Araştırma Makalesi
BibTex RIS Kaynak Göster

Üstün yetenekli öğrencilerin matematiksel düşünme süreçlerinin farklı ortamlarda incelenmesi: GeoGebra'nın potansiyeli

Yıl 2023, , 245 - 260, 20.12.2023
https://doi.org/10.52826/mcbuefd.1306841

Öz

Matematiksel düşünme, matematiğe özgü problem çözmeye olanak sağlayan üst düzey bir düşünme stilidir. Bu bağlamda matematiğe özgü üstün yeteneğin belirlenmesinde matematiksel düşünmenin dikkate alınması kaçınılmazdır. Üstün matematiksel düşünmenin nasıl ölçülmesi gerektiği ve farklı ortamların bu matematiksel düşünmeyi ortaya çıkarma potansiyeli tartışma konusudur. Bu çalışmada üstün yetenekli öğrencilerin matematiksel düşünmelerinin, kağıt kalem kullanımı ve dinamik geometri yazılımı kullanımı sırasında nasıl farklılaştığı araştırılmıştır. Matematiksel düşünmenin alt boyutları (özelleştirme, genelleme, varsayımda bulunma ve ispatlama) kapsamında üç üstün yetenekli öğrencinin kağıt-kalem ve GeoGebra ortamlarında verilen görevler için çözümleri karşılaştırılmıştır. Bu çalışma sonucunda öğrencilerin özeleştirme basamağında yaptıkları çalışmaların hem kağıt kalem hem de GeoGebra ortamlarında benzer olduğu görülmüştür. Öte yandan GeoGebra'nın genelleme aşamasında üst düzey çalışmalar ortaya koyma potansiyeline sahip olduğu söylenebilir. Varsayımlarda bulunma yeteneğini ortaya çıkarmada farklı ortamlar önemli görülmüştür. GeoGebra ile ispata yönelik üst düzey düşünme becerilerinin ortaya konulabileceği görülmüştür.

Kaynakça

  • Baltacı, S., Yıldız, A., & Kösa, T. (2015). The Potential of GeoGebra Dynamic Mathematics Software in Teaching Analytic Geometry: The Opinion of Pre-service Mathematics Teachers. Turkish Journal of Computer and Mathematics Education, 6(3), 483-505. https://doi.org/10.16949/turcomat.32803.
  • Baltacı, S., Yıldız, A., Kıymaz, Y., & Aytekin, C. (2016). Reflections from a Design Based Research Preparing GeoGebra Supported Activities towards Gifted Students. Mehmet Akif Ersoy University Journal of Education Faculty, 1(39), 70-90. https://doi.org/10.21764/efd.12232.
  • Chang, L. L. (1985). Who are the mathematically gifted elementary school children? Roeper Review, 8 (2), 76-79. https://doi.org/10.1080/02783198509552938.
  • Dede, Y. & Karakuş, F. (2014). A Pedagogical Perspective Concerning the Concept of Mathematical Proof: A Theoretical Study. Adıyaman University Journal of Educational Sciences, 4(2), 47-71.
  • Edwards, J. A., & Jones, K. (2006). Linking geometry and algebra with GeoGebra. Mathematics Teaching, 194, 28-30.
  • Gutierrez, A., Benedicto, C., Jaime, A., & Arbona, E. (2018). The Cognitive Demand of a Gifted Student’s Answers to Geometric Pattern Problems. F. M. Singer (Ed), Mathematical Creativity and Mathematical Giftedness (pp. 169–198). Springer, Cham. https://doi.org/10.1007/978-3-319-73156-8_7
  • Hancock, D.R., & Algozzine, B. (2006). Doing case study research: A practical guide for beginners researchers. Teachers College.
  • Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. InF. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805-842). NCTM.
  • Henderson, P. B., Hitchner, L., Fritz, S. J., Marion, B., Scharff, C., Hamer, J., & Riedesel, C. (2003). Materials development in support of mathematical thinking. ACM SIGCSE Bulletin, 35(2), 185-190. https://doi.org/10.1145/782941.783001.
  • Hıdıroğlu, Ç. N., & Bukova-Güzel, E. (2014). Using GeoGebra in Mathematical Modeling: The Height-Foot Length Problem. Pamukkale University Journal of Education, 36(2), 29-44. https://doi.org/10.9779/PUJE607.
  • Jablonski, S., & Ludwig, M. (2022). Examples and generalizations in mathematical reasoning – A study with potentially mathematically gifted children. Journal on Mathematics Education, 13(4), 605-630. http://doi.org/10.22342/jme.v13i4.pp605-630
  • Jensen Sheffield, L. (1994). The development of gifted and talented mathematics students and the National Council of Teachers of Mathematics standards (RBDM9404). Storrs: University of Connecticut, The National Research Center on the Gifted and Talented.
  • Kondratieva, M. (2013). Geometrical constructions in dynamic and interactive mathematics learning environment. Mevlana International Journal of Education, 3(3), 50-63. https://doi.org/10.13054/mije.si.2013.06.
  • Köse, N., Uygan, C. & Özen, D. (2012). Dragging types in dynamic geometry software. Turkish Journal of Computer and Mathematics Education, 3(1), 35-52.
  • Leymun, Ş. O., Odabaşı, H. F., & Yurdakul, I. K. (2017). Eğitim ortamlarında durum çalışmasının önemi. Eğitimde Nitel Araştırmalar Dergisi, 5(3), 367-385.
  • Mason, J., Burton, L., & Stacey, K. (1991). Thinking Mathematically. Addison-Wesley Publishers.
  • Mohd Hasrul, K., Mohd Fadzil, K., Mohd Saifun, A. M. S., Muhammad Zaim, E., Mior Muhamad, S. N. S., & Rorlinda, Y. (2022). Impact of differentiated instruction on the mathematical thinking processes of gifted and talented students. Journal of Education and e-Learning Research, 9(4), 269-277. 1
  • Öztürk, G. (2013). Matematiksel düşünme odaklı öğretim: Ortaöğretim matematik öğretmen adaylarının planlama becerileri ve görüşleri. Yayımlanmamış Doktora Tezi. Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir.
  • Pesen, C. (2003). Eğitim fakülteleri ve sınıf öğretmenleri için matematik öğretimi [Teaching mathematics for education faculties and classroom teachers]. Nobel Yayın Dağıtım.
  • Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press. Sarracco, L. (2005). The effects of using dynamic geometry software in the middle school classroom. Iona College.
  • Stacey, K. (2006). What is mathematical thinking and why is it important? APECTsukuba International Conference, Tokyo, Japan.
  • Stacey, K., Burton, L., & Mason, J. (1985). Thinking mathematically. Addison-Wesley.
  • Stylianides, G. J., & Stylianides, A. J. (2005). Validation of solutions of construction problems in dynamic geometry environments. International Journal of Computers for Mathematical Learning, 10(1), 31–47. https://doi.org/10.1007/s10758-004-6999-x.
  • Subaşı, M., & Okumuş, K. (2017). Bir araştırma yöntemi olarak durum çalışması. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(2), 419-426.
  • Tarhan, S., & Kılıç, Ş. (2014). Üstün yetenekli bireylerin tanılanması ve Türkiye’deki eğitim modelleri. Üstün Yetenekliler Eğitimi ve Araştırmaları Dergisi (UYAD), 2(2), 27-43.
  • Yavuzsoy-Köse, N., Tanışlı, D., Özdemir-Erdoğan, E. & Yüzügüllü-Ada, T. (2012). İlköğretim matematik öğretmen adaylarının teknoloji destekli geometri dersindeki geometrik oluşum edinimleri [The geometric formation acquisition of pre-service mathematics teachers in technology-supported geometry course]. Mersin University Journal of the Faculty of Education, 8(3), 102-121.
  • Yıldız, A. (2016). The geometric construction abilities of gifted students in solving realworld problems: A case from Turkey. Malaysian Online Journal of Educational Technology, 4(4), 53-67.
  • Yıldırım, A., & Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri, (Genişletilmiş 9. Baskı). Seçkin Yayıncılık.
  • Yin, R. K. (1994). Case study research: Design and methods. Sage Publication.

Investigation of mathematical thinking processes of gifted students in different environments: GeoGebra’s potential

Yıl 2023, , 245 - 260, 20.12.2023
https://doi.org/10.52826/mcbuefd.1306841

Öz

Mathematical thinking is a higher-order thinking style specific to mathematics that allows the solving of problems. In this context, it is inevitable to consider mathematical thinking in determining giftedness specific to mathematics. How superior mathematical thinking should be measured and the potential of different environments to elicit this mathematical thinking are a matter of debate. In this study, it was investigated how mathematical thinking in gifted students differed between using a paper and a pencil and using dynamic geometry software. Three gifted students’ solutions for given tasks in the paper-and-pencil and GeoGebra environments were compared within the scope of sub-dimensions (specializing, generalizing, conjecturing, and proving) of mathematical thinking. As a result of this study, the work undertaken by the students in the specializing step were seen to be similar in both the P&P and GeoGebra environments. On the other hand, it can be said that GeoGebra had the potential to reveal high-level work at the generalizing step. Different environments seemed to be important in revealing the ability to make assumptions. And it was seen that higher-order thinking skills for proof can be revealed with GeoGebra.

Kaynakça

  • Baltacı, S., Yıldız, A., & Kösa, T. (2015). The Potential of GeoGebra Dynamic Mathematics Software in Teaching Analytic Geometry: The Opinion of Pre-service Mathematics Teachers. Turkish Journal of Computer and Mathematics Education, 6(3), 483-505. https://doi.org/10.16949/turcomat.32803.
  • Baltacı, S., Yıldız, A., Kıymaz, Y., & Aytekin, C. (2016). Reflections from a Design Based Research Preparing GeoGebra Supported Activities towards Gifted Students. Mehmet Akif Ersoy University Journal of Education Faculty, 1(39), 70-90. https://doi.org/10.21764/efd.12232.
  • Chang, L. L. (1985). Who are the mathematically gifted elementary school children? Roeper Review, 8 (2), 76-79. https://doi.org/10.1080/02783198509552938.
  • Dede, Y. & Karakuş, F. (2014). A Pedagogical Perspective Concerning the Concept of Mathematical Proof: A Theoretical Study. Adıyaman University Journal of Educational Sciences, 4(2), 47-71.
  • Edwards, J. A., & Jones, K. (2006). Linking geometry and algebra with GeoGebra. Mathematics Teaching, 194, 28-30.
  • Gutierrez, A., Benedicto, C., Jaime, A., & Arbona, E. (2018). The Cognitive Demand of a Gifted Student’s Answers to Geometric Pattern Problems. F. M. Singer (Ed), Mathematical Creativity and Mathematical Giftedness (pp. 169–198). Springer, Cham. https://doi.org/10.1007/978-3-319-73156-8_7
  • Hancock, D.R., & Algozzine, B. (2006). Doing case study research: A practical guide for beginners researchers. Teachers College.
  • Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of proof. InF. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 805-842). NCTM.
  • Henderson, P. B., Hitchner, L., Fritz, S. J., Marion, B., Scharff, C., Hamer, J., & Riedesel, C. (2003). Materials development in support of mathematical thinking. ACM SIGCSE Bulletin, 35(2), 185-190. https://doi.org/10.1145/782941.783001.
  • Hıdıroğlu, Ç. N., & Bukova-Güzel, E. (2014). Using GeoGebra in Mathematical Modeling: The Height-Foot Length Problem. Pamukkale University Journal of Education, 36(2), 29-44. https://doi.org/10.9779/PUJE607.
  • Jablonski, S., & Ludwig, M. (2022). Examples and generalizations in mathematical reasoning – A study with potentially mathematically gifted children. Journal on Mathematics Education, 13(4), 605-630. http://doi.org/10.22342/jme.v13i4.pp605-630
  • Jensen Sheffield, L. (1994). The development of gifted and talented mathematics students and the National Council of Teachers of Mathematics standards (RBDM9404). Storrs: University of Connecticut, The National Research Center on the Gifted and Talented.
  • Kondratieva, M. (2013). Geometrical constructions in dynamic and interactive mathematics learning environment. Mevlana International Journal of Education, 3(3), 50-63. https://doi.org/10.13054/mije.si.2013.06.
  • Köse, N., Uygan, C. & Özen, D. (2012). Dragging types in dynamic geometry software. Turkish Journal of Computer and Mathematics Education, 3(1), 35-52.
  • Leymun, Ş. O., Odabaşı, H. F., & Yurdakul, I. K. (2017). Eğitim ortamlarında durum çalışmasının önemi. Eğitimde Nitel Araştırmalar Dergisi, 5(3), 367-385.
  • Mason, J., Burton, L., & Stacey, K. (1991). Thinking Mathematically. Addison-Wesley Publishers.
  • Mohd Hasrul, K., Mohd Fadzil, K., Mohd Saifun, A. M. S., Muhammad Zaim, E., Mior Muhamad, S. N. S., & Rorlinda, Y. (2022). Impact of differentiated instruction on the mathematical thinking processes of gifted and talented students. Journal of Education and e-Learning Research, 9(4), 269-277. 1
  • Öztürk, G. (2013). Matematiksel düşünme odaklı öğretim: Ortaöğretim matematik öğretmen adaylarının planlama becerileri ve görüşleri. Yayımlanmamış Doktora Tezi. Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir.
  • Pesen, C. (2003). Eğitim fakülteleri ve sınıf öğretmenleri için matematik öğretimi [Teaching mathematics for education faculties and classroom teachers]. Nobel Yayın Dağıtım.
  • Polya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton University Press. Sarracco, L. (2005). The effects of using dynamic geometry software in the middle school classroom. Iona College.
  • Stacey, K. (2006). What is mathematical thinking and why is it important? APECTsukuba International Conference, Tokyo, Japan.
  • Stacey, K., Burton, L., & Mason, J. (1985). Thinking mathematically. Addison-Wesley.
  • Stylianides, G. J., & Stylianides, A. J. (2005). Validation of solutions of construction problems in dynamic geometry environments. International Journal of Computers for Mathematical Learning, 10(1), 31–47. https://doi.org/10.1007/s10758-004-6999-x.
  • Subaşı, M., & Okumuş, K. (2017). Bir araştırma yöntemi olarak durum çalışması. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 21(2), 419-426.
  • Tarhan, S., & Kılıç, Ş. (2014). Üstün yetenekli bireylerin tanılanması ve Türkiye’deki eğitim modelleri. Üstün Yetenekliler Eğitimi ve Araştırmaları Dergisi (UYAD), 2(2), 27-43.
  • Yavuzsoy-Köse, N., Tanışlı, D., Özdemir-Erdoğan, E. & Yüzügüllü-Ada, T. (2012). İlköğretim matematik öğretmen adaylarının teknoloji destekli geometri dersindeki geometrik oluşum edinimleri [The geometric formation acquisition of pre-service mathematics teachers in technology-supported geometry course]. Mersin University Journal of the Faculty of Education, 8(3), 102-121.
  • Yıldız, A. (2016). The geometric construction abilities of gifted students in solving realworld problems: A case from Turkey. Malaysian Online Journal of Educational Technology, 4(4), 53-67.
  • Yıldırım, A., & Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri, (Genişletilmiş 9. Baskı). Seçkin Yayıncılık.
  • Yin, R. K. (1994). Case study research: Design and methods. Sage Publication.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Alan Eğitimleri
Bölüm Araştırma Makaleleri
Yazarlar

Yavuz İsa Aygün 0000-0002-6234-0559

Keziban Orbay 0000-0002-7642-4139

Funda Aydın Güç 0000-0002-3922-017X

Yayımlanma Tarihi 20 Aralık 2023
Gönderilme Tarihi 30 Mayıs 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aygün, Y. İ., Orbay, K., & Aydın Güç, F. (2023). Investigation of mathematical thinking processes of gifted students in different environments: GeoGebra’s potential. Manisa Celal Bayar Üniversitesi Eğitim Fakültesi Dergisi, 11(2), 245-260. https://doi.org/10.52826/mcbuefd.1306841