Araştırma Makalesi
BibTex RIS Kaynak Göster

Cebirsel Düşünme Kapsamında Öğretim Programlarının İncelenmesi: Türkiye, Singapur, İngiltere ve Kanada'dan (Ontario) Örnekler

Yıl 2025, Cilt: 54 Sayı: 1, 269 - 310, 24.12.2025
https://doi.org/10.37669/milliegitim.1708174

Öz

Bu araştırmanın amacı, 2024-2025 eğitim öğretim yılından itibaren uygulanmaya başlanan Türkiye Yüzyılı Maarif Modeli ile hâlen yürürlükte olan Türkiye (2018, 2024) Ortaokul Matematik Dersi Öğretim Programı’nı, cebirsel düşünme ve cebir öğrenme alanında Singapur, İngiltere ve Kanada (Ontario) matematik öğretim programlarıyla karşılaştırarak benzerlik ve farklılıkları ortaya koymaktır. Singapur, İngiltere ve Kanada (Ontario) matematik öğretim programları, Türkiye’ye kıyasla TIMSS ve PISA gibi uluslararası geçerliliğe sahip sınavlardaki ortalama ölçek puanlarının daha yüksek olması ve farklı kıtalarda yer almaları nedeniyle veri kaynağı olarak dikkate alınmıştır. 5-8. sınıf düzeylerine karşılık gelen sınıf seviyelerinde cebir öğrenme alanı; cebirsel düşünmeyle ilişkili genelleştirilmiş aritmetik, fonksiyonel düşünme ve modelleme dilleri bileşenlerinin yanı sıra çeşitli kavram ve süreçlere dayalı üç ayrı boyutta doküman analizi yoluyla incelenmiştir. Cebir öğrenme alanına ait alt öğrenme alanları ve kazanımlar arasındaki benzerlik ve farklılıklar yatay karşılaştırmalar yoluyla ortaya konulmuştur. Karşılaştırma sonucunda, Ontario ve Türkiye Yüzyılı Maarif Modeli programlarının genelleştirilmiş aritmetik, fonksiyonel düşünme ve modelleme dili açısından dengeli bir dağılım gösterdiği sonucuna varılmıştır. Buna karşılık, Singapur programı örüntüler ve ilişkiler yoluyla fonksiyonel düşünme ve problem çözmeye; İngiltere programı ise cebiri akıl yürütme ve gerçek yaşam uygulamalarıyla bütünleştirmeye vurgu yapmaktadır. Genel olarak her sınıf düzeyinde uygun cebirsel kavramların sunulması, çeşitli süreçlerin desteklenmesi, matematiksel ifadelerin kapsayıcılığı, yönlendirici açıklamalar ve örnek uygulamaların bulunması programlar arasında dikkat çeken ortak özelliklerdir.

Kaynakça

  • Akın, G. (2020). The effects of a functional thinking intervention on fifth grade students’ functional thinking skills [Master’s thesis]. Middle East Technical University.
  • Akkan, Y., & Çakıroğlu, Ü. (2012). Generalization Strategies of Linear and Quadratic Pattern: A Comparison of 6th-8th Grade Students. Education and Science, 37(165), 104-120. https://doi.org/10.15390/ES.2012.1055
  • Ayber, G., & Tanışlı, D. (2017). An analysis of middle school mathematics textbooks from the perspective of fostering algebraic thinking through generalization. Educational Sciences: Theory & Practice, 17, 2001–2030. http://dx.doi.org/10.12738/estp.2017.6.0506
  • Bacakoğlu, T. Y., & Tertemiz, N. (2021). Türkiye ve Singapur ilkokul matematik dersi öğretim programlarının geometri öğrenme alanı bağlamında karşılaştırılması. Nevşehir Hacı Bektaş Veli Üniversitesi SBE Dergisi, 11(3), 1089–1107. https://doi.org/10.30783/nevsosbilen.917768
  • Bakioğlu, A., & Pekince, D. (2020). Kanada eğitim sistemi. In A. Bakioğlu (Ed.), Karşılaştırmalı eğitim sistemleri (pp. 158–190). Nobel Akademik Yayıncılık.
  • Bakioğlu, A., & Ülker, N. (2020). İngiltere eğitim sistemi. In A. Bakioğlu (Ed.), Karşılaştırmalı eğitim sistemleri (pp. 289–325). Nobel Akademik Yayıncılık.
  • Bednarz, N., Kieran, C., & Lee, L. (Eds.). (1996). Approaches to algebra: Perspectives for research and teaching. Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-1732-3
  • Blanton, M. L., & Kaput, J. J. (2004). Elementary grades students’ capacity for functional thinking. Journal of Research in Mathematics Education, 35(2), 149–174. https://doi.org/10.2307/30034779
  • Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. J. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 5–23). Springer.
  • Blanton, M. L., Brizuela, B. M., Gardiner, A. M., Sawrey, K., & Newman-Owens, A. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95(2), 181–202. https://doi.org/10.1007/s10649-016- 9745-0
  • Blanton, M. L., Brizuela, B. M., Stephens, A. C., Knuth, E., Isler, I., Gardiner, A. M., Stroud, R., Fonger, N. L., & Stylianou, D. (2018). Implementing a framework for early algebra. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp. 27–49). Springer International Publishing.
  • Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A. F. Coxford & A. P. Shulte (Eds.), The ideas of algebra, K–12 (pp. 20–32). National Council of Teachers of Mathematics.
  • Bütüner, S. Ö., & Güler, M. (2017). Gerçeklerle yüzleşme: Türkiye’nin TIMSS matematik başarısı üzerine bir çalışma. Journal of Bayburt Education Faculty, 12(23), 161–184.
  • Cai, J., & Hwang, S. (2022). Seeing Algebra in Arithmetic Through Mathematical Problem Posing. Journal of Educational Research in Mathematics, 32(3), 309-329.
  • Cai, J., & Knuth, E. (Eds.). (2011). Early algebraization: A global dialogue from multiple perspectives. Springer. https://doi.org/10.1007/978-3-642- 17735-4
  • Carpenter, T. P., & Levi, L. (2000). Developing conceptions of algebraic reasoning in the primary grades. (Res. Rep. 00-2). Madison, WI: National Center for Improving Student Learning and Achievement in Mathematics and Science.
  • Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669–705). Charlotte, NC: Information Age Publishing.
  • Department for Education. (2013). National curriculum in England: Mathematics programmes of study – Key stages 1, 2 and 3. https://www.gov.uk/ government/publications/national-curriculum-in-england-mathematicsprogrammes- of-study
  • Ergün, M. (1985). Karşılaştırmalı eğitim. https://avys.omu.edu.tr/storage/ app/public/ismailgelen/134646/Tarihsel%20Surec%20Asamalari%20 Kurulusu%20ve%20MA%20Jullien.pdf
  • Fong, N. S. (2004). Developing algebraic thinking in early grades: Case study of the Singapore primary mathematics curriculum. The Mathematics Educator, 8(1), 39–59.
  • Gadanidis, G., Floyd, S., Hughes, J. M., Namukasa, I. K., & Scucuglia, R. (n.d.). Coding in the Ontario mathematics curriculum, 1–8: Might it be transformational? Math Knowledge Network. http://mkn-rcm.ca/wpcontent/ uploads/2021/03/CL-mkn-v3.pdf
  • Gökçe, S., & Yenmez, A. A. (2022). İngiltere ortaokul matematik öğretim programı. In Karşılaştırmalı ortaokul matematik öğretim programları (pp. 325–342). Nobel Akademik Yayıncılık.
  • Gürses, H. (2022). Matematik dersi öğretim programlarında 21. yüzyıl becerileri: Türkiye, Singapur, Finlandiya ve İngiltere karşılaştırması [Yayımlanmamış doktora tezi]. Burdur Mehmet Akif Ersoy Üniversitesi.
  • Hewitt, D. (2014). A symbolic dance: The interplay between movement, notation, and mathematics on a journey toward solving equations. Mathematical Thinking and Learning, 16(1), 1–31. https://doi.org/10.1080/10986065. 2014.857803
  • Howson, G., & Rogers, L. (2014). Mathematics education in the United Kingdom. In A. Karp & G. Schubring (Eds.), Handbook on the history of mathematics education. Springer. https://doi.org/10.1007/978-1-4614- 9155-2_13
  • Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96, 1–16.
  • Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5–17). Lawrence Erlbaum Associates.
  • Kaput, J. J., & Blanton, M. L. (1999). Algebraic reasoning in the context of elementary mathematics: Making it implementable on a wide scale (ERIC Document Reproduction Service No. ED441663). ERIC. https:// eric.ed.gov/?id=ED441663
  • Kaur, B., & Leong, Y. H. (2021). Overview of the school system and school mathematics curriculum in Singapore. In B. Kaur & Y. H. Leong (Eds.), Mathematics instructional practices in Singapore secondary schools. Mathematics education – An Asian perspective. Springer. https://doi. org/10.1007/978-981-15-8956-0_1
  • Kıral, B. (2020). Nitel bir veri analizi yöntemi olarak doküman analizi. Siirt Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(15), 170–189.
  • Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390–419). Macmillan Publishing Company.
  • Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. M. Álvarez, B. Hodgson, C. Laborde, & A. Pérez (Eds.), Proceedings of the 8th international congress on mathematical education: Selected lectures (pp. 271–290). Springer.
  • Kieran, C. (1997). Mathematical concepts at the secondary level: The learning of algebra and functions. In T. Nunes & P. Bryant (Eds.), Learning and teaching of mathematics – An international perspective (pp. 133–158). Psychology Press Ltd.
  • Kieran, C. (2004). Algebraic thinking in the early grades. What is it? The Mathematics Educator (Singapore), 8(1), 139–151. https://gpc-maths. org/data/documents/kieran2004.pdf
  • Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Information Age Publishing.
  • Kieran, C. (2011). Overall commentary on early algebraization: Perspectives for research and teaching. In J. Cai & E. Knuth (Eds.), Advances in mathematics education (pp. 579–593). Springer.
  • Kuzu, O., Çiçek, Y., & İğdeli, Z. (2023). A comparison of the mathematics curriculums in Turkey and Germany in the context of algebra learning domain. Journal of Teacher Education and Lifelong Learning, 5(1), 51– 69. https://doi.org/10.51535/tell.1222957
  • Lins, R. C. (1992). A framework for understanding what algebraic thinking is [Doctoral dissertation, University of Nottingham].
  • Ministry of National Education. (2018). Mathematics course curriculum: Primary school and secondary school 1st, 2nd, 3rd, 4th, 5th, 6th, 7th and 8th grades.
  • Ministry of National Education. (2024). Century of Turkiye Education Model: Mathematics curriculum (Grades 5–8). https://mufredat.meb.gov.tr
  • Mullis, I.V.S., Martin, M.O., Foy, P., Kelly, D.L. and Fishbein, B. (2020) TIMSS 2019 International Results in Mathematics and Science. Retrived from: https://Timssandpirls.Bc.Edu/Timss2019/International-Results/ National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics.
  • Ontario Ministry of Education. (2020). Math curriculum for grades 1–8. https:// www.ontario.ca/page/new-math-curriculum-grades-1-8
  • Özkan, U. B. (2023). Doküman İnceleme Yönteminde Geçerlik ve Güvenirlik: Eğitim Bilimleri Araştırmaları Bağlamında Kuramsal Bir İnceleme. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi(56), 832-848. https:// doi.org/10.53444/deubefd.1258867
  • Özyıldırım Gümüş, F. (2022). Preservice elementary mathematics teachers’ use of patterns and pattern problems when planning and implementing lessons. International Journal of Mathematical Education in Science and Technology, 53(8), 2152–2175.
  • Palabıyık, U., & Akkuş İspir, O. (2011). Örüntü temelli cebir öğretiminin öğrencilerin cebirsel düşünme becerileri ve matematiğe karşı tutumlarına etkisi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, (30), 111–123.
  • Pittalis, M., Pitta-Pantazi, D., & Christou, C. (2020). Young students’ functional thinking modes: The relation between recursive patterning, covariational thinking, and correspondence relations. Journal for Research in Mathematics Education, 51(5), 631–674. https://doi.org/10.5951/ jresematheduc-2020-0164
  • Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis. Educational Studies in Mathematics, 42(3), 237– 268. https://doi.org/10.1023/A:1017530828058
  • Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12(1), 1–19.
  • Sadak, M., İncikabı, S., & Pektaş, O. (2021). A thematic analysis of graduate theses on comparative education in Turkey: Reflection from mathematics and science education fields. TAY Journal, 5(1), 1–23.
  • Saylık, A. & Saylık, G. (2015). İngiltere Eğitim Sistemi Üzerine Bir İnceleme: Amaç, Yapı Ve Süreç Bakımından Türkiye Eğitim Sistemiyle Karşılaştırılması. Route Educational and Social Science Journal, 2(2), 652-671.
  • Schmidt, W. H., & Prawat, R. S. (2006). Curriculum coherence and national control of education: issue or non‐issue? Journal of Curriculum Studies, 38(6), 641–658. https://doi.org/10.1080/00220270600682804
  • Singapore Ministry of Education. (2020a). Mathematics syllabus: Primary one to six. https://www.moe.gov.sg/-/media/files/primary/mathematics_ syllabus_primary_1_to_6.pdf
  • Singapore Ministry of Education. (2020b). Mathematics syllabus: Secondary one to four. https://www.moe.gov.sg/-/media/files/secondary/syllabuses/ maths/2020-express_na-maths_syllabuses.pdf
  • Steinweg, A., Twohill, A., & Mc Auliffe, S. (2023). ZADIE functional thinking through patterning: Teacher manual. CASTeL.
  • Stephens, A., Blanton, M., Knuth, E., İşler-Baykal, I., & Gardiner, A. (2015). Just say yes to early algebra! Teaching Children Mathematics, 22, 92–101. https://doi.org/10.5951/teacchilmath.22.2.0092
  • Stephens, A. C., Fonger, N., Strachota, S., İşler Baykal, I., Blanton, M., Knuth, E., & Gardiner, A. M. (2017). A learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19(3), 143–166.
  • Subramaniam, K., & Banerjee, R. (2011). The arithmetic-algebra connection: A historical-pedagogical perspective. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 87–107). Springer. https://doi.org/10.1007/978-3- 642-17735-4_6
  • Swafford, J. O., & Langrall, C. W. (2000). Grade 6 students’ pre-instructional use of equations to describe and represent problem situations. Journal for Research in Mathematics Education, 31(1), 89–112.
  • Taşdan, M. (2018). Kanada eğitim sistemi. In A. Balcı (Ed.), Karşılaştırmalı eğitim sistemleri (pp. 595–607). Pegem Akademi.
  • Toluk Uçar, Z. (2018). Öğretim programları açısından cebirsel düşünmeye yaklaşımlar. In M. F. Özmantar, H. Akkoç, B. Kuşdemir Kayıran, & M. Özyurt (Eds.), Ortaokul matematik öğretim programları tarihsel bir inceleme (pp. 209–242). Pegem Akademi.
  • Türkmen, H. ve Tanışlı, D. (2019). Cebir öncesi: 3. 4. ve 5. sınıf öğrencilerinin fonksiyonel ilişkileri genelleme düzeyleri. Eğitimde Nitel Araştırmalar Dergisi – Journal of Qualitative Research Education, 7(1), 344-372. doi:10.14689/issn.2148-2624.1.7c1s.16m
  • Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. F. Coxford (Ed.), The ideas of algebra, K–12 (pp. 8–19). National Council of Teachers of Mathematics.
  • Valverde, G., Bianchi, L., Wolfe, R., Schmidt, W., & Houang, R. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbooks. London: Kluwer Academic Publishers.
  • Van de Walle, J. A., Karp, K. S., & Williams, J. M. B. (2010). Elementary and middle school mathematics: Teaching developmentally (7th ed.). Pearson.
  • Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number concepts and operations. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557–628). Information Age Publishing.
  • Wach, E. (2013). Learning about qualitative document analysis. IDS Practice Papers.
  • Walkoe, J., & Levin, M. (2022). Seeds of algebraic thinking: A knowledge in pieces perspective on the development of algebraic thinking. ZDM – Mathematics Education, 54, 1303–1314.
  • Warren, E., & Cooper, T. (2008). Patterns that support early algebraic thinking in the elementary school. In C. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics: 70th NCTM Yearbook (pp. 113–126). National Council of Teachers of Mathematics.
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
  • Wing, J. M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7–14. https:// doi.org/10.17471/2499-4324/922
  • Yaldız, T., Yıldırım, E., & Arslan, S. (2020). İngiltere eğitim sistemi: Türkiye için bazı örnek uygulamalar. The Journal of International Education Science, 22(7), 22–40.
  • Yıldırım, A., & Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.

Examining Curricula within the Scope of Algebraic Thinking: Examples from Turkiye, Singapore, England and Canada (Ontario)

Yıl 2025, Cilt: 54 Sayı: 1, 269 - 310, 24.12.2025
https://doi.org/10.37669/milliegitim.1708174

Öz

The purpose of this research is to compare the Century of Türkiye Education Model, which has been implemented since the 2024–2025 academic year, and the Türkiye (2018, 2024) secondary school mathematics curriculum, which is still ongoing, with the mathematics curricula of Singapore, England, and Canada (Ontario) in the field of algebraic thinking and algebra learning, revealing similarities and differences. The curricula of Singapore, England, and Ontario have been considered data sources due to their higher average scale scores in internationally recognized assessments such as TIMSS and PISA compared to Turkiye and their geographical diversity across different continents. The algebra learning area at the class levels corresponding to grades 5–8 has been examined through document analysis using three distinct dimensions based on various concepts and processes alongside the components of generalized arithmetic, functional thinking, and modeling languages associated with algebraic thinking. The similarities and differences between the sub-learning areas and achievements related to the algebra learning area have been delineated through horizontal comparisons. As a result of the comparison, it was found that the Ontario and the Century of Türkiye Model curricula present a balanced distribution among generalized arithmetic, functional thinking, and modeling languages. The Singapore curriculum, on the other hand, emphasizes functional thinking and problem solving through patterns and relations, while the England curriculum integrates algebra with reasoning and real-life applications. Overall, the provision of algebraic concepts at each grade level, the support of various processes, the inclusivity of mathematical expressions, and the presence of guiding descriptions and exemplary applications are notable across the curricula.

Kaynakça

  • Akın, G. (2020). The effects of a functional thinking intervention on fifth grade students’ functional thinking skills [Master’s thesis]. Middle East Technical University.
  • Akkan, Y., & Çakıroğlu, Ü. (2012). Generalization Strategies of Linear and Quadratic Pattern: A Comparison of 6th-8th Grade Students. Education and Science, 37(165), 104-120. https://doi.org/10.15390/ES.2012.1055
  • Ayber, G., & Tanışlı, D. (2017). An analysis of middle school mathematics textbooks from the perspective of fostering algebraic thinking through generalization. Educational Sciences: Theory & Practice, 17, 2001–2030. http://dx.doi.org/10.12738/estp.2017.6.0506
  • Bacakoğlu, T. Y., & Tertemiz, N. (2021). Türkiye ve Singapur ilkokul matematik dersi öğretim programlarının geometri öğrenme alanı bağlamında karşılaştırılması. Nevşehir Hacı Bektaş Veli Üniversitesi SBE Dergisi, 11(3), 1089–1107. https://doi.org/10.30783/nevsosbilen.917768
  • Bakioğlu, A., & Pekince, D. (2020). Kanada eğitim sistemi. In A. Bakioğlu (Ed.), Karşılaştırmalı eğitim sistemleri (pp. 158–190). Nobel Akademik Yayıncılık.
  • Bakioğlu, A., & Ülker, N. (2020). İngiltere eğitim sistemi. In A. Bakioğlu (Ed.), Karşılaştırmalı eğitim sistemleri (pp. 289–325). Nobel Akademik Yayıncılık.
  • Bednarz, N., Kieran, C., & Lee, L. (Eds.). (1996). Approaches to algebra: Perspectives for research and teaching. Kluwer Academic Publishers. https://doi.org/10.1007/978-94-009-1732-3
  • Blanton, M. L., & Kaput, J. J. (2004). Elementary grades students’ capacity for functional thinking. Journal of Research in Mathematics Education, 35(2), 149–174. https://doi.org/10.2307/30034779
  • Blanton, M. L., & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grades. In J. Cai & E. J. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 5–23). Springer.
  • Blanton, M. L., Brizuela, B. M., Gardiner, A. M., Sawrey, K., & Newman-Owens, A. (2017). A progression in first-grade children’s thinking about variable and variable notation in functional relationships. Educational Studies in Mathematics, 95(2), 181–202. https://doi.org/10.1007/s10649-016- 9745-0
  • Blanton, M. L., Brizuela, B. M., Stephens, A. C., Knuth, E., Isler, I., Gardiner, A. M., Stroud, R., Fonger, N. L., & Stylianou, D. (2018). Implementing a framework for early algebra. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp. 27–49). Springer International Publishing.
  • Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A. F. Coxford & A. P. Shulte (Eds.), The ideas of algebra, K–12 (pp. 20–32). National Council of Teachers of Mathematics.
  • Bütüner, S. Ö., & Güler, M. (2017). Gerçeklerle yüzleşme: Türkiye’nin TIMSS matematik başarısı üzerine bir çalışma. Journal of Bayburt Education Faculty, 12(23), 161–184.
  • Cai, J., & Hwang, S. (2022). Seeing Algebra in Arithmetic Through Mathematical Problem Posing. Journal of Educational Research in Mathematics, 32(3), 309-329.
  • Cai, J., & Knuth, E. (Eds.). (2011). Early algebraization: A global dialogue from multiple perspectives. Springer. https://doi.org/10.1007/978-3-642- 17735-4
  • Carpenter, T. P., & Levi, L. (2000). Developing conceptions of algebraic reasoning in the primary grades. (Res. Rep. 00-2). Madison, WI: National Center for Improving Student Learning and Achievement in Mathematics and Science.
  • Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669–705). Charlotte, NC: Information Age Publishing.
  • Department for Education. (2013). National curriculum in England: Mathematics programmes of study – Key stages 1, 2 and 3. https://www.gov.uk/ government/publications/national-curriculum-in-england-mathematicsprogrammes- of-study
  • Ergün, M. (1985). Karşılaştırmalı eğitim. https://avys.omu.edu.tr/storage/ app/public/ismailgelen/134646/Tarihsel%20Surec%20Asamalari%20 Kurulusu%20ve%20MA%20Jullien.pdf
  • Fong, N. S. (2004). Developing algebraic thinking in early grades: Case study of the Singapore primary mathematics curriculum. The Mathematics Educator, 8(1), 39–59.
  • Gadanidis, G., Floyd, S., Hughes, J. M., Namukasa, I. K., & Scucuglia, R. (n.d.). Coding in the Ontario mathematics curriculum, 1–8: Might it be transformational? Math Knowledge Network. http://mkn-rcm.ca/wpcontent/ uploads/2021/03/CL-mkn-v3.pdf
  • Gökçe, S., & Yenmez, A. A. (2022). İngiltere ortaokul matematik öğretim programı. In Karşılaştırmalı ortaokul matematik öğretim programları (pp. 325–342). Nobel Akademik Yayıncılık.
  • Gürses, H. (2022). Matematik dersi öğretim programlarında 21. yüzyıl becerileri: Türkiye, Singapur, Finlandiya ve İngiltere karşılaştırması [Yayımlanmamış doktora tezi]. Burdur Mehmet Akif Ersoy Üniversitesi.
  • Hewitt, D. (2014). A symbolic dance: The interplay between movement, notation, and mathematics on a journey toward solving equations. Mathematical Thinking and Learning, 16(1), 1–31. https://doi.org/10.1080/10986065. 2014.857803
  • Howson, G., & Rogers, L. (2014). Mathematics education in the United Kingdom. In A. Karp & G. Schubring (Eds.), Handbook on the history of mathematics education. Springer. https://doi.org/10.1007/978-1-4614- 9155-2_13
  • Jeannotte, D., & Kieran, C. (2017). A conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96, 1–16.
  • Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5–17). Lawrence Erlbaum Associates.
  • Kaput, J. J., & Blanton, M. L. (1999). Algebraic reasoning in the context of elementary mathematics: Making it implementable on a wide scale (ERIC Document Reproduction Service No. ED441663). ERIC. https:// eric.ed.gov/?id=ED441663
  • Kaur, B., & Leong, Y. H. (2021). Overview of the school system and school mathematics curriculum in Singapore. In B. Kaur & Y. H. Leong (Eds.), Mathematics instructional practices in Singapore secondary schools. Mathematics education – An Asian perspective. Springer. https://doi. org/10.1007/978-981-15-8956-0_1
  • Kıral, B. (2020). Nitel bir veri analizi yöntemi olarak doküman analizi. Siirt Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 8(15), 170–189.
  • Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390–419). Macmillan Publishing Company.
  • Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. M. Álvarez, B. Hodgson, C. Laborde, & A. Pérez (Eds.), Proceedings of the 8th international congress on mathematical education: Selected lectures (pp. 271–290). Springer.
  • Kieran, C. (1997). Mathematical concepts at the secondary level: The learning of algebra and functions. In T. Nunes & P. Bryant (Eds.), Learning and teaching of mathematics – An international perspective (pp. 133–158). Psychology Press Ltd.
  • Kieran, C. (2004). Algebraic thinking in the early grades. What is it? The Mathematics Educator (Singapore), 8(1), 139–151. https://gpc-maths. org/data/documents/kieran2004.pdf
  • Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Information Age Publishing.
  • Kieran, C. (2011). Overall commentary on early algebraization: Perspectives for research and teaching. In J. Cai & E. Knuth (Eds.), Advances in mathematics education (pp. 579–593). Springer.
  • Kuzu, O., Çiçek, Y., & İğdeli, Z. (2023). A comparison of the mathematics curriculums in Turkey and Germany in the context of algebra learning domain. Journal of Teacher Education and Lifelong Learning, 5(1), 51– 69. https://doi.org/10.51535/tell.1222957
  • Lins, R. C. (1992). A framework for understanding what algebraic thinking is [Doctoral dissertation, University of Nottingham].
  • Ministry of National Education. (2018). Mathematics course curriculum: Primary school and secondary school 1st, 2nd, 3rd, 4th, 5th, 6th, 7th and 8th grades.
  • Ministry of National Education. (2024). Century of Turkiye Education Model: Mathematics curriculum (Grades 5–8). https://mufredat.meb.gov.tr
  • Mullis, I.V.S., Martin, M.O., Foy, P., Kelly, D.L. and Fishbein, B. (2020) TIMSS 2019 International Results in Mathematics and Science. Retrived from: https://Timssandpirls.Bc.Edu/Timss2019/International-Results/ National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics.
  • Ontario Ministry of Education. (2020). Math curriculum for grades 1–8. https:// www.ontario.ca/page/new-math-curriculum-grades-1-8
  • Özkan, U. B. (2023). Doküman İnceleme Yönteminde Geçerlik ve Güvenirlik: Eğitim Bilimleri Araştırmaları Bağlamında Kuramsal Bir İnceleme. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi(56), 832-848. https:// doi.org/10.53444/deubefd.1258867
  • Özyıldırım Gümüş, F. (2022). Preservice elementary mathematics teachers’ use of patterns and pattern problems when planning and implementing lessons. International Journal of Mathematical Education in Science and Technology, 53(8), 2152–2175.
  • Palabıyık, U., & Akkuş İspir, O. (2011). Örüntü temelli cebir öğretiminin öğrencilerin cebirsel düşünme becerileri ve matematiğe karşı tutumlarına etkisi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, (30), 111–123.
  • Pittalis, M., Pitta-Pantazi, D., & Christou, C. (2020). Young students’ functional thinking modes: The relation between recursive patterning, covariational thinking, and correspondence relations. Journal for Research in Mathematics Education, 51(5), 631–674. https://doi.org/10.5951/ jresematheduc-2020-0164
  • Radford, L. (2000). Signs and meanings in students’ emergent algebraic thinking: A semiotic analysis. Educational Studies in Mathematics, 42(3), 237– 268. https://doi.org/10.1023/A:1017530828058
  • Radford, L. (2010). Algebraic thinking from a cultural semiotic perspective. Research in Mathematics Education, 12(1), 1–19.
  • Sadak, M., İncikabı, S., & Pektaş, O. (2021). A thematic analysis of graduate theses on comparative education in Turkey: Reflection from mathematics and science education fields. TAY Journal, 5(1), 1–23.
  • Saylık, A. & Saylık, G. (2015). İngiltere Eğitim Sistemi Üzerine Bir İnceleme: Amaç, Yapı Ve Süreç Bakımından Türkiye Eğitim Sistemiyle Karşılaştırılması. Route Educational and Social Science Journal, 2(2), 652-671.
  • Schmidt, W. H., & Prawat, R. S. (2006). Curriculum coherence and national control of education: issue or non‐issue? Journal of Curriculum Studies, 38(6), 641–658. https://doi.org/10.1080/00220270600682804
  • Singapore Ministry of Education. (2020a). Mathematics syllabus: Primary one to six. https://www.moe.gov.sg/-/media/files/primary/mathematics_ syllabus_primary_1_to_6.pdf
  • Singapore Ministry of Education. (2020b). Mathematics syllabus: Secondary one to four. https://www.moe.gov.sg/-/media/files/secondary/syllabuses/ maths/2020-express_na-maths_syllabuses.pdf
  • Steinweg, A., Twohill, A., & Mc Auliffe, S. (2023). ZADIE functional thinking through patterning: Teacher manual. CASTeL.
  • Stephens, A., Blanton, M., Knuth, E., İşler-Baykal, I., & Gardiner, A. (2015). Just say yes to early algebra! Teaching Children Mathematics, 22, 92–101. https://doi.org/10.5951/teacchilmath.22.2.0092
  • Stephens, A. C., Fonger, N., Strachota, S., İşler Baykal, I., Blanton, M., Knuth, E., & Gardiner, A. M. (2017). A learning progression for elementary students’ functional thinking. Mathematical Thinking and Learning, 19(3), 143–166.
  • Subramaniam, K., & Banerjee, R. (2011). The arithmetic-algebra connection: A historical-pedagogical perspective. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 87–107). Springer. https://doi.org/10.1007/978-3- 642-17735-4_6
  • Swafford, J. O., & Langrall, C. W. (2000). Grade 6 students’ pre-instructional use of equations to describe and represent problem situations. Journal for Research in Mathematics Education, 31(1), 89–112.
  • Taşdan, M. (2018). Kanada eğitim sistemi. In A. Balcı (Ed.), Karşılaştırmalı eğitim sistemleri (pp. 595–607). Pegem Akademi.
  • Toluk Uçar, Z. (2018). Öğretim programları açısından cebirsel düşünmeye yaklaşımlar. In M. F. Özmantar, H. Akkoç, B. Kuşdemir Kayıran, & M. Özyurt (Eds.), Ortaokul matematik öğretim programları tarihsel bir inceleme (pp. 209–242). Pegem Akademi.
  • Türkmen, H. ve Tanışlı, D. (2019). Cebir öncesi: 3. 4. ve 5. sınıf öğrencilerinin fonksiyonel ilişkileri genelleme düzeyleri. Eğitimde Nitel Araştırmalar Dergisi – Journal of Qualitative Research Education, 7(1), 344-372. doi:10.14689/issn.2148-2624.1.7c1s.16m
  • Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. F. Coxford (Ed.), The ideas of algebra, K–12 (pp. 8–19). National Council of Teachers of Mathematics.
  • Valverde, G., Bianchi, L., Wolfe, R., Schmidt, W., & Houang, R. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbooks. London: Kluwer Academic Publishers.
  • Van de Walle, J. A., Karp, K. S., & Williams, J. M. B. (2010). Elementary and middle school mathematics: Teaching developmentally (7th ed.). Pearson.
  • Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number concepts and operations. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 557–628). Information Age Publishing.
  • Wach, E. (2013). Learning about qualitative document analysis. IDS Practice Papers.
  • Walkoe, J., & Levin, M. (2022). Seeds of algebraic thinking: A knowledge in pieces perspective on the development of algebraic thinking. ZDM – Mathematics Education, 54, 1303–1314.
  • Warren, E., & Cooper, T. (2008). Patterns that support early algebraic thinking in the elementary school. In C. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics: 70th NCTM Yearbook (pp. 113–126). National Council of Teachers of Mathematics.
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
  • Wing, J. M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7–14. https:// doi.org/10.17471/2499-4324/922
  • Yaldız, T., Yıldırım, E., & Arslan, S. (2020). İngiltere eğitim sistemi: Türkiye için bazı örnek uygulamalar. The Journal of International Education Science, 22(7), 22–40.
  • Yıldırım, A., & Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eğitimde Program Değerlendirme, Matematik Eğitimi
Bölüm Araştırma Makalesi
Yazarlar

Zeynep Gürsoy 0000-0002-6142-1218

Zeynep Sonay Ay 0000-0002-1037-7106

Gönderilme Tarihi 28 Mayıs 2025
Kabul Tarihi 3 Aralık 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 1

Kaynak Göster

APA Gürsoy, Z., & Ay, Z. S. (2025). Examining Curricula within the Scope of Algebraic Thinking: Examples from Turkiye, Singapore, England and Canada (Ontario). Milli Eğitim Dergisi, 54(1), 269-310. https://doi.org/10.37669/milliegitim.1708174