Araştırma Makalesi
BibTex RIS Kaynak Göster

İlköğretim Matematik Öğretmeni Adaylarının Öğretimsel Açıklamalarının Matematik Üslubu Açısından İncelenmesi

Yıl 2023, , 105 - 118, 20.12.2023
https://doi.org/10.52826/mcbuefd.1317304

Öz

Bu çalışmada ilköğretim matematik öğretmeni adaylarının gerçek sınıflarda yürüttükleri öğretim süreci çerçevesinde yaptıkları öğretimsel açıklamaların matematik üslubu açısından incelenmesi amaçlanmıştır. Yapılan bu incelemede öğretmen adaylarının matematik üslubunu kullanmada sergiledikleri olası uygunsuz durumların ve yetersizliklerin saptanması hedeflenmiştir. Bu amaç doğrultusunda, nitel araştırma yöntemlerinden durum çalışması yaklaşımı benimsenerek son sınıfta öğrenim görmekte olan 12 ilköğretim matematik öğretmeni adayının video ile kayıt altına alınmış ders anlatım süreçleri matematik üslubu açısından analiz edilmiştir. Analizin gerçekleştirilmesinde, literatürde dörtlü bilgi modelinin matematik üslubu açısından yorumlanması ile oluşturulmuş bir kavramsal çerçeve temel alınmıştır. Elde edilen bulgular öğretmen adaylarının matematiksel terminolojiyi birçok durumda yanlış kullandıklarını ve matematiksel kavramları tanımlamada veya açıklamada terminolojiyi basite indirgediklerini göstermiştir. Bununla birlikte öğretmen adaylarının matematiksel kavramları ve prosedürleri izah etmek için ders öncesinde hazırladıkları açıklamaları, kavramların farklı temsil biçimleriyle tutarsızlıklar barındırdığı saptanmıştır. Çalışmada elde edilen bulgular, öğretmen adaylarının matematik üslubunun öğrencilerin matematiği anlamlandırmasındaki etkisi ve öğretim sürecindeki önemi hususlarında farkındalıklarının arttırılmasının gerekli olduğuna işaret etmektedir. Öğretmen adaylarının pedagojik alan bilgilerini geliştirmeye yönelik literatürdeki güncel gelişmeler odağında, bu ihtiyacın nasıl karşılanabileceğine yönelik önerilerde bulunulmuştur.

Kaynakça

  • Açıkyıldız, G. (2013). Matematik öğretmeni adaylarının türev kavramını anlamaları ve yaptıkları hatalar (Yayımlanmamış yüksek lisans tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.
  • Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56(8), 786–795.
  • Appova, A., & Taylor, C. E. (2020). Providing opportunities to develop prospective teachers’ pedagogical content knowledge. The Mathematics Enthusiast, 17(2), 673-724.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.
  • Bosica, J., Pyper, J. S., & MacGregor, S. (2021). Incorporating problem-based learning in a secondary school mathematics preservice teacher education course. Teaching and Teacher Education, 102, 103335.
  • Chapman, A. (1993). Language and learning in school mathematics: A social semiotic perspective. Issues in Educational Research, 3(1), 35-46.
  • Choo, E. K., Garro, A. C., Ranney, M. L., Meisel, Z. F., & Morrow Guthrie, K. (2015). Qualitative research in emergency care part I: research principles and common applications. Academic Emergency Medicine, 22(9), 1096-1102.
  • Coskun, S. D., Bostan, M. I., & Rowland, T. (2021). Surprises in the mathematics classroom: Some in-the-moment responses of a primary teacher. Mathematics Teacher Education and Development, 23(1), 91-112.
  • Duran, N. B. (2017). Ortaokul matematik öğretmen adaylarının alan ve pedagojik alan bilgileri çerçevesinde kesirlerle çarpma ve bölme işlemlerinin öğretimine ilişkin kullandıkları modeller (Yayımlanmamış yüksek lisans tezi). Pamukkale Üniversitesi, Eğitim Bilimleri Enstitüsü, Denizli.
  • Guler, M., & Celik, D. (2021). The effect of an elective algebra teaching course on prospective mathematics teachers’ pedagogical content knowledge. International Electronic Journal of Mathematics Education, 16(2), em0636.
  • Güler, M., & Çelik, D. (2019). How well prepared are the teachers of tomorrow? An examination of prospective mathematics teachers' pedagogical content knowledge. International Journal of Mathematical Education in Science and Technology, 50(1), 82-99.
  • Güler, M., Çekmez, E., & Çelik, D. (2020). Breaking with tradition: An investigation of an alternative instructional sequence designed to improve prospective teachers’ noticing skills. Teaching and Teacher Education, 92, 103073.
  • Halliday, M. A. K. (1978). Language as social semiotic. London: Edward Arnold.
  • Kula Ünver, S., & Bukova Güzel, E. (2019). Matematik öğretmeni adaylarının limit öğretimlerindeki matematik dili kullanımları. Manisa Celal Bayar Üniversitesi Eğitim Fakültesi Dergisi, 7(1), 12-28.
  • Lane, C., O'Meara, N., & Walsh, R. (2019). Pre-service mathematics teachers' use of the mathematics register. Issues in Educational Research, 29(3), 790-806.
  • Lemke, J. L. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and word. In M. Anderson, A. Saenz-Ludlow, S. Zellweger, & V. V. Cifarelli (Eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 215–234). Brooklyn: Legas.
  • Morgan, C., & Alshwaikh, J. (2012). Communicating experience of 3D space: Mathematical and everyday discourse. Mathematical Thinking and Learning, 14(3), 199-225.
  • Nason, R., Chalmers, C., & Yeh, A. (2012). Facilitating growth in prospective teachers’ knowledge: teaching geometry in primary schools. Journal of Mathematics Teacher Education, 15, 227-249.
  • O’Halloran, K. (1999). Towards a systemic functional analysis of multisemiotic mathematics texts. Semiotica, 124(1/2), 1–29.
  • Pimm, D. (1991) Communicating mathematically. In K. Durkin & B. Shire (Eds.), Language in mathematical education. Milton Keynes: Open University Press
  • Rowland, T. (2007). Developing knowledge for mathematics teaching: A theoretical loop. In S. Close, D. Corcoran & T. Dooley (Eds.) Proceedings of the Second National Conference in Mathematics Education (pp. 13-26). Dublin: St. Patrick’s College.
  • Rowland, T. (2012). Contrasting knowledge for elementary and secondary mathematics teaching. For the Learning of Mathematics, 32(1), 6-21.
  • Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of mathematics teacher education, 8(3), 255-281.
  • Santagata, R., König, J., Scheiner, T., Nguyen, H., Adleff, A. K., Yang, X., & Kaiser, G. (2021). Mathematics teacher learning to notice: A systematic review of studies of video-based programs. ZDM–Mathematics Education, 53(1), 119-134.
  • Schleppegrell, J. M. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading & Writing Quarterly, 23(2), 139-159.
  • Sfard, A. (1992). Operational origins of mathematical notions and the quandary of reification: The case of function. In E. Dubinsky, & G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 58–84). Washington, DC: MAA.
  • Sun, J., & van Es, E. A. (2015). An exploratory study of the influence that analyzing teaching has on preservice teachers’ classroom practice. Journal of Teacher Education, 66(3), 201-214.
  • Yang, K. L., Cheng, Y. H., Wang, T. Y., & Chen, J. C. (2023). Preservice mathematics teachers’ reasoning about their instructional design for using technology to teach mathematics. Asia-Pacific Journal of Teacher Education, 51(3), 248-265.
  • Zolfaghari, M. (2020). Exploring preservice teachers’ pedagogical content knowledge of teaching fractions. In Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.), Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA.

Examining Pre-Service Elementary School Mathematics Teachers' Instructional Explanations in Terms of Mathematics Register

Yıl 2023, , 105 - 118, 20.12.2023
https://doi.org/10.52826/mcbuefd.1317304

Öz

In this study, it was aimed to examine the instructional explanations made by prospective elementary mathematics teachers within the context of the teaching process they carried out in real classrooms in terms of mathematics register. The aim of this inspection was to identify the possible inappropriate situations and inadequacies that pre-service teachers exhibit in using mathematics register. For this purpose, a case study approach, one of the qualitative research methods, was adopted and the video-recorded lecture processes of 12 prospective elementary mathematics teachers in their final year were analyzed in terms of mathematics register. The analysis was based on a conceptual framework that was created by interpreting the Knowledge Quartet model in the literature in terms of mathematics register. The findings showed that the pre-service teachers misused mathematical terminology in many cases and simplified the terminology in defining or explaining mathematical concepts. In addition, pre-service teachers' explanations prepared before the course to explain mathematical concepts and procedures were found to be inconsistent with different representations of mathematical concepts. The findings of the study indicate that it is necessary to increase the awareness of pre-service teachers about the effect of mathematical style on students' understanding of mathematics and its importance in the teaching process. Suggestions were made on how this need could be met by focusing on the current developments in the literature on improving pre-service teachers' pedagogical content knowledge.

Kaynakça

  • Açıkyıldız, G. (2013). Matematik öğretmeni adaylarının türev kavramını anlamaları ve yaptıkları hatalar (Yayımlanmamış yüksek lisans tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.
  • Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56(8), 786–795.
  • Appova, A., & Taylor, C. E. (2020). Providing opportunities to develop prospective teachers’ pedagogical content knowledge. The Mathematics Enthusiast, 17(2), 673-724.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.
  • Bosica, J., Pyper, J. S., & MacGregor, S. (2021). Incorporating problem-based learning in a secondary school mathematics preservice teacher education course. Teaching and Teacher Education, 102, 103335.
  • Chapman, A. (1993). Language and learning in school mathematics: A social semiotic perspective. Issues in Educational Research, 3(1), 35-46.
  • Choo, E. K., Garro, A. C., Ranney, M. L., Meisel, Z. F., & Morrow Guthrie, K. (2015). Qualitative research in emergency care part I: research principles and common applications. Academic Emergency Medicine, 22(9), 1096-1102.
  • Coskun, S. D., Bostan, M. I., & Rowland, T. (2021). Surprises in the mathematics classroom: Some in-the-moment responses of a primary teacher. Mathematics Teacher Education and Development, 23(1), 91-112.
  • Duran, N. B. (2017). Ortaokul matematik öğretmen adaylarının alan ve pedagojik alan bilgileri çerçevesinde kesirlerle çarpma ve bölme işlemlerinin öğretimine ilişkin kullandıkları modeller (Yayımlanmamış yüksek lisans tezi). Pamukkale Üniversitesi, Eğitim Bilimleri Enstitüsü, Denizli.
  • Guler, M., & Celik, D. (2021). The effect of an elective algebra teaching course on prospective mathematics teachers’ pedagogical content knowledge. International Electronic Journal of Mathematics Education, 16(2), em0636.
  • Güler, M., & Çelik, D. (2019). How well prepared are the teachers of tomorrow? An examination of prospective mathematics teachers' pedagogical content knowledge. International Journal of Mathematical Education in Science and Technology, 50(1), 82-99.
  • Güler, M., Çekmez, E., & Çelik, D. (2020). Breaking with tradition: An investigation of an alternative instructional sequence designed to improve prospective teachers’ noticing skills. Teaching and Teacher Education, 92, 103073.
  • Halliday, M. A. K. (1978). Language as social semiotic. London: Edward Arnold.
  • Kula Ünver, S., & Bukova Güzel, E. (2019). Matematik öğretmeni adaylarının limit öğretimlerindeki matematik dili kullanımları. Manisa Celal Bayar Üniversitesi Eğitim Fakültesi Dergisi, 7(1), 12-28.
  • Lane, C., O'Meara, N., & Walsh, R. (2019). Pre-service mathematics teachers' use of the mathematics register. Issues in Educational Research, 29(3), 790-806.
  • Lemke, J. L. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and word. In M. Anderson, A. Saenz-Ludlow, S. Zellweger, & V. V. Cifarelli (Eds.), Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing (pp. 215–234). Brooklyn: Legas.
  • Morgan, C., & Alshwaikh, J. (2012). Communicating experience of 3D space: Mathematical and everyday discourse. Mathematical Thinking and Learning, 14(3), 199-225.
  • Nason, R., Chalmers, C., & Yeh, A. (2012). Facilitating growth in prospective teachers’ knowledge: teaching geometry in primary schools. Journal of Mathematics Teacher Education, 15, 227-249.
  • O’Halloran, K. (1999). Towards a systemic functional analysis of multisemiotic mathematics texts. Semiotica, 124(1/2), 1–29.
  • Pimm, D. (1991) Communicating mathematically. In K. Durkin & B. Shire (Eds.), Language in mathematical education. Milton Keynes: Open University Press
  • Rowland, T. (2007). Developing knowledge for mathematics teaching: A theoretical loop. In S. Close, D. Corcoran & T. Dooley (Eds.) Proceedings of the Second National Conference in Mathematics Education (pp. 13-26). Dublin: St. Patrick’s College.
  • Rowland, T. (2012). Contrasting knowledge for elementary and secondary mathematics teaching. For the Learning of Mathematics, 32(1), 6-21.
  • Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of mathematics teacher education, 8(3), 255-281.
  • Santagata, R., König, J., Scheiner, T., Nguyen, H., Adleff, A. K., Yang, X., & Kaiser, G. (2021). Mathematics teacher learning to notice: A systematic review of studies of video-based programs. ZDM–Mathematics Education, 53(1), 119-134.
  • Schleppegrell, J. M. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading & Writing Quarterly, 23(2), 139-159.
  • Sfard, A. (1992). Operational origins of mathematical notions and the quandary of reification: The case of function. In E. Dubinsky, & G. Harel (Eds.), The concept of function: Aspects of epistemology and pedagogy (pp. 58–84). Washington, DC: MAA.
  • Sun, J., & van Es, E. A. (2015). An exploratory study of the influence that analyzing teaching has on preservice teachers’ classroom practice. Journal of Teacher Education, 66(3), 201-214.
  • Yang, K. L., Cheng, Y. H., Wang, T. Y., & Chen, J. C. (2023). Preservice mathematics teachers’ reasoning about their instructional design for using technology to teach mathematics. Asia-Pacific Journal of Teacher Education, 51(3), 248-265.
  • Zolfaghari, M. (2020). Exploring preservice teachers’ pedagogical content knowledge of teaching fractions. In Sacristán, A.I., Cortés-Zavala, J.C. & Ruiz-Arias, P.M. (Eds.), Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Mexico. Cinvestav / AMIUTEM / PME-NA.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Erdem Çekmez 0000-0001-8684-2820

Mustafa Güler 0000-0002-4082-7585

Beste Selin Koca 0009-0009-0191-6401

Yayımlanma Tarihi 20 Aralık 2023
Gönderilme Tarihi 20 Haziran 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Çekmez, E., Güler, M., & Koca, B. S. (2023). İlköğretim Matematik Öğretmeni Adaylarının Öğretimsel Açıklamalarının Matematik Üslubu Açısından İncelenmesi. Manisa Celal Bayar Üniversitesi Eğitim Fakültesi Dergisi, 11(2), 105-118. https://doi.org/10.52826/mcbuefd.1317304