fish Shellfish Immunol., (In press) doi:10.1016/j.cbpb.2016.10.007.
  • Li L, Yi H, 2012. Differential expression of Arabidopsis defense-related genes in response to sulfurdioxide. Chemosphere, 87: 718–24.
  • Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJ, van den Elzen PJ, Linthorst HJ, 1994. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J., 5: 469-480
  • Metraux JP, Streit L, Staub T, 1988. A pathogenesis-related protein in cucumber is a chitinase. Physiol. Mol. Plant Pathol., 33: 1-9.
  • Mizuno R, Fukamizo T, Sugiyama S, Nishizawa Y, Kezuka Y, Nonaka T, Suzuki K, Watanabe T, 2008. Role of the loop structure of the catalytic domain in rice class I chitinase. J Biochem. 143(4): 487-95.
  • Molla KA, Karmakar S, Chanda PK, Sarkar SN, Datta SK, Datta K, 2016. Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. Plant Sci., 250: 105-114.
  • Naumann TA., Wicklow DT, 2013. Chitinase modifying proteins from phyllogenetically distinct lineages of Brassica pathogens. Physiol Mol Plant Pathol., 82: 1-9.
  • Neuhaus JM, 1999. Plant chitinases. In: Datta SK, Muthukrishnan S (eds.) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, USA, 86-114 pp.
  • Nishizawa Y, 2005. Roles of Chitinases and beta-1,3-Glucanases in Plant Defense. http://www.glycoforum.gr.jp/science/word/glycobiology/PS-A04E.html (Erişim tarihi: 10 Kasım, 2016)
  • Okushima Y, Koizumi N, Kusano T, Sano H. Secreted proteins of tobacco cultured BY2 cells: identifica- tion of a new member of pathogenesis-related proteins. Plant Mole. Biol. 2000; 42: 479–488.
  • Ouyang SW, Zhao KJ, Feng LX, 2001. The structure and function, classification and evolution of plant chitinases. Chinese Bulle- tin of Botany, 18(4): 418-426.
  • Pan XQ, Fu DQ, Zhu BZ, Lu CW, Luo YB, 2013. Overexpression of the ethylene response factor SlERF1 gene enhances resistance of tomato fruit to Rhizopus nigricans. Postharv Biol Technol., 75: 28-36.
  • Porat R, Vinokur V, Holland D, McCollum TG, Droby S. 2001. Isolation of a citrus chitinase cDNA and characterization of its expression in response to elicitation of fruit pathogen resistance. J Plant Physiol., 158: 1585-1590. doi:10.1078/0176-1617-00585.
  • Price NPJ, Momany FA, Schnupf U, Naumann TA, 2015. Structure and disulfide bonding pattern of the hevein-like peptide domains from plant class IV chitinases2. Physiol Mol Plant Pathol., 89(1): 25-30.
  • Sarma K, Dehury B, Sahu J, Sarmah R, Sahoo S, Sahu M, Sen P, Modi MK, Barooah M, 2012. A comparative proteomic approach to analyse structure, function and evolution of rice chitinases: a step towards increasing plant fungal resistance. J Mol Model, 18(11): 4761–80.
  • Sels J, Mathys J, De Coninck BMA, Cammue BPA, De Bolle MFC, 2008. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiol Biochem., 46(11): 941-950.
  • Senthhilraja G, Anand T, Kennedy JS, Raguchander T, Samiyappan R, 2013. Plant Growth Promoting Rhizobacteria (PGPR) and Entomopathogenic Fungus Bioformulation Enhance The Expression of Defense Enzymes and Pathogenesis-Related Proteins in Groundnut Plants Against Leafminer Insect and Collar Rot Pathogen, Physiological and Molecular Plant Pathology, 82: 10-19.
  • Sharma N, Sharma KP, Gaur RK, Gupta VK, 2011. Role of Chitinase in Plant Defense. Asian Journal of Biochemistry, 6: 29-37.
  • Sharma V, 2013. Pathogenesis related defence functions of plant chitinases and β-1,3-glucanases. Vegetos., 26: 205-218.
  • Sietsma JH. Wessels JGH, 1979. Evidence for Covalent Linkages between Chitin and β-Glucan in a Fungal Wall. J Gen Microbiol., 114(1): 99-108.
  • Somssich IE, Schmelzer E, Bollmann J, Hahlbrock K, 1986. Rapid activation by fungal elicitor of genes encoding ‘‘pathogenesis-related’’ proteins in cultured parsley cells. Proc. Natl. Acad. Sci. U.S.A., 83: 2427-2430.
  • Suginta W, Sirimontree P, Sritho N, Ohnuma T, Fukamizo T, 2016. The Chitin-Binding Domain of a GH-18 Chitinase from Vibrio harveyi is Crucial for Chitin-Chitinase Interactions. Int J Biol Macromol., 93: 1111-1117.
  • Synowiecki J, Al-Khateeb NA, 2003. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci., 43(2): 145-71.
  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Van Leuven F, Vanderleyden J, 1995. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell, 7: 573-588.
  • Terwisscha van Scheltinga AC, Kalk KH, Beintema JJ, Dijkstra BW, 1994. Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. Structure, 2(12): 1181-1189.
  • Van Loon LC, 1982. Regulation of changes in proteins and enzymes associated with active defense against virus infection, in: R.K.S. Wood (Ed.), Active Defense Mechanisms in Plants, Plenum Press, New York, USA, pp. 247-273.
  • Van Loon LC, 1999. Occurrence and properties of plant pathogenesis related proteins. In: Dutta SK, Muthukrishnan S (eds.) Pathogenesis related proteins in plants. CRC Press, Boca Raton, USA, 1-19 pp.
  • Velazhahan R, Samiyappan R, Vidhyasekaran P, 2000. Purification of an elicitor-inducible antifungal chitinase from suspension-cultured rice cells. Phytoparasitica, 28: 131-139.
  • Vera P, Conejero V, 1988. Pathogenesis-related proteins of tomato P-69 as an alkaline endoproteinase. Plant Physiol., 87: 58-63.
  • Wei Y, Zhang Z, Andersen CH, Schmelzer E, Gregersen PL, Collinge DB, Smedegaard-Petersen V, Thordal-Christensen H, 1998. An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus, Plant Mol. Biol., 36: 101–112.
  • Xayphakatsa K, Tsukiyama T, Inouye K, Okumoto Y, Nakazaki T, Tanisaka T, 2008. Gene cloning, expression, purification and characterization of rice (Oryza sativa L.) class II chitinase CHT11. Enzyme Microb Technol., 43(1): 19-24.
  • Xu F, Fan C, He Y, 2007, Chitinases in Oryza sativa ssp. japonica and Arabidopsis thaliana, Journal of Genetics and Genomics, 34(2): 138-150.
  • Zhang J, Kopparapu NK, Yan Q, Yang S, Jiang Z, 2013. Purification and characterisation of a novel chitinase from persimmon (Diospyros kaki) with antifungal activity. Food Chem., 138(2-3): 1225-1232.
  • Zhang Z, Collinge DB, Thordal-Christensen H, 1995. Germin-like oxalate oxidase, a H2O2-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. Plant J., 8: 139–145.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Biyoloji / Biology
Yazarlar

Muhip Hilooğlu

Yayımlanma Tarihi 30 Eylül 2017
Gönderilme Tarihi 16 Kasım 2016
Kabul Tarihi 8 Şubat 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 3

Kaynak Göster

APA Hilooğlu, M. (2017). Bitki Kitinazları: Moleküler Yapıları, Önemleri ve Kullanımları. Journal of the Institute of Science and Technology, 7(3), 65-71.
AMA Hilooğlu M. Bitki Kitinazları: Moleküler Yapıları, Önemleri ve Kullanımları. Iğdır Üniv. Fen Bil Enst. Der. Eylül 2017;7(3):65-71.
Chicago Hilooğlu, Muhip. “Bitki Kitinazları: Moleküler Yapıları, Önemleri Ve Kullanımları”. Journal of the Institute of Science and Technology 7, sy. 3 (Eylül 2017): 65-71.
EndNote Hilooğlu M (01 Eylül 2017) Bitki Kitinazları: Moleküler Yapıları, Önemleri ve Kullanımları. Journal of the Institute of Science and Technology 7 3 65–71.
IEEE M. Hilooğlu, “Bitki Kitinazları: Moleküler Yapıları, Önemleri ve Kullanımları”, Iğdır Üniv. Fen Bil Enst. Der., c. 7, sy. 3, ss. 65–71, 2017.
ISNAD Hilooğlu, Muhip. “Bitki Kitinazları: Moleküler Yapıları, Önemleri Ve Kullanımları”. Journal of the Institute of Science and Technology 7/3 (Eylül 2017), 65-71.
JAMA Hilooğlu M. Bitki Kitinazları: Moleküler Yapıları, Önemleri ve Kullanımları. Iğdır Üniv. Fen Bil Enst. Der. 2017;7:65–71.
MLA Hilooğlu, Muhip. “Bitki Kitinazları: Moleküler Yapıları, Önemleri Ve Kullanımları”. Journal of the Institute of Science and Technology, c. 7, sy. 3, 2017, ss. 65-71.
Vancouver Hilooğlu M. Bitki Kitinazları: Moleküler Yapıları, Önemleri ve Kullanımları. Iğdır Üniv. Fen Bil Enst. Der. 2017;7(3):65-71.