Araştırma Makalesi
BibTex RIS Kaynak Göster

Cabernet-Sauvignon çeşidi tane fiziksel özelliklerine bazı abiyotik streslerin etkisi (Vitis vinifera L.)

Yıl 2024, , 589 - 605, 12.08.2024
https://doi.org/10.37908/mkutbd.1465178

Öz

Tekirdağ ili koşullarında bulunan bağda, 15 yaşlı Cabernet-Sauvignon/110R aşı kombinasyonu omcaları bu araştırmada bitkisel materyal olarak kullanılmıştır. Deneme 2017 ve 2019 yıllarında, iki yıl yürütülmüştür. Çift kollu Kordon Royat terbiye şekline sahip omcalara 3 farklı fenolojik gelişme döneminde (ben düşme, ben düşme-hasat ve hasat) 5 gün süre ile 4 farklı abiyotik stres uygulanmıştır (kontrol, darbe, yaprak yaralama, UV-C). Uygulama şekil ve süreleri; darbe ve UV-C (sabah-akşam 1 kez 1 dk), yaprak yaralama (1 kez) gerçekleştirilmiştir. Ayrıca Kontrol uygulaması da bulunmaktadır. Sonuç olarak yıllar arasında 2019 yılının ön plana çıktığı (tane boyu-hacmi ve 100 tane ağırlığı azalmış; TKA ve TKA/TH artmış) görülmüştür. Her iki yılda da ben düşme-hasat döneminde şaraplık üzüm çeşitlerinde kalite için olması gerektiği gibi TKA/TH oranı ile % kuru ağırlık değerlerinin yüksek değerler aldığı izlenmiştir. Şaraplık üzüm çeşitlerinde küçük tane ve büyük TKA/TH istendiğinden yaprak yaralama uygulaması önerilebilir bulunmuştur.

Etik Beyan

Bu makalede insan veya hayvan deneklerle herhangi bir çalışma bulunmaması nedeniyle etik onaya gerek duyulmamaktadır.

Destekleyen Kurum

Yoktur

Teşekkür

Yazarlar bağlarında deneme kurulmasına olanak sağlayan Barel Şarapçılık Gıda San. ve Tic. Ltd. Şti.’ne teşekkür ederler.

Kaynakça

  • Abdel-Mohsen, M.A., & Rashedy, A.A. (2024). Callusing soil of grafted grape cuttings as a positive feature for climate change. Revista Brasileira de Fruticultura, 46, Article e29452024019. https://doi.org/10.1590/0100-29452024019
  • Adão, F., Santos, J.A., Fraga, H., & Malheiro, A.C. (2023). Assessment of grapevine sap flow and trunk diameter variations in Mediterranean climate using time series decomposition. Vitis, 62 (2), 97-105. https://doi.org/10.5073/vitis.2023.62.97-105
  • Alatzas, A., Theocharis, S., Miliordos, D.-E., Kotseridis, Y., Koundouras, S., & Hatzopoulos, P. (2023). Leaf removal and deficit irrigation have diverse outcomes on composition and gene expression during berry development of Vitis vinifera L. cultivar Xinomavro. OENO One, 57 (1), 289-305. https://doi.org/10.20870/oeno-one.2023.57.1.7191
  • Bahar, E., & Öner, H. (2016). Cabernet-Sauvignon üzüm çeşidinde farklı kültürel işlemlerin verim ve kalite özellikleri üzerine etkileri. Bahçe, 45 (2), 591-598.
  • Bahar, E., Korkutal, İ., & Tok Abay, C. (2024). Grape berry morphology in semi-arid climate of Tekirdağ: evaluating the effects of environmental factors and stress applications. Black Sea Journal of Agriculture, 7 (2), 144-156. https://doi.org/10.47115/bsagriculture.1409746
  • Barbagallo, M.G., Guidoni. S., & Hunter, J.J. (2011). Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah. South African Journal of Enology and Viticulture, 32 (1), 129-136. https://doi.org/10.21548/32-1-1372
  • Bellvert, J., Marsal, J., Girona, J., & Zarco-Tejada, P.J. (2015). Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrigation Science, 33, 81-93. https://doi.org/10.1007/s00271-014-0456-y
  • Bridgen, M.P. (2016). Using ultraviolet-C (UV-C) irradiation on greenhouse ornamental plants for growth regulation. Acta Horticulturae, 1134, 49-56. https://doi.org/10.17660/ActaHortic.2016.1134.7
  • Bridgen, M.P. (2018). Utilization of ultraviolet-C (UV-C) irradiation on ornamental plants for disease suppression and growth regulation. Cornell University. Project: NYC-145300.
  • Cameron, W., Petrie, P.R., & Barlow, E.W.R. (2022). The effect of temperature on grapevine phenological intervals: Sensitivity of budburst to flowering. Agric & Forest Meteorology, 315, Article e108841. https://doi.org/10.1016/j.agrformet.2022.108841
  • Cataldo, E., Salvi, L., Paoli, F., Fucile, M., & Mattii, G. B. (2021). Effects of defoliation at fruit set on vine physiology and berry composition in Cabernet Sauvignon grapevines. Plants, 10 (6), 1183. https://doi.org/10.3390/plants10061183
  • Chacón-Vozmediano, J.L., Martínez-Gascueña, J., García-Romero, E., Gómez-Alonso, S., García-Navarro, F.J., & Jiménez-Ballesta, R. (2021). Effects of water stress on the phenolic compounds of ‘Merlot’ grapes in a Semi-Arid Mediterranean Climate. Horticulturae, 7 (7), 161. https://doi.org/10.3390/horticulturae7070161
  • de Sousa Moreira, L., Clark, M.D., Tabb, A., Karn, A., Londo, J.P., Zou, C., Sun, Q., van Zyl, S., Prins, B., DeLong, J.D., Burhans, A., Yang, H., & Naegele, R.P. (2024). Identification of novel quantitative trait loci associated with table grape fruit quality characteristics in a segregating population and transferability of existing quality markers. Journal of the American Society for Horticultural Science, 149 (1), 50-60. https://doi.org/10.21273/JASHS05334-23
  • Del‐Castillo‐Alonso, M.Á., Monforte, L., Tomás‐Las‐Heras, R., Ranieri, A., Castagna, A., Martínez‐Abaigar, J., & Núñez‐Olivera, E. (2021). Secondary metabolites and related genes in Vitis vinifera L. cv. Tempranillo grapes as influenced by UV radiation and berry development. Physiologia Plantarum, 173 (3), 709-724. https://doi.org/10.1111/ppl.13483
  • Derebe, A.D., Roro, A.G., Asfaw, B.T., Ayele, W.W., & Hvoslef-Eide, A.K. (2019). Effects of solar UV-B radiation exclusion on physiology. growth and yields of taro (Colocasia esculenta L.) at different altitudes in tropical environments of Southern Ethiopia. Scientia Horticulturae, 256, Article e108563. https://doi.org/10.1016/j.scienta.2019.108563
  • Feifel, S., Hensen, J.P., Weilack, I., Weber, F., Wegmann-Herr, P., & Durner, D. (2023). Impact of climate change on grape cluster structure, grape constituents, and processability. BIO Web of Conferences, 56, Article e01016. https://doi.org/10.1051/bioconf/20235601016
  • Geng, K., Zhang, Y., Lv, D., Li, D., & Wang, Z. (2022). Effects of water stress on the sugar accumulation and organic acid changes in Cabernet-Sauvignon grape berries. Horticultural Science (Prague), 49 (3), 164-178. https://doi.org/10.17221/23/2021-HORTSCI
  • Goode, J. (2012). Viticulture: fruity with a hint of drought. Nature, 492 (7429), 351. https://doi.org/10.1038/492351a
  • Gutiérrez-Gamboa, G., Zheng, W., & Martínez de Toda, F. (2021). Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Research International, 139, Article e109946. https://doi.org/10.1016/j.foodres.2020.109946
  • Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33 (2), 179-197. https://doi.org/10.1016/S0968-4328(01)00011-7
  • Khalil, U., Rajwana, I.A., Razzaq, K., Brecht, J.K., & Sarkhosh, A. (2024). The impact of fruit thinning on size and quality of fresh-market muscadine berries. Journal of the Science of Food and Agriculture, 104, 2198-2203. https://doi.org/10.1002/jsfa.13105
  • Kolb, C.A., Kopecky, J., Riederer, M., & Pfündel, E.E. (2003). UV screening by phenolics in berries of grapevine (Vitis vinifera). Functional Plant Biology, 30, 1177-1186. https://doi.org/10.1071/FP03076
  • Korkutal, İ., & Doğan, A.Z. (2010). Farklı UV-C uygulama sürelerinin asmalarda aşıda kaynaşma özellikleri üzerine etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 23 (1), 1-6.
  • Korkutal, İ., Bahar, E., & Güvemli Dündar, D. (2020). Determination the effects of antitranspirant application on the grape berry and cluster characteristics in veraison and post-veraison period. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (1), 83-93. https://doi.org/10.20289/zfdergi.594224
  • Korkutal, İ., Bahar, E., & Uzun, M. (2023). Effect of berry heterogeneity and water deficit in organic and conventional vineyards on grape berry characteristics. Türk Tarım ve Doğa Bilimleri Dergisi, 10 (3), 510-519. https://doi.org/10.30910/turkjans.1264738
  • Kotseridis, Y., Georgiadou, A., Tikos, P., Tarantilis, P.A., & Koundouras, S. (2012). Effects of severity of post-flowering leaf removal on berry growth and composition of three red Vitis vinifera L. cultivars grown under semiarid conditions. Journal of Agricultural and Food Chemistry, 60 (23), 6000-6010. https://doi.org/10.1021/jf300605j
  • Koundouras, S., Hatzidimitriou, E., Karamolegkou, M., Dimopoulou, E., Kallithraka, S., Tsialtas, J.T., Zioziou, E., Nikolaou, N., & Kotseridis, Y. (2009). Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. Cabernet-Sauvignon grapes. Journal of Agricultural and Food Chemistry, 57 (17), 7805-13. https://doi.org/10.1021/jf901063a
  • Langcake, P., & Pryce, R.J. (1977). The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry, 16 (8), 1193-1196. https://doi.org/10.1016/S0031-9422(00)94358-9
  • Li, Z., Yang, D., Guan, X., Sun, Y., & Wang, J. (2023). Changes in volatile composition of Cabernet Sauvignon (Vitis vinifera L.) grapes under leaf removal treatment. Agronomy, 13, 1888. https://doi.org/10.3390/agronomy13071888
  • Maniatis, G., Tani, E., Katsileros, A., Avramidou, E.V., Pitsoli, T., Sarri, E., Gerakari, M., Goufa, M., Panagoulakou, M., Xipolitaki, K., Klouvatos, K., Megariti, S., Pappi, P., Papadakis, I.E., Bebeli, P.J., & Kapazoglou, A. (2024). Genetic and epigenetic responses of autochthonous grapevine cultivars from the ‘Epirus’ Region of Greece upon consecutive drought stress. Plants, 13 (1), 27. https://doi.org/10.3390/plants13010027
  • Martínez-Gil, A.M., Gutiérrez-Gamboa, G., Garde-Cerdán, T., Pérez-Álvarez, E.P., & Moreno-Simunovic, Y. (2018). Characterization of phenolic composition in Carignan noir grapes (Vitis vinifera L.) from six wine-growing sites in Maule Valley, Chile. Journal of the Science of Food and Agriculture, 98, 274-282. https://doi.org/10.1002/jsfa.8468
  • MGM. (2020, Aralık 11). 2017 ve 2019 yılı iklim değerlendirmesi. https://mgm.gov.tr/FILES/iklim/yillikiklim/-iklim-raporu.pdf
  • Mirás-Avalos, J.M., & Intrigliolo, D.S. (2017). Grape composition under abiotic constrains: Water stress and salinity. Frontiers in Plant Science, 8, 851. https://doi.org/10.3389/fpls.2017.00851
  • OIV (2009). OIV descriptor list for grape varieties and Vitis species.
  • Ollat, N., & Gaudillere, J.P. (1998). The effect of limiting leaf area during stage ı of berry growth on development and composition of berries of Vitis vinifera L. cv. Cabernet Sauvignon. American Journal of Enology and Viticulture, 49, 251-258. https://doi.org/10.5344/ajev.1998.49.3.251
  • Palma, L., Novello, V., Tarricome, L., Frabboni, L., Lopriore, G., & Soleti, F. (2007). Grape and wine quality as influenced by the agronomical soil protection in a viticultural system of southern Italy. Quaderni di Scienze Viticole ed Enologiche, Università di Torino, 29, 83-111.
  • Roby, G., Harbertson, J.F., Douglas, A.A., & Matthews, M.A. (2004). Berry size and vine water deficits as factors in wine grape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10, 100-107.
  • Rogiers, S.Y., Greer, D.H., Liu, Y., Baby, T., & Xiao, Z. (2022). Impact of climate change on grape berry ripening: an assessment of adaptation strategies for the Australian vineyard. Frontiers in Plant Science, 13, 1094633. https://doi.org/10.3389/fpls.2022.1094633
  • Romero, P., Navarro, J. M., & Ordaz, P. B. (2022). Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agricultural Water Management, (259), 107216. https://doi.org/10.1016/j.agwat.2021.107216
  • Sadras, V., Petrie, P., Moran, M., Bastian, S., & Taylor, D. (2013). Decompressing harvest and preserving wine style in warming climates. Australian & New Zealand Grapegrower & Winemaker, 594, 47.
  • Suter, B., Destrac Irvine, A., Gowdy, M., Dai, Z., & van Leeuwen, C. (2021). Adapting wine grape ripening to global change requires a multi-trait approach. Frontier Plant Science, 12, 36. https://doi.org/10.3389/fpls.2021.624867

The influence of different abiotic stresses on the physical characteristics of cv. Cabernet-Sauvignon berries (Vitis vinifera L.)

Yıl 2024, , 589 - 605, 12.08.2024
https://doi.org/10.37908/mkutbd.1465178

Öz

In a vineyard located in Tekirdağ province, 15-year-old Cabernet-Sauvignon/110R grafted vines were used as plant material in this research. The experiment was conducted over two years, in 2017 and 2019. Vines with double cordon Royat training system were subjected to 4 different abiotic stresses (control, shock action, leaf injury, UV-C radiation) for 5 days during 3 different phenological stages (veraison, veraison-harvest, and harvest). The application methods and durations were as follows: shock action and UV-C radiation (once for 1 minute in the morning and evening), leaf injury (once). Additionally, a control treatment was also included. As a result, it was observed that the year 2019 stood out among the years (decrease in berry size-volume and 100 berry weight; increase in berry skin area and berry skin area/berry volume). In both years, it was observed that in the veraison-harvest period of wine grape varieties, high values of BSA/BV ratio and % dry weight were obtained as required for quality. Since small berries and high BSA/BV are desired in wine grape varieties, leaf injury application is recommended.

Kaynakça

  • Abdel-Mohsen, M.A., & Rashedy, A.A. (2024). Callusing soil of grafted grape cuttings as a positive feature for climate change. Revista Brasileira de Fruticultura, 46, Article e29452024019. https://doi.org/10.1590/0100-29452024019
  • Adão, F., Santos, J.A., Fraga, H., & Malheiro, A.C. (2023). Assessment of grapevine sap flow and trunk diameter variations in Mediterranean climate using time series decomposition. Vitis, 62 (2), 97-105. https://doi.org/10.5073/vitis.2023.62.97-105
  • Alatzas, A., Theocharis, S., Miliordos, D.-E., Kotseridis, Y., Koundouras, S., & Hatzopoulos, P. (2023). Leaf removal and deficit irrigation have diverse outcomes on composition and gene expression during berry development of Vitis vinifera L. cultivar Xinomavro. OENO One, 57 (1), 289-305. https://doi.org/10.20870/oeno-one.2023.57.1.7191
  • Bahar, E., & Öner, H. (2016). Cabernet-Sauvignon üzüm çeşidinde farklı kültürel işlemlerin verim ve kalite özellikleri üzerine etkileri. Bahçe, 45 (2), 591-598.
  • Bahar, E., Korkutal, İ., & Tok Abay, C. (2024). Grape berry morphology in semi-arid climate of Tekirdağ: evaluating the effects of environmental factors and stress applications. Black Sea Journal of Agriculture, 7 (2), 144-156. https://doi.org/10.47115/bsagriculture.1409746
  • Barbagallo, M.G., Guidoni. S., & Hunter, J.J. (2011). Berry size and qualitative characteristics of Vitis vinifera L. cv. Syrah. South African Journal of Enology and Viticulture, 32 (1), 129-136. https://doi.org/10.21548/32-1-1372
  • Bellvert, J., Marsal, J., Girona, J., & Zarco-Tejada, P.J. (2015). Seasonal evolution of crop water stress index in grapevine varieties determined with high-resolution remote sensing thermal imagery. Irrigation Science, 33, 81-93. https://doi.org/10.1007/s00271-014-0456-y
  • Bridgen, M.P. (2016). Using ultraviolet-C (UV-C) irradiation on greenhouse ornamental plants for growth regulation. Acta Horticulturae, 1134, 49-56. https://doi.org/10.17660/ActaHortic.2016.1134.7
  • Bridgen, M.P. (2018). Utilization of ultraviolet-C (UV-C) irradiation on ornamental plants for disease suppression and growth regulation. Cornell University. Project: NYC-145300.
  • Cameron, W., Petrie, P.R., & Barlow, E.W.R. (2022). The effect of temperature on grapevine phenological intervals: Sensitivity of budburst to flowering. Agric & Forest Meteorology, 315, Article e108841. https://doi.org/10.1016/j.agrformet.2022.108841
  • Cataldo, E., Salvi, L., Paoli, F., Fucile, M., & Mattii, G. B. (2021). Effects of defoliation at fruit set on vine physiology and berry composition in Cabernet Sauvignon grapevines. Plants, 10 (6), 1183. https://doi.org/10.3390/plants10061183
  • Chacón-Vozmediano, J.L., Martínez-Gascueña, J., García-Romero, E., Gómez-Alonso, S., García-Navarro, F.J., & Jiménez-Ballesta, R. (2021). Effects of water stress on the phenolic compounds of ‘Merlot’ grapes in a Semi-Arid Mediterranean Climate. Horticulturae, 7 (7), 161. https://doi.org/10.3390/horticulturae7070161
  • de Sousa Moreira, L., Clark, M.D., Tabb, A., Karn, A., Londo, J.P., Zou, C., Sun, Q., van Zyl, S., Prins, B., DeLong, J.D., Burhans, A., Yang, H., & Naegele, R.P. (2024). Identification of novel quantitative trait loci associated with table grape fruit quality characteristics in a segregating population and transferability of existing quality markers. Journal of the American Society for Horticultural Science, 149 (1), 50-60. https://doi.org/10.21273/JASHS05334-23
  • Del‐Castillo‐Alonso, M.Á., Monforte, L., Tomás‐Las‐Heras, R., Ranieri, A., Castagna, A., Martínez‐Abaigar, J., & Núñez‐Olivera, E. (2021). Secondary metabolites and related genes in Vitis vinifera L. cv. Tempranillo grapes as influenced by UV radiation and berry development. Physiologia Plantarum, 173 (3), 709-724. https://doi.org/10.1111/ppl.13483
  • Derebe, A.D., Roro, A.G., Asfaw, B.T., Ayele, W.W., & Hvoslef-Eide, A.K. (2019). Effects of solar UV-B radiation exclusion on physiology. growth and yields of taro (Colocasia esculenta L.) at different altitudes in tropical environments of Southern Ethiopia. Scientia Horticulturae, 256, Article e108563. https://doi.org/10.1016/j.scienta.2019.108563
  • Feifel, S., Hensen, J.P., Weilack, I., Weber, F., Wegmann-Herr, P., & Durner, D. (2023). Impact of climate change on grape cluster structure, grape constituents, and processability. BIO Web of Conferences, 56, Article e01016. https://doi.org/10.1051/bioconf/20235601016
  • Geng, K., Zhang, Y., Lv, D., Li, D., & Wang, Z. (2022). Effects of water stress on the sugar accumulation and organic acid changes in Cabernet-Sauvignon grape berries. Horticultural Science (Prague), 49 (3), 164-178. https://doi.org/10.17221/23/2021-HORTSCI
  • Goode, J. (2012). Viticulture: fruity with a hint of drought. Nature, 492 (7429), 351. https://doi.org/10.1038/492351a
  • Gutiérrez-Gamboa, G., Zheng, W., & Martínez de Toda, F. (2021). Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Research International, 139, Article e109946. https://doi.org/10.1016/j.foodres.2020.109946
  • Hollósy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33 (2), 179-197. https://doi.org/10.1016/S0968-4328(01)00011-7
  • Khalil, U., Rajwana, I.A., Razzaq, K., Brecht, J.K., & Sarkhosh, A. (2024). The impact of fruit thinning on size and quality of fresh-market muscadine berries. Journal of the Science of Food and Agriculture, 104, 2198-2203. https://doi.org/10.1002/jsfa.13105
  • Kolb, C.A., Kopecky, J., Riederer, M., & Pfündel, E.E. (2003). UV screening by phenolics in berries of grapevine (Vitis vinifera). Functional Plant Biology, 30, 1177-1186. https://doi.org/10.1071/FP03076
  • Korkutal, İ., & Doğan, A.Z. (2010). Farklı UV-C uygulama sürelerinin asmalarda aşıda kaynaşma özellikleri üzerine etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 23 (1), 1-6.
  • Korkutal, İ., Bahar, E., & Güvemli Dündar, D. (2020). Determination the effects of antitranspirant application on the grape berry and cluster characteristics in veraison and post-veraison period. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (1), 83-93. https://doi.org/10.20289/zfdergi.594224
  • Korkutal, İ., Bahar, E., & Uzun, M. (2023). Effect of berry heterogeneity and water deficit in organic and conventional vineyards on grape berry characteristics. Türk Tarım ve Doğa Bilimleri Dergisi, 10 (3), 510-519. https://doi.org/10.30910/turkjans.1264738
  • Kotseridis, Y., Georgiadou, A., Tikos, P., Tarantilis, P.A., & Koundouras, S. (2012). Effects of severity of post-flowering leaf removal on berry growth and composition of three red Vitis vinifera L. cultivars grown under semiarid conditions. Journal of Agricultural and Food Chemistry, 60 (23), 6000-6010. https://doi.org/10.1021/jf300605j
  • Koundouras, S., Hatzidimitriou, E., Karamolegkou, M., Dimopoulou, E., Kallithraka, S., Tsialtas, J.T., Zioziou, E., Nikolaou, N., & Kotseridis, Y. (2009). Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. Cabernet-Sauvignon grapes. Journal of Agricultural and Food Chemistry, 57 (17), 7805-13. https://doi.org/10.1021/jf901063a
  • Langcake, P., & Pryce, R.J. (1977). The production of resveratrol and the viniferins by grapevines in response to ultraviolet irradiation. Phytochemistry, 16 (8), 1193-1196. https://doi.org/10.1016/S0031-9422(00)94358-9
  • Li, Z., Yang, D., Guan, X., Sun, Y., & Wang, J. (2023). Changes in volatile composition of Cabernet Sauvignon (Vitis vinifera L.) grapes under leaf removal treatment. Agronomy, 13, 1888. https://doi.org/10.3390/agronomy13071888
  • Maniatis, G., Tani, E., Katsileros, A., Avramidou, E.V., Pitsoli, T., Sarri, E., Gerakari, M., Goufa, M., Panagoulakou, M., Xipolitaki, K., Klouvatos, K., Megariti, S., Pappi, P., Papadakis, I.E., Bebeli, P.J., & Kapazoglou, A. (2024). Genetic and epigenetic responses of autochthonous grapevine cultivars from the ‘Epirus’ Region of Greece upon consecutive drought stress. Plants, 13 (1), 27. https://doi.org/10.3390/plants13010027
  • Martínez-Gil, A.M., Gutiérrez-Gamboa, G., Garde-Cerdán, T., Pérez-Álvarez, E.P., & Moreno-Simunovic, Y. (2018). Characterization of phenolic composition in Carignan noir grapes (Vitis vinifera L.) from six wine-growing sites in Maule Valley, Chile. Journal of the Science of Food and Agriculture, 98, 274-282. https://doi.org/10.1002/jsfa.8468
  • MGM. (2020, Aralık 11). 2017 ve 2019 yılı iklim değerlendirmesi. https://mgm.gov.tr/FILES/iklim/yillikiklim/-iklim-raporu.pdf
  • Mirás-Avalos, J.M., & Intrigliolo, D.S. (2017). Grape composition under abiotic constrains: Water stress and salinity. Frontiers in Plant Science, 8, 851. https://doi.org/10.3389/fpls.2017.00851
  • OIV (2009). OIV descriptor list for grape varieties and Vitis species.
  • Ollat, N., & Gaudillere, J.P. (1998). The effect of limiting leaf area during stage ı of berry growth on development and composition of berries of Vitis vinifera L. cv. Cabernet Sauvignon. American Journal of Enology and Viticulture, 49, 251-258. https://doi.org/10.5344/ajev.1998.49.3.251
  • Palma, L., Novello, V., Tarricome, L., Frabboni, L., Lopriore, G., & Soleti, F. (2007). Grape and wine quality as influenced by the agronomical soil protection in a viticultural system of southern Italy. Quaderni di Scienze Viticole ed Enologiche, Università di Torino, 29, 83-111.
  • Roby, G., Harbertson, J.F., Douglas, A.A., & Matthews, M.A. (2004). Berry size and vine water deficits as factors in wine grape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10, 100-107.
  • Rogiers, S.Y., Greer, D.H., Liu, Y., Baby, T., & Xiao, Z. (2022). Impact of climate change on grape berry ripening: an assessment of adaptation strategies for the Australian vineyard. Frontiers in Plant Science, 13, 1094633. https://doi.org/10.3389/fpls.2022.1094633
  • Romero, P., Navarro, J. M., & Ordaz, P. B. (2022). Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agricultural Water Management, (259), 107216. https://doi.org/10.1016/j.agwat.2021.107216
  • Sadras, V., Petrie, P., Moran, M., Bastian, S., & Taylor, D. (2013). Decompressing harvest and preserving wine style in warming climates. Australian & New Zealand Grapegrower & Winemaker, 594, 47.
  • Suter, B., Destrac Irvine, A., Gowdy, M., Dai, Z., & van Leeuwen, C. (2021). Adapting wine grape ripening to global change requires a multi-trait approach. Frontier Plant Science, 12, 36. https://doi.org/10.3389/fpls.2021.624867
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bahçe Bitkileri Yetiştirme ve Islahı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Elman Bahar 0000-0002-8842-7695

Ilknur Korkutal 0000-0002-8016-9804

Cihan Abay 0000-0002-4528-6431

Erken Görünüm Tarihi 3 Ağustos 2024
Yayımlanma Tarihi 12 Ağustos 2024
Gönderilme Tarihi 5 Nisan 2024
Kabul Tarihi 6 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Bahar, E., Korkutal, I., & Abay, C. (2024). Cabernet-Sauvignon çeşidi tane fiziksel özelliklerine bazı abiyotik streslerin etkisi (Vitis vinifera L.). Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 29(2), 589-605. https://doi.org/10.37908/mkutbd.1465178

22740137731737513771 13774 15432 1813713775 14624 15016 i2or 1857924881download