Araştırma Makalesi
BibTex RIS Kaynak Göster

Review on modeling and adaptation strategies of the future distribution of olives (Olea europaea L.) in Türkiye depending on climate change

Yıl 2024, Sayı: 86, 105 - 120, 30.12.2024
https://doi.org/10.17211/tcd.1524269

Öz

This study aims to determine the bioclimatic variables influencing the distribution of olive (Olea europaea L.) using the MaxEnt modeling tool and to create current potential and future suitability models for cultivation. Bioclimatic variables from the recent past (1970-2000) have been used to determine the current potential habitat areas. Future predictions have been made based on bioclimatic variables from the MRI-ESM2-0 model, using the SSP2-4.5 and SSP5-8.5 emission scenarios for the periods 2041-2060 and 2081-2100. The modelling indicated that Bio12 (annual precipitation), Bio7 (annual temperature range), and Bio9 (mean temperature of the driest quarter) are the key bioclimatic variables influencing olive distribution. Future climate models simulated under the SSP2-4.5 and SSP5-8.5 scenarios suggest that, compared to the present, suitable areas are likely to shift toward higher altitudes and more northern latitudes in the future. Additionally, it is projected that regions previously unsuitable for olive cultivation may become more conducive in the future. In particular, it is expected that the Black Sea and Marmara coastlines will become more suitable for olive cultivation in the coming years. It is essential to develop and implement climate change adaptation strategies to mitigate the challenging impacts of climate change on olives and ensure their sustainability. In this context, the study addresses factors such as irrigation and soil management, biodiversity, pest and disease control, harvesting techniques, technology use, and education, and evaluates them in terms of adaptation strategies.

Teşekkür

We would like to thank Prof. Dr. Ahmet MERT, Assoc. Prof. Dr. Özdemir ŞENTÜRK and the trainers of the event organized by the Scientific and Technological Research Council of Turkey (“TUBITAK 2237-BİDEB, Calculation and Mapping of Land Diversity with Entropy Based Algorithms”; Event No: 1129B372201166) for sharing their knowledge and experience with us in the technical part of the study.

Kaynakça

  • Ahmadi, M., Hemami, M. R., Kaboli, M., & Shabani, F. (2023). MaxEnt brings comparable results when the input data are being completed; Model parameterization of four species distribution models. Ecology and Evolution, 13(2), 1-13. https://doi.org/10.1002/ece3.9827
  • Akça Uçkun, A. (2022). Yeni nesil zeytin yetiştiriciliği. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti. Akyol, A., Örücü, Ö. K., Arslan, E. S., & Sarıkaya, A. G. (2023). Predicting of the current and future geographical distribution of Laurus nobilis L. under the effects of climate change. Environmental Monitoring and Assessment, 195, 1-18. https://doi.org/10.1007/s10661-023-11086-z
  • Arenas-Castro, S., Gonçalves, J. F., Moreno, M., & Villar, R. (2020). Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Science of the Total Environment, 709, 1-13. https://doi.org/10.1016/j.scitotenv.2019.136161
  • Ashraf, U., Ali, H., Chaudry, M. N., Ashraf, I., Batool, A., & Saqib, Z. (2016). Predicting the potential distribution of Olea ferruginea in Pakistan incorporating climate change by using Maxent model. Sustainability, 8(8), 1-11. https://doi.org/10.3390/su8080722
  • Avolio, E., Orlandi, F., Bellecci, C., Fornaciari, M., & Federico, S. (2012). Assessment of the impact of climate change on the olive flowering in Calabria (Southern Italy). Theoretical and Applied Climatology, 107, 531-540. https://doi.org/10.1007/s00704-011-0500-2
  • Besnard, G., Khadari, B., Navascués, M., Fernández-Mazuecos, M., El Bakkali, A., Arrigo, N., Baali-Cherif, D., Brunini-Bronzini de Caraffa, V., Santoni, S., Vargas, P., & Savolainen, V. (2013). The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proceedings of the Royal Society B: Biological Sciences, 280(1756), 1-7. https://doi.org/10.1098/rspb.2012.2833
  • Booth, T. H. (2018). Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral ecology, 43(8), 852-860. https://doi.org/10.1111/aec.12628
  • Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e409, 1-12. https://doi.org/10.7717/peerj.4095
  • Brito, C., Dinis, L. T., Ferreira, H., Rocha, L., Pavia, I., Moutinho-Pereira, J., & Correia, C. M. (2018). Kaolin particle film modulates morphological, physiological and biochemical olive tree responses to drought and rewatering. Plant Physiology and Biochemistry, 133, 29-39. https://doi.org/10.1016/j.plaphy.2018.10.028
  • Cao, J., Xu, J., Pan, X., Monaco, T. A., Zhao, K., Wang, D., & Rong, Y. (2021). Potential impact of climate change on the global geographical distribution of the invasive species, Cenchrus spinifex (Field sandbur, Gramineae). Ecological Indicators, 131, 1-8. https://doi.org/10.1016/j.ecolind.2021.108204
  • Carrión, Y., Ntinou, M., & Badal, E. (2010). Olea europaea L. in the north Mediterranean Basin during the Pleniglacial and the Early–Middle Holocene. Quaternary Science Reviews, 29(7-8), 952-968. https://doi.org/10.1016/j.quascirev.2009.12.015
  • Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., Lange, A. MN., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M. N., & Xoplaki, E. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8, 972-980. https://doi.org/10.1038/s41558-018-0299-2
  • Davis, P. H. (1978). Flora of Turkey and the East Aegaen Islands Volume 6. Edinburgh, Scotland: Edinburgh University Press.
  • Efe R., Soykan A., Sönmez S., & Cürebal İ (2008) Quantifying the effect of landuse change on olive tree cultivation in the vicinity of Edremit between 1979 and 2006 using GIS and RS techniques. Fresenius Environmental Bulletin, 17(6), 696-705.
  • Efe, R., Soykan, A., Sönmez, S., & Cürebal, İ. (2009). Sıcaklık şartlarının Türkiye’de zeytinin (Olea europea L. subs. europaea) yetişmesine, fenolojik ve pomolojik özelliklerine etkisi. Ekoloji, 18 (70), 17-26.
  • Efe, R., Soykan, A., Cürebal, İ., & Sönmez, S. (2011). Dünyada, Türkiye’de, Edremit Körfezi çevresinde zeytin ve zeytinyağı. Balıkesir: Edremit Belediyesi.
  • Elith, J., Graham, C. H., Anderson, R. P., Dudı´k, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A. T., ... Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  • Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M., & Zuleta, D. (2020). Climate-driven changes in the composition of New World plant communities. Nature Climate Change, 10(10), 965-970. https://doi.org/10.1038/s41558-020-0873-2
  • Fraga, H., García de Cortázar Atauri, I., Malheiro, A. C., & Santos, J. A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global change biology, 22(11), 3774-3788. https://doi.org/10.1111/gcb.13382
  • Fraga, H., Pinto, J. G., & Santos, J.A. (2020). Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agricultural water management, 237, 1-9. https://doi.org/10.1016/j.agwat.2020.106193
  • Fraga, H., Moriondo, M., Leolini, L., & Santos, J. A. (2021). Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies. Agronomy, 11(1), 1-15. https://doi.org/10.3390/agronomy11010056
  • GBIF (2023). GBIF occurrence download. https://doi.org/10.15468/dl.aujjnw
  • Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural water management, 96(9), 1275-1284. https://doi.org/10.1016/j.agwat.2009.04.009
  • Gómez-Muñoz, B., Valero-Valenzuela, J. D., Hinojosa, M. B., & García-Ruiz, R. (2016). Management of tree pruning residues to improve soil organic carbon in olive groves. European Journal of Soil Biology, 74, 104-113. https://doi.org/10.1016/j.ejsobi.2016.03.010
  • Guerrero-Casado, J., Carpio, A. J., Tortosa, F. S., & Villanueva, A. J. (2021). Environmental challenges of intensive woody crops: The case of super high-density olive groves. Science of the Total Environment, 798, 1-4. https://doi.org/10.1016/j.scitotenv.2021.149212
  • Gutierrez, A.P., Ponti L., & Cossu, Q.A. (2009) Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Climatic Change, 95, 95-217. https://doi.org/10.1007/s10584-008-9528-4
  • Güneri, M. (2016). Zeytin fidanı üretimi, bahçe tesisi ve yıllık bakım işleri. İçinde Yokaş, İ. (Ed.), Zeytin ve Zeytinyağı (ss. 54-88). Efil Yayınevi.
  • Gürel, M. (2006). Zeytinde budama. İçinde T.C. Tarım ve Köyişleri Bakanlığı Tarımsal Araştırmalar Genel Müdürlüğü Zeytincilik Araştırma Enstitüsü Müdürlüğü (Ed.), Zeytin yetiştiriciliği (ss. 56-74). Emre Basımevi.
  • Hosseini, N., Ghorbanpour, M., & Mostafavi, H. (2024). Habitat potential modelling and the effect of climate change on the current and future distribution of three Thymus species in Iran using MaxEnt. Scientific Reports, 14(1), 1-14. https://doi.org/10.1038/s41598-024-53405-5
  • International Olive Council. (2007). Production techniques in olive growing. Artegraf, S. A.
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. https://doi.org/10.1017/9781009157896
  • IPCC, 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp. https://doi.org/10.1017/9781009325844
  • Kaniewski, D., Marriner, N., Morhange, C., Khater, C., Terral, J. F., Besnard, G., Otto, T., Luce, F., Couillebault, Q., Tsitsou, L., Pourkerman, M., ... Cheddadi, R. (2023). Climate change threatens olive oil production in the Levant. Nature plants, 9, 219-227. https://doi.org/10.1038/s41477-022-01339-z
  • Kassout, J., Terral, J.F., El Ouahrani, A., Houssni, M., Ivorra, S., Kadaoui, K., El Mahroussi, M., Paradis, L., & Ater, M. (2022). Species distribution based-modelling under climate change: the case of two native wild Olea europaea Subspecies in Morocco, O. e. subsp. europaea var. sylvestris and O. e. subsp. maroccana. In W. Leal Filho & E. Manolas (Eds.), Climate change in the mediterranean and middle eastern region (pp 21-43). Springer Nature. https://doi.org/10.1007/978-3-030-78566-6_2
  • Kaya, Ü. (2006). Zeytinin sulanması. İçinde T.C. Tarım ve Köyişleri Bakanlığı Tarımsal Araştırmalar Genel Müdürlüğü Zeytincilik Araştırma Enstitüsü Müdürlüğü (Ed.), Zeytin yetiştiriciliği (ss. 75-88). Emre Basımevi. Khan, S., & Verma, S. (2022). Ensemble modeling to predict the impact of future climate change on the global distribution of Olea europaea subsp. cuspidata. Frontiers in Forests and Global Change, 5, 1-13. https://doi.org/10.3389/ffgc.2022.977691
  • Khan, A. M., Li, Q., Saqib, Z., Khan, N., Habib, T., Khalid, N., Majeed, M., & Tariq, A. (2022). MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests, 13(5), 715. https://doi.org/10.3390/f13050715
  • Koç, D. E., Svenning, J. C., & Avcı, M. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6(3), 69-82. https://doi.org/10.31195/ejejfs.435962
  • Koç, D. E., Biltekin, D., & Ustaoğlu, B. (2021). Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arabian Journal of Geosciences, 14(12), 1-13. https://doi.org/10.1007/s12517-021-07444-1
  • Kavvadias, V., & Koubouris, G. (2019). Sustainable soil management practices in olive groves. In G. P. Deepak & K. J. Yogeshvari (Eds.), Soil fertility management for sustainable development (pp. 167-188). Springer Nature Singapore. https://doi.org/10.1007/978-981-13-5904-0_8
  • Li, G., Du, S., & Wen, Z. (2016). Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Scientific Reports, 6(1), 1-9. https://doi.org/10.1038/srep30009
  • Lionello, P., & Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18, 1481-1493. https://doi.org/10.1007/s10113-018-1290-1 Lorite, I. J., Gabaldón-Leal, C., Ruiz-Ramos, M., Belaj, A., De la Rosa, R., León, L., & Santos, C. (2018). Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agricultural Water Management, 204, 247-261. https://doi.org/10.1016/j.agwat.2018.04.008
  • Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B, 375(1794), 1-21. https://doi.org/10.1098/rstb.2019.0104
  • Michalopoulos, G., Kasapi, K. A., Koubouris, G., Psarras, G., Arampatzis, G., Hatzigiannakis, E., Kavvadias, V., Xiloyannis, C., Montanaro, G., Malliaraki, S., Angelaki, A., Monolaraki, C., Giakoumaki, G., Reppas, S., Kourgialas, N., & Kokkinos, G. (2020). Adaptation of Mediterranean olive groves to climate change through sustainable cultivation practices. Climate, 8(4), 1-11. https://doi.org/10.3390/cli8040054
  • Moriondo, M., Trombi, G., & Ferrise, R. (2013) Olive trees as bio‐indicators of climate evolution in the Mediterranean Basin. Global Ecology and Biogeography, 22(7), 818-833. https://doi.org/10.1111/geb.12061 Moriondo, M., Ferrise, R., Trombi, G., Brilli, L., Dibari, C., & Bindi, M. (2015). Modelling olive trees and grapevines in a changing climate. Environmental Modelling & Software, 72, 387-401. https://doi.org/10.1016/j.envsoft.2014.12.016
  • Muluneh, M. G. (2021). Impact of climate change on biodiversity and food security: a global perspective—a review article. Agriculture & Food Security, 10, 1-25. https://doi.org/10.1186/s40066-021-00318-5
  • Oliveira, M. D., Hamilton, S. K., Calheiros, D. F., Jacobi, C.M., & Latini, R. O. (2010). Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables. Brazilian Journal of Biology, 70, 831-840. https://doi.org/10.1590/S1519-69842010000400014
  • Öğütçü, M., & Kıraç, A. (2020). Future projection of olive production in Çanakkale. Journal of Science and Technology of Dumlupınar University, (044), 33-43.
  • Örücü, Ö. K., Azadi, H., Arslan, E. S., Kamer Aksoy, Ö., Choobchian, S., Nooghabi, S. N., & Stefanie, H. I. (2023). Predicting the distribution of European Hop Hornbeam: application of MaxEnt algorithm and climatic suitability models. European Journal of Forest Research, 142, 579-591. https://doi.org/10.1007/s10342-023-01543-2
  • Örücü, Ö. K., Arslan, E. S., Hoşgör, E., Kaymaz, I., & Gülcü, S. (2024). Potential distribution pattern of the Quercus brantii Lindl. and Quercus frainetto Ten. under the future climate conditions. European Journal of Forest Research, 143, 465-478. https://doi.org/10.1007/s10342-023-01636-y
  • Özturk, M., Altay, V., Gönenç, T. M., Unal, B. T., Efe, R., Akçiçek, E., & Bukhari, A. (2021). An overview of olive cultivation in Turkey: Botanical features, eco-physiology and phytochemical aspects. Agronomy, 11(2), 295. Pacifici, M., Visconti, P., Butchart, S. H. M., Watson, J. E. M., Cassola, F. M., & Rondinini, C. (2017). Species’ traits influenced their response to recent climate change. Nat Clim Chang 7, 205-208. https://doi.org/10.1038/nclimate3223
  • Panetta, A. M., Stanton, M. L., & Harte, J. (2018). Climate warming drives local extinction: Evidence from observation and experimentation. Science advances, 4(2), 1-8. https://doi.org/10.1126/sciadv.aaq1819 Parolo, G., & Rossi, G. (2008). Upward migration of vascular plants following a climate warming trend in the Alps. Basic and Applied Ecology, 9(2), 100-107. https://doi.org/10.1016/j.baae.2007.01.005
  • Phillips, S. J. (2005). A brief tutorial on Maxent. At&t Research, 190(4), 231-259.
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049
  • Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., ... Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges. Global change biology, 25(6), 1922-1940. https://doi.org/10.1111/gcb.14619
  • Qu, H., Wang, C. J., & Zhang, Z. X. (2018). Planning priority conservation areas under climate change for six plant species with extremely small populations in China. Nature Conservation, 25, 89-106. https://doi.org/10.3897/natureconservation.25.20063
  • Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, J., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., ... Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global environmental change, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.00
  • Rodríguez Sousa, A. A., Barandica, J. M., Aguilera, P. A., & Rescia, A. J. (2020). Examining potential environmental consequences of climate change and other driving forces on the sustainability of Spanish olive groves under a socio-ecological approach. Agriculture, 10(11), 509. https://doi.org/10.3390/agriculture10110509
  • Russo, G., Vivaldi, G. A., De Gennaro, B., & Camposeo, S. (2015). Environmental sustainability of different soil management techniques in a high-density olive orchard. Journal of Cleaner Production, 107, 498-508. https://doi.org/10.1016/j.jclepro.2014.06.064
  • Sağlıker, H.A., Darıcı, C. (2005). Doğu Akdeniz Bölgesinde iki farklı ana materyalde yetişen Olea europaea L., Pinus brutia Ten. ve Pistacia terebinthus L. topraklarında karbon mineralizasyonu. Ekoloji. 14(54), 20-24. Soilhi, Z., Sayari, N., Benalouache, N., & Mekki, M. (2022). Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model. Ecological Informatics, 68, 1-13. https://doi.org/10.1016/j.ecoinf.2021.101533
  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615
  • Tanasijevic, L., Todorovic, M., Pereira, L. S., Pizzigalli, C., & Lionello, P. (2014). Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management, 144, 54-68.
  • Tuğaç, M. G., & Sefer, F. (2021). Türkiye’de zeytin (Olea europaea L.) üretimine uygun dağıtım hizmetleri bilgi sistemleri (CBS) temelinde çoklu kriter analizi ile belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 58(1), 97-113. https://doi.org/10.20289/zfdergi.678474
  • Türkiye İstatistik Kurumu. (2023). Bitkisel Üretim İstatistikleri. Türkiye İstatistik Kurumu. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr
  • Türkeş, M. (2020). İklim değişikliğinin fiziksel bilim temeli-II. Toplum ve Hekim, 35(1), 3-31. Türkeş, M., Yozgatlıgil, C., Batmaz, İ., İyigün, C., Koç, E. K., Fahmi, F. M., & Aslan, S. (2016). Has the climate been changing in Turkey? Regional climate change signals based on a comparative statistical analysis of two consecutive time periods, 1950-1980 and 1981-2010. Climate Research, 70(1), 77-93. https://doi.org/10.3354/cr01410
  • Ustaoğlu, B., Koç, D. E., & Biltekin, D. (2022, June 2-6). Predicting potential suitablehabitat for Olea Europea in Eastern Mediterranean from Last Glacial Maximum to the Future [Conference presentation].10th Biennial Conference of the International Biogeography Society, Vancouver, Kanada.
  • Uzun, A., & Ustaoğlu, B. (2022). The effects of atmospheric oscillations on crop (olive, grape and cotton) yield in the eastern part of the Mediterranean region, Turkey. International Journal of Environment and Geoinformatics, 9(1), 147-161. https://doi.org/10.30897/ijegeo.1010181
  • Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. Annual review of environment and resources, 37, 195-222. https://doi.org/10.1146/annurev-environ-020411-130608
  • West, A. M., Kumar, S., Brown, C. S., Stohlgren, T. J., & Bromberg, J. (2016). Field validation of an invasive species Maxent model. Ecological informatics, 36, 126-134. https://doi.org/10.1016/j.ecoinf.2016.11.001
  • Yavaşlı, D. D., & Erlat, E. (2023). Climate model projections of aridity patterns in Türkiye: A comprehensive analysis using CMIP6 models and three aridity indices. International Journal of Climatology, 43(13), 6207-6224. https://doi.org/10.1002/joc.8201
  • Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., ... Ishii, M. (2019). The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan. Ser. II, 97(5), 931-965. https://doi.org/10.2151/jmsj.2019-051

İklim değişikliğine bağlı olarak zeytinin (Olea europaea L.) Türkiye'de gelecekteki dağılımının modellenmesi ve uyum stratejileri üzerine bir inceleme

Yıl 2024, Sayı: 86, 105 - 120, 30.12.2024
https://doi.org/10.17211/tcd.1524269

Öz

Bu çalışma, MaxEnt modelleme aracı kullanılarak zeytinin (Olea europaea L.) dağılımında etkili olan biyoiklim değişkenlerini belirlemeyi ve yetiştiricilik için günümüzdeki potansiyel ile gelecekteki olası uygunluk modellerini oluşturmayı amaçlamaktadır. Günümüzdeki potansiyel habitat alanlarının belirlenebilmesi için yakın geçmişe (1970-2000) ilişkin biyoiklim değişkenleri kullanılmıştır. Gelecek tahminleri ise MRI-ESM2-0 modelinin SSP2-4.5 ve SSP5-8.5 emisyon senaryolarına dayalı olarak 2041-2060 ve 2081-2100 dönemlerine ait biyoiklim değişkenlerinden yararlanılarak yapılmıştır. Modelleme sonucunda, zeytinin dağılımına en fazla katkı sağlayan değişkenlerin Bio12 (yıllık yağış), Bio7 (yıllık sıcaklık değişim aralığı) ve Bio9 (en kurak 3 ayın ortalama sıcaklığı) olduğu belirlenmiştir. SSP2-4.5 ve SSP5-8.5 senaryolarından simüle edilen gelecek iklim modelleri, genel olarak günümüzle kıyaslandığında, uygun alanların gelecekte daha yüksek rakımlı alanlara ve kuzey yönüne doğru kayma olasılığı gösterebileceğini tahmin etmektedir. Ayrıca daha önce zeytin yetiştiriciliğine elverişsiz olan bazı alanların, gelecek dönemlerde daha uygun hale gelebileceğini öngörmektedir. Özellikle, ilerleyen yıllarda Karadeniz ve Marmara kıyılarının zeytin yetiştiriciliği için daha elverişli hale gelmesi beklenmektedir. İklim değişikliğinin zeytin üzerindeki zorlayıcı etkilerini hafifletmek ve sürdürülebilirliğini sağlamak amacıyla iklim değişikliğine uyum stratejilerinin geliştirilmesi ve uygulanması önemlidir. Bu doğrultuda, çalışmada sulama ve toprak yönetimi, çeşit seçimi, hastalık ve zararlılarla mücadele, hasat teknikleri, teknoloji kullanımı ve eğitim gibi faktörler ele alınmış ve uyum stratejileri açısından değerlendirilmiştir.

Teşekkür

Çalışmanın teknik kısmında bilgi ve tecrübelerini bizimle paylaşan Prof. Dr. Ahmet MERT’e, Doç. Dr. Özdemir ŞENTÜRK’e ve Türkiye Bilimsel ve Teknolojik Araştırma Kurumu tarafından düzenlenen etkinliğin (“TÜBİTAK 2237-BİDEB, Arazi Çeşitliliğinin Entropi Temelli Algoritmalar ile Hesaplanması ve Haritalanması”; Etkinlik No: 1129B372201166) eğitmenlerine teşekkür ederiz.

Kaynakça

  • Ahmadi, M., Hemami, M. R., Kaboli, M., & Shabani, F. (2023). MaxEnt brings comparable results when the input data are being completed; Model parameterization of four species distribution models. Ecology and Evolution, 13(2), 1-13. https://doi.org/10.1002/ece3.9827
  • Akça Uçkun, A. (2022). Yeni nesil zeytin yetiştiriciliği. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd. Şti. Akyol, A., Örücü, Ö. K., Arslan, E. S., & Sarıkaya, A. G. (2023). Predicting of the current and future geographical distribution of Laurus nobilis L. under the effects of climate change. Environmental Monitoring and Assessment, 195, 1-18. https://doi.org/10.1007/s10661-023-11086-z
  • Arenas-Castro, S., Gonçalves, J. F., Moreno, M., & Villar, R. (2020). Projected climate changes are expected to decrease the suitability and production of olive varieties in southern Spain. Science of the Total Environment, 709, 1-13. https://doi.org/10.1016/j.scitotenv.2019.136161
  • Ashraf, U., Ali, H., Chaudry, M. N., Ashraf, I., Batool, A., & Saqib, Z. (2016). Predicting the potential distribution of Olea ferruginea in Pakistan incorporating climate change by using Maxent model. Sustainability, 8(8), 1-11. https://doi.org/10.3390/su8080722
  • Avolio, E., Orlandi, F., Bellecci, C., Fornaciari, M., & Federico, S. (2012). Assessment of the impact of climate change on the olive flowering in Calabria (Southern Italy). Theoretical and Applied Climatology, 107, 531-540. https://doi.org/10.1007/s00704-011-0500-2
  • Besnard, G., Khadari, B., Navascués, M., Fernández-Mazuecos, M., El Bakkali, A., Arrigo, N., Baali-Cherif, D., Brunini-Bronzini de Caraffa, V., Santoni, S., Vargas, P., & Savolainen, V. (2013). The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proceedings of the Royal Society B: Biological Sciences, 280(1756), 1-7. https://doi.org/10.1098/rspb.2012.2833
  • Booth, T. H. (2018). Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral ecology, 43(8), 852-860. https://doi.org/10.1111/aec.12628
  • Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e409, 1-12. https://doi.org/10.7717/peerj.4095
  • Brito, C., Dinis, L. T., Ferreira, H., Rocha, L., Pavia, I., Moutinho-Pereira, J., & Correia, C. M. (2018). Kaolin particle film modulates morphological, physiological and biochemical olive tree responses to drought and rewatering. Plant Physiology and Biochemistry, 133, 29-39. https://doi.org/10.1016/j.plaphy.2018.10.028
  • Cao, J., Xu, J., Pan, X., Monaco, T. A., Zhao, K., Wang, D., & Rong, Y. (2021). Potential impact of climate change on the global geographical distribution of the invasive species, Cenchrus spinifex (Field sandbur, Gramineae). Ecological Indicators, 131, 1-8. https://doi.org/10.1016/j.ecolind.2021.108204
  • Carrión, Y., Ntinou, M., & Badal, E. (2010). Olea europaea L. in the north Mediterranean Basin during the Pleniglacial and the Early–Middle Holocene. Quaternary Science Reviews, 29(7-8), 952-968. https://doi.org/10.1016/j.quascirev.2009.12.015
  • Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J. P., Iglesias, A., Lange, A. MN., Lionello, P., Llasat, M. C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M. N., & Xoplaki, E. (2018). Climate change and interconnected risks to sustainable development in the Mediterranean. Nature Climate Change, 8, 972-980. https://doi.org/10.1038/s41558-018-0299-2
  • Davis, P. H. (1978). Flora of Turkey and the East Aegaen Islands Volume 6. Edinburgh, Scotland: Edinburgh University Press.
  • Efe R., Soykan A., Sönmez S., & Cürebal İ (2008) Quantifying the effect of landuse change on olive tree cultivation in the vicinity of Edremit between 1979 and 2006 using GIS and RS techniques. Fresenius Environmental Bulletin, 17(6), 696-705.
  • Efe, R., Soykan, A., Sönmez, S., & Cürebal, İ. (2009). Sıcaklık şartlarının Türkiye’de zeytinin (Olea europea L. subs. europaea) yetişmesine, fenolojik ve pomolojik özelliklerine etkisi. Ekoloji, 18 (70), 17-26.
  • Efe, R., Soykan, A., Cürebal, İ., & Sönmez, S. (2011). Dünyada, Türkiye’de, Edremit Körfezi çevresinde zeytin ve zeytinyağı. Balıkesir: Edremit Belediyesi.
  • Elith, J., Graham, C. H., Anderson, R. P., Dudı´k, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A. T., ... Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
  • Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M., & Zuleta, D. (2020). Climate-driven changes in the composition of New World plant communities. Nature Climate Change, 10(10), 965-970. https://doi.org/10.1038/s41558-020-0873-2
  • Fraga, H., García de Cortázar Atauri, I., Malheiro, A. C., & Santos, J. A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global change biology, 22(11), 3774-3788. https://doi.org/10.1111/gcb.13382
  • Fraga, H., Pinto, J. G., & Santos, J.A. (2020). Olive tree irrigation as a climate change adaptation measure in Alentejo, Portugal. Agricultural water management, 237, 1-9. https://doi.org/10.1016/j.agwat.2020.106193
  • Fraga, H., Moriondo, M., Leolini, L., & Santos, J. A. (2021). Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies. Agronomy, 11(1), 1-15. https://doi.org/10.3390/agronomy11010056
  • GBIF (2023). GBIF occurrence download. https://doi.org/10.15468/dl.aujjnw
  • Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural water management, 96(9), 1275-1284. https://doi.org/10.1016/j.agwat.2009.04.009
  • Gómez-Muñoz, B., Valero-Valenzuela, J. D., Hinojosa, M. B., & García-Ruiz, R. (2016). Management of tree pruning residues to improve soil organic carbon in olive groves. European Journal of Soil Biology, 74, 104-113. https://doi.org/10.1016/j.ejsobi.2016.03.010
  • Guerrero-Casado, J., Carpio, A. J., Tortosa, F. S., & Villanueva, A. J. (2021). Environmental challenges of intensive woody crops: The case of super high-density olive groves. Science of the Total Environment, 798, 1-4. https://doi.org/10.1016/j.scitotenv.2021.149212
  • Gutierrez, A.P., Ponti L., & Cossu, Q.A. (2009) Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Climatic Change, 95, 95-217. https://doi.org/10.1007/s10584-008-9528-4
  • Güneri, M. (2016). Zeytin fidanı üretimi, bahçe tesisi ve yıllık bakım işleri. İçinde Yokaş, İ. (Ed.), Zeytin ve Zeytinyağı (ss. 54-88). Efil Yayınevi.
  • Gürel, M. (2006). Zeytinde budama. İçinde T.C. Tarım ve Köyişleri Bakanlığı Tarımsal Araştırmalar Genel Müdürlüğü Zeytincilik Araştırma Enstitüsü Müdürlüğü (Ed.), Zeytin yetiştiriciliği (ss. 56-74). Emre Basımevi.
  • Hosseini, N., Ghorbanpour, M., & Mostafavi, H. (2024). Habitat potential modelling and the effect of climate change on the current and future distribution of three Thymus species in Iran using MaxEnt. Scientific Reports, 14(1), 1-14. https://doi.org/10.1038/s41598-024-53405-5
  • International Olive Council. (2007). Production techniques in olive growing. Artegraf, S. A.
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
  • IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. https://doi.org/10.1017/9781009157896
  • IPCC, 2022: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp. https://doi.org/10.1017/9781009325844
  • Kaniewski, D., Marriner, N., Morhange, C., Khater, C., Terral, J. F., Besnard, G., Otto, T., Luce, F., Couillebault, Q., Tsitsou, L., Pourkerman, M., ... Cheddadi, R. (2023). Climate change threatens olive oil production in the Levant. Nature plants, 9, 219-227. https://doi.org/10.1038/s41477-022-01339-z
  • Kassout, J., Terral, J.F., El Ouahrani, A., Houssni, M., Ivorra, S., Kadaoui, K., El Mahroussi, M., Paradis, L., & Ater, M. (2022). Species distribution based-modelling under climate change: the case of two native wild Olea europaea Subspecies in Morocco, O. e. subsp. europaea var. sylvestris and O. e. subsp. maroccana. In W. Leal Filho & E. Manolas (Eds.), Climate change in the mediterranean and middle eastern region (pp 21-43). Springer Nature. https://doi.org/10.1007/978-3-030-78566-6_2
  • Kaya, Ü. (2006). Zeytinin sulanması. İçinde T.C. Tarım ve Köyişleri Bakanlığı Tarımsal Araştırmalar Genel Müdürlüğü Zeytincilik Araştırma Enstitüsü Müdürlüğü (Ed.), Zeytin yetiştiriciliği (ss. 75-88). Emre Basımevi. Khan, S., & Verma, S. (2022). Ensemble modeling to predict the impact of future climate change on the global distribution of Olea europaea subsp. cuspidata. Frontiers in Forests and Global Change, 5, 1-13. https://doi.org/10.3389/ffgc.2022.977691
  • Khan, A. M., Li, Q., Saqib, Z., Khan, N., Habib, T., Khalid, N., Majeed, M., & Tariq, A. (2022). MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests, 13(5), 715. https://doi.org/10.3390/f13050715
  • Koç, D. E., Svenning, J. C., & Avcı, M. (2018). Climate change impacts on the potential distribution of Taxus baccata L. in the Eastern Mediterranean and the Bolkar Mountains (Turkey) from last glacial maximum to the future. Eurasian Journal of Forest Science, 6(3), 69-82. https://doi.org/10.31195/ejejfs.435962
  • Koç, D. E., Biltekin, D., & Ustaoğlu, B. (2021). Modelling potential distribution of Carpinus betulus in Anatolia and its surroundings from the Last Glacial Maximum to the future. Arabian Journal of Geosciences, 14(12), 1-13. https://doi.org/10.1007/s12517-021-07444-1
  • Kavvadias, V., & Koubouris, G. (2019). Sustainable soil management practices in olive groves. In G. P. Deepak & K. J. Yogeshvari (Eds.), Soil fertility management for sustainable development (pp. 167-188). Springer Nature Singapore. https://doi.org/10.1007/978-981-13-5904-0_8
  • Li, G., Du, S., & Wen, Z. (2016). Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Scientific Reports, 6(1), 1-9. https://doi.org/10.1038/srep30009
  • Lionello, P., & Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18, 1481-1493. https://doi.org/10.1007/s10113-018-1290-1 Lorite, I. J., Gabaldón-Leal, C., Ruiz-Ramos, M., Belaj, A., De la Rosa, R., León, L., & Santos, C. (2018). Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions. Agricultural Water Management, 204, 247-261. https://doi.org/10.1016/j.agwat.2018.04.008
  • Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M. G., Field, C. B., & Knowlton, N. (2020). Climate change and ecosystems: threats, opportunities and solutions. Philosophical Transactions of the Royal Society B, 375(1794), 1-21. https://doi.org/10.1098/rstb.2019.0104
  • Michalopoulos, G., Kasapi, K. A., Koubouris, G., Psarras, G., Arampatzis, G., Hatzigiannakis, E., Kavvadias, V., Xiloyannis, C., Montanaro, G., Malliaraki, S., Angelaki, A., Monolaraki, C., Giakoumaki, G., Reppas, S., Kourgialas, N., & Kokkinos, G. (2020). Adaptation of Mediterranean olive groves to climate change through sustainable cultivation practices. Climate, 8(4), 1-11. https://doi.org/10.3390/cli8040054
  • Moriondo, M., Trombi, G., & Ferrise, R. (2013) Olive trees as bio‐indicators of climate evolution in the Mediterranean Basin. Global Ecology and Biogeography, 22(7), 818-833. https://doi.org/10.1111/geb.12061 Moriondo, M., Ferrise, R., Trombi, G., Brilli, L., Dibari, C., & Bindi, M. (2015). Modelling olive trees and grapevines in a changing climate. Environmental Modelling & Software, 72, 387-401. https://doi.org/10.1016/j.envsoft.2014.12.016
  • Muluneh, M. G. (2021). Impact of climate change on biodiversity and food security: a global perspective—a review article. Agriculture & Food Security, 10, 1-25. https://doi.org/10.1186/s40066-021-00318-5
  • Oliveira, M. D., Hamilton, S. K., Calheiros, D. F., Jacobi, C.M., & Latini, R. O. (2010). Modeling the potential distribution of the invasive golden mussel Limnoperna fortunei in the Upper Paraguay River system using limnological variables. Brazilian Journal of Biology, 70, 831-840. https://doi.org/10.1590/S1519-69842010000400014
  • Öğütçü, M., & Kıraç, A. (2020). Future projection of olive production in Çanakkale. Journal of Science and Technology of Dumlupınar University, (044), 33-43.
  • Örücü, Ö. K., Azadi, H., Arslan, E. S., Kamer Aksoy, Ö., Choobchian, S., Nooghabi, S. N., & Stefanie, H. I. (2023). Predicting the distribution of European Hop Hornbeam: application of MaxEnt algorithm and climatic suitability models. European Journal of Forest Research, 142, 579-591. https://doi.org/10.1007/s10342-023-01543-2
  • Örücü, Ö. K., Arslan, E. S., Hoşgör, E., Kaymaz, I., & Gülcü, S. (2024). Potential distribution pattern of the Quercus brantii Lindl. and Quercus frainetto Ten. under the future climate conditions. European Journal of Forest Research, 143, 465-478. https://doi.org/10.1007/s10342-023-01636-y
  • Özturk, M., Altay, V., Gönenç, T. M., Unal, B. T., Efe, R., Akçiçek, E., & Bukhari, A. (2021). An overview of olive cultivation in Turkey: Botanical features, eco-physiology and phytochemical aspects. Agronomy, 11(2), 295. Pacifici, M., Visconti, P., Butchart, S. H. M., Watson, J. E. M., Cassola, F. M., & Rondinini, C. (2017). Species’ traits influenced their response to recent climate change. Nat Clim Chang 7, 205-208. https://doi.org/10.1038/nclimate3223
  • Panetta, A. M., Stanton, M. L., & Harte, J. (2018). Climate warming drives local extinction: Evidence from observation and experimentation. Science advances, 4(2), 1-8. https://doi.org/10.1126/sciadv.aaq1819 Parolo, G., & Rossi, G. (2008). Upward migration of vascular plants following a climate warming trend in the Alps. Basic and Applied Ecology, 9(2), 100-107. https://doi.org/10.1016/j.baae.2007.01.005
  • Phillips, S. J. (2005). A brief tutorial on Maxent. At&t Research, 190(4), 231-259.
  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049
  • Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., ... Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges. Global change biology, 25(6), 1922-1940. https://doi.org/10.1111/gcb.14619
  • Qu, H., Wang, C. J., & Zhang, Z. X. (2018). Planning priority conservation areas under climate change for six plant species with extremely small populations in China. Nature Conservation, 25, 89-106. https://doi.org/10.3897/natureconservation.25.20063
  • Riahi, K., Van Vuuren, D. P., Kriegler, E., Edmonds, J., O’neill, B. C., Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J. C., KC, J., Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., ... Tavoni, M. (2017). The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global environmental change, 42, 153-168. https://doi.org/10.1016/j.gloenvcha.2016.05.00
  • Rodríguez Sousa, A. A., Barandica, J. M., Aguilera, P. A., & Rescia, A. J. (2020). Examining potential environmental consequences of climate change and other driving forces on the sustainability of Spanish olive groves under a socio-ecological approach. Agriculture, 10(11), 509. https://doi.org/10.3390/agriculture10110509
  • Russo, G., Vivaldi, G. A., De Gennaro, B., & Camposeo, S. (2015). Environmental sustainability of different soil management techniques in a high-density olive orchard. Journal of Cleaner Production, 107, 498-508. https://doi.org/10.1016/j.jclepro.2014.06.064
  • Sağlıker, H.A., Darıcı, C. (2005). Doğu Akdeniz Bölgesinde iki farklı ana materyalde yetişen Olea europaea L., Pinus brutia Ten. ve Pistacia terebinthus L. topraklarında karbon mineralizasyonu. Ekoloji. 14(54), 20-24. Soilhi, Z., Sayari, N., Benalouache, N., & Mekki, M. (2022). Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model. Ecological Informatics, 68, 1-13. https://doi.org/10.1016/j.ecoinf.2021.101533
  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285-1293. https://doi.org/10.1126/science.3287615
  • Tanasijevic, L., Todorovic, M., Pereira, L. S., Pizzigalli, C., & Lionello, P. (2014). Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agricultural Water Management, 144, 54-68.
  • Tuğaç, M. G., & Sefer, F. (2021). Türkiye’de zeytin (Olea europaea L.) üretimine uygun dağıtım hizmetleri bilgi sistemleri (CBS) temelinde çoklu kriter analizi ile belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 58(1), 97-113. https://doi.org/10.20289/zfdergi.678474
  • Türkiye İstatistik Kurumu. (2023). Bitkisel Üretim İstatistikleri. Türkiye İstatistik Kurumu. https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr
  • Türkeş, M. (2020). İklim değişikliğinin fiziksel bilim temeli-II. Toplum ve Hekim, 35(1), 3-31. Türkeş, M., Yozgatlıgil, C., Batmaz, İ., İyigün, C., Koç, E. K., Fahmi, F. M., & Aslan, S. (2016). Has the climate been changing in Turkey? Regional climate change signals based on a comparative statistical analysis of two consecutive time periods, 1950-1980 and 1981-2010. Climate Research, 70(1), 77-93. https://doi.org/10.3354/cr01410
  • Ustaoğlu, B., Koç, D. E., & Biltekin, D. (2022, June 2-6). Predicting potential suitablehabitat for Olea Europea in Eastern Mediterranean from Last Glacial Maximum to the Future [Conference presentation].10th Biennial Conference of the International Biogeography Society, Vancouver, Kanada.
  • Uzun, A., & Ustaoğlu, B. (2022). The effects of atmospheric oscillations on crop (olive, grape and cotton) yield in the eastern part of the Mediterranean region, Turkey. International Journal of Environment and Geoinformatics, 9(1), 147-161. https://doi.org/10.30897/ijegeo.1010181
  • Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. (2012). Climate change and food systems. Annual review of environment and resources, 37, 195-222. https://doi.org/10.1146/annurev-environ-020411-130608
  • West, A. M., Kumar, S., Brown, C. S., Stohlgren, T. J., & Bromberg, J. (2016). Field validation of an invasive species Maxent model. Ecological informatics, 36, 126-134. https://doi.org/10.1016/j.ecoinf.2016.11.001
  • Yavaşlı, D. D., & Erlat, E. (2023). Climate model projections of aridity patterns in Türkiye: A comprehensive analysis using CMIP6 models and three aridity indices. International Journal of Climatology, 43(13), 6207-6224. https://doi.org/10.1002/joc.8201
  • Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., ... Ishii, M. (2019). The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan. Ser. II, 97(5), 931-965. https://doi.org/10.2151/jmsj.2019-051
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyocoğrafya, Coğrafyada Ekoloji, Fiziksel Coğrafya ve Çevre Jeolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Muhammed Mustafa Özdel 0000-0003-0715-4566

Beyza Ustaoğlu 0000-0002-9876-3027

İsa Cürebal 0000-0002-3449-1595

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 29 Temmuz 2024
Kabul Tarihi 26 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 86

Kaynak Göster

APA Özdel, M. M., Ustaoğlu, B., & Cürebal, İ. (2024). İklim değişikliğine bağlı olarak zeytinin (Olea europaea L.) Türkiye’de gelecekteki dağılımının modellenmesi ve uyum stratejileri üzerine bir inceleme. Türk Coğrafya Dergisi(86), 105-120. https://doi.org/10.17211/tcd.1524269

Yayıncı: Türk Coğrafya Kurumu