Derleme
BibTex RIS Kaynak Göster

TECHNOLOGICAL DEVELOPMENTS IN ARTIFICIAL MEAT PRODUCTION AND THE FUTURE OF THE INDUSTRY

Yıl 2023, Cilt: 14 Sayı: 1, 1 - 15, 06.05.2023
https://doi.org/10.38137/vftd.1231634

Öz

Although meat consumption is one of the most important conditions of health and a balanced diet, it becomes difficult to meet the demand per capita due to the increase in the world population. The change in consumer preferences and the constant increase in the use of resources in the traditional meat production method, the supply-demand imbalance that arises makes it necessary to turn to alternative protein sources. Because; genetically modified organisms (GMOs), meat alternatives obtained from plant-based sources, and cultured meat are among the emerging ideas for meeting protein needs. Artificial meat production is presented as a potential solution to reduce the serious problems related to nutrition and public health, climate change, environmental pollution, sustainability and animal welfare originating from traditional meat production. Preparation of artificial meat production procedures, providing taste criteria, determining risk analyzes and making necessary legal arrangements are important in terms of being among sustainable food sources. At the same time, it is important to specify the advantages in the production process against the problem of trust in consumer perception due to the high cost of artificial meat and ethical and religious beliefs. This article; It has been compiled from research on the historical development process of artificial meat production, production methods, alternative protein sources, advantages and disadvantages, the future of the artificial meat industry, consumers' attitudes and concerns towards artificial meat.

Kaynakça

  • Aisen, P., Enns, C. & Wessling-Resnick, M. (2001). Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol, 33, 940-959.
  • Akdogan, H. (1999). High moisture food extrusion. Int J Food Sci Technol, 34 (3), 195-207.
  • Akkaya, E. (2019). Farklı Enzim Uygulamalarının ve Olgunlaştırma Yöntemlerinin Sığır Etlerinin Kalite Parametreleri ve Raf Ömrü Üzerine Etkisi. Istanbul, Turkey, Thesis of PhD, IU, diss.
  • Ashley, B. (2002). Edible weights of wildlife species used for country food in the Northwest Territories and Nunavut. Wildlife and Fisheries Division, Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories Yellowknife, NWT, 2002, Manuscript Report No. 138, 1-82.
  • Aswad, H., Jalabert, A. & Rome, S. (2016). Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro. BMC Biotechnol, 16 (1), 1-12.
  • Atay, O., Gökdal, Ö., Aygün, T. & Ülker, H. (2004). Aydın İli Çine İlçesinde Kırmızı Et Tüketim Alışkanlıkları. 4. Ulusal Zootekni Bilim Kongresi, Isparta, 2004, 348-354.
  • Azadbakht, L., Kimiagar, M., Mehrabi, Y., Esmaillzadeh, A., Padyab, M., Hu, F. B. & Willett, W. C. (2007). Soy inclusion in the diet improves features of the metabolic syndrome: a randomized crossover study in postmenopausal women. Am J Clin Nutr, 85 (3), 735-741.
  • Ben-Arye, T. & Levenberg, S. (2019). Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems, 3, 46.
  • Benjaminson, M. A., Gilchriest, J. A. & Lorenz, M. (2002). In vitro edible muscle protein production system (MPPS): Stage 1, fish. Acta Astronaut, 51 (12), 879-889.
  • Bhat, Z. F., Kumar, S. & Fayaz, H. (2015). In vitro meat production: Challenges and benefits over conventional meat production. J Integr Agric, 14 (2), 241-248.
  • Bhat, Z. F., Kumar, S. & Bhat, H. F. (2017). In vitro meat: A future animal-free harvest. Crit Rev Food Sci Nutr, 57 (4), 782-789.
  • Bhat, Z. F., Bhat, H. & Kumar, S. (2020). Cultured meat-A humane meat production system. In, Principles of Tissue Engineering. Amsterdam, The Netherlands: Elsevier; 2020. pp. 1369-1388.
  • Bingöl, E. B. & Bostan, K. (2012). Bir gıda katkı maddesi olarak laktatların et ve et ürünlerinde kullanımı. Istanbul Univ Vet Fak Derg, 38 (1), 79-88.
  • Boland, T., Mironov, V., Gutowska, A., Roth, E. A. & Markwald, R. R. (2003). Cell and organ printing 2: Fusion of cell aggregates in three‐dimensional gels. Anat Rec Part A, 272 (2), 497-502.
  • Bryant, C., Szejda, K., Parekh, N., Desphande, V. & Tse B. (2020). A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Frontiers in Sustainable Food Systems, 3, 11.
  • Carrier, R. L., Rupnick, M., Langer, R., Schoen, F. J., Freed, L. E. & Vunjak-Novakovic, G. (2002). Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng, 8 (2), 175-188.
  • Choudhury, D., Tseng, T. W. & Swartz, E. (2020). The Business of Cultured Meat. Trends Biotechnol, 38 (6), 573-577.
  • Chriki, S. & Hocquette, J. F. (2020). The myth of cultured meat: a review. Front Nutr, 7, 7.
  • Das, A. K., Nanda, P. K., Bandyopadhyay, S., Banerjee, R., Biswas, S. & McClements, D. J. (2020). Application of nanoemulsion‐based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr Rev Food Sci Food Saf, 19 (5), 2677-2700.
  • Datar, I. & Betti, M. (2010). Possibilities for an in vitro meat production system. Innov Food Sci Emerg Technol, 11 (1), 13-22.
  • Dennis, R. G. & Kosnik, P. E. (2000). Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim, 36 (5), 327-335.
  • Denny, A., Aisbitt, B. & Lunn, J. (2008). Mycoprotein and health. Nutr Bull, 33 (4), 298-310.
  • Durfey, C. L., Swistek, S. E., Liao, S. F., Crenshaw, M. A., Clemente, H. J., Thirumalai, R. V., Steadman, C. S., Ryan, P. L., Willard, S. T. & Feugang, J. M. (2019). Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J Anim Sci Biotechnol, 10 (1), 1-12.
  • Eenennaam, V. & Louise, A. (2017). Genetic modification of food animals. Curr Opin Biotechnol, 44, 27-34. Erkmen, O. (2010). Gıda kaynaklı tehlikeler ve güvenli gıda üretimi. Çocuk Sağlığı ve Hastalıkları Dergisi, 53 (3), 2020-235.
  • European Commission. (2016). Innovative functional foods based on sweet lupin protein for cardiovascular prevention. https://cordis.europa.eu/project/id/285819/reporting.
  • Florini, J. R., Magri, K. A., Ewton, D. Z., James, P. L., Grindstaff, K. & Rotwein, P. S. (1991). “Spontaneous” differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J Biol Chem, 266 (24), 15917-15923.
  • Fountain, H. (2013). Building a $325,000 Burger. The New York Times. https://www.nytimes.com/2013/05/14/science/engineering-the-325000-in-vitro-burger.html.
  • Frezal, C., Nenert, C. & Gay, H. (2022). Meat protein alternatives opportunities and challenges for food systems’ transformation. OECD Food, Agriculture and Fisheries Papers, 182, 1-53.
  • Gross, R. (2014). How will religious authorities deal with lab-grown meat? https://geneticliteracyproject.org/2014/09 /17/how-will-religious-authorities-deal- with-lab-grown-meat/.
  • Hocquette, A., Lambert, C., Sinquin, C., Peterolff, L., Wagner, Z., Bonny, S. P. F., Lebert, A. & Hocquette, J. F. (2015). Educated consumers don’t believe artificial meat is the solution to the problems with the meat industry. J Integr Agric, 14 (2), 273-284.
  • Hoek, A. C., van Boekel, M. A., Voordouw, J. & Luning, P. A. (2011). Identification of new food alternatives: How do consumers categorize meat and meat substitutes?. Food Qual Prefer, 22 (4), 371-383.
  • Hopkins, P. D. & Dacey, A. (2008). Vegetarian meat: Could technology save animals and satisfy meat eaters?. J Agric Environ Ethics, 21 (6), 579-596.
  • Javaid, M. & Haleem, A. (2019). 4D printing applications in medical field: a brief review. Clin Epidemiology Glob Health, 7 (3), 317-321.
  • Johnson, D., Wang, S. & Suzuki, A. (2000). Edamame: A vegetable soybean for Colorado. Energy (Kcal), 582, 573.
  • Joshi, V. K. & Kumar, S. (2015). Meat analogues: Plant based alternatives to meat products-a review. Int J Food Ferment Technol, 5 (2), 107-119.
  • Ko, H. J., Wen, Y., Choi, J. H., Park, B. R., Kim, H. W. & Park, H. J. (2021). Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing. Food Hydrocoll, 120, 106898.
  • Krintiras, G. A., Diaz, J. G., Van Der Goot, A. J., Stankiewicz, A. I. & Stefanidis, G. D. (2016). On the use of the Couette Cell technology for large scale production of textured soy-based meat replacers. J Food Eng, 169, 205-213.
  • Kumar, P., Chatli, M. K., Mehta, N., Singh, P., Malav, O. P. & Verma, A. K. (2016). Meat analogues: Health promising sustainable meat substitutes. Crit Rev Food Sci Nutr, 57 (5), 923-932.
  • Li, B. J., Li, P. H., Huang, R. H., Sun, W. X., Wang, H., Li, Q. F., Chen, J., Wu, W. J. & Liu, H. L. (2015). Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian-Australas J Anim Sci, 28 (8), 1171.
  • Mannello, F. & Tonti, G. A. (2007). Concise review: No breakthroughs for human mesenchymal and embryonic stem cell culture: Conditioned medium, feeder layer, or feeder‐free; medium with fetal calf serum, human serum, or enriched plasma; serum‐free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold!. Stem cells, 25 (7), 1603-1609.
  • Martin, I., Wendt, D. & Heberer, M. (2004). The role of bioreactors in tissue engineering. Trends Biotechnol, 22 (2), 80-86.
  • Mateti, T., Laha, A. & Shenoy, P. (2022). Artificial Meat Industry: Production, methodology, challenges, and future. JOM, 74 (9), 3428-3444.
  • Mattice, K. D. & Marangoni, A. G. (2020). Comparing methods to produce fibrous material from zein. Food Res Int, 128, 108804.
  • Mc Clements, D. J. (2020). Future foods: How modern science is transforming the way we eat. Food & Function 11 (3), 1933-1945.
  • Muslu, M. (2021). Yapay Et (Sentetik Et-Kültür Eti), küresel protein gereksinimi için alternatif bir kaynak olabilir mi? 4th International Health Sciences and Life Congress Full Text Book-1, Burdur, Turkey, 2021, 339-348.
  • Nout, M. R. & Kiers, J. L. (2005). Tempe fermentation, innovation and functionality: update into the third millenium. J Appl Microbiol, 98 (4), 789-805.
  • OECD/FAO (2022). OECD-FAO Agrıcultural Outlook 2022-2031. OECD Publishing, Paris, 2022, 1-363.
  • Oikonomopoulos, A., van Deen, W. K., Manansala, A. R., Lacey, P. N., Tomakili, T. A., Ziman, A. & Hommes, D. W. (2015). Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci Rep, 5, 16570.
  • Orzechowski, A. (2015). Artificial meat? Feasible approach based on the experience from cell culture studies. J Integr Agric, 14 (2), 217-221.
  • Pandurangan, M. & Kim, D.H. (2015). A novel approach for in vitro meat production. Appl Microbiol Biotechnol, 99 (13), 5391-5395.
  • Petetin, L. (2012). The revival of modern agricultural biotechnology by the UK Government: what role for animal cloning? Eur Food Feed Law Rev, 7 (6), 296-311.
  • Poinski, M (2021). Aleph farms and the technion reveal world’s first cultivated ribeye steak. https://www.fooddive.com/news/aleph-farms-unveils-worlds-first-cell-based-ribeye-steak/594830/.
  • Polat, H. & Yılmaz Tuncel, N. (2020). Sürdürülebilir Et Üretimi. Gıda, 46 (1), 134-151.
  • Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Sci, 92 (3), 297-301.
  • Riaz, M. N. (1999). Healthy baking with soy ingredients. Cereal Foods World, 44, 136-139.
  • Saygın-Alparslan, Ö. & Demirbaş, N. (2019). Sağlık meslek mensuplarının kırmızı et ve işlenmiş kırmızı et tüketim tercihleri. J Anim Prod, 60 (2), 105-110.
  • Schmidinger, K. (2012). Worldwide alternatives to animal derived foods–overview and evaluation models. Solution to global problems caused by livestock. Vienna, Austria, Thesis of PhD, University of Natural Resources and Life Sciences, Diss.
  • Schneider, Z. (2013). In vitro meat: space travel, cannibalism, and federal regulation. Houst Law Rev, 5, 991.
  • Schnitzler, A. C., Verma, A., Kehoe, D. E., Jing, D., Murrell, J. R., Der, K. A., Aysola, M., Rapiejko, P. J., Punreddy, S. & Rook, M. S. (2016). Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges. Biochem Eng J, 108, 3-13.
  • Schreuders, F. K., Dekkers, B. L., Bodnár, I., Erni, P., Boom, R. M. & van der Goot, A. J. (2019). Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. J Food Eng, 261, 32-39.
  • Seah, J. S. H., Singh, S., Tan, L. P. & Choudhury, D. (2022). Scaffolds for the manufacture of cultured meat. Crit Rev Biotechnol, 42 (2), 311-323.
  • Shanmugasundaram, S. (1991). Vegetable Soybean: research needs for production and quality improvement: proceedings of a workshop held at Kenting, Taiwan, 1991, 91-346.
  • Siegrist, M., Sütterlin, B. & Hartmann, C. (2018). Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Sci, 139, 213-219.
  • Sikka, T. (2020). The “embodied multi-material layering” of in vitro meat. Techné: Research in Philosophy and Technology, 24 (1-2), 158-177.
  • Skardal, A., Zhang, J. & Prestwich, G. D. (2010). Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31 (24), 6173-6181.
  • Snyman, C., Goetsch, K. P., Myburgh, K. H. & Niesler, C. U. (2013). Simple silicone chamber system for in vitro three-dimensional skeletal muscle tissue formation. Front Physiol, 4, 349.
  • Stanojevic, S., Barac, M., Pesic, M., Milovanovic, M. M. & Vucelic-Radovic, B. (2010). Protein composition in tofu of corrected quality. Acta Period Technol, (41), 77-86.
  • Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A. & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture Trends Food Sci Technol, 78, 155-166.
  • Uzundumlu, A. S., Işık, H. B. & Kırlı, M. H. (2011). İstanbul İli Küçük Çekmece İlçesinde En Uygun Et Tipinin Belirlenmesi. Alınteri Zirai Bilimler Dergisi, 21 (2), 40-48.
  • Verbeke, W., Marcu, A., Rutsaert, P., Gaspar, R., Seibt, B., Fletcher, D. & Barnett, J. (2015). ‘Would you eat cultured meat?’: Consumers' reactions and attitude formation in Belgium, Portugal and the United Kingdom. Meat Sci, 102, 49-58.
  • Verzijden, K. & Lawyers, A. (2012). EFSA Updateon Clonıng in Relatıon to Food Productıon. http://static.basenet.nl/cms/106131/website/Publicaties-2012/120716%20EFSA%20Statement%20on%20use%20of%20clones%20for%20food%20production.pdf.
  • Wang, H. J. & Murphy, P. A. (1994). Isoflavone content in commercial soybean foods. J Agric Food Chem, 42 (8), 1666-1673.
  • Wang, Y., Xiao, X. & Wang, L. (2020). In vitro characterization of goat skeletal muscle satellite cells. Anim Biotechnol, 31 (2), 115-121. WHO. (2020). Zoonoses. https://www.who.int/news-room/fact-sheets/detail/zoonoses.
  • Wild, F., Czerny, M., Janssen, A. M., Kole, A. P., Zunabovic, M. & Domig, K. J. (2014). The evolution of a plant-based alternative to meat. Agro Food Industry Hi Tech, 25 (1), 45-49.
  • Yetim, H. & Tekiner, İ. H. (2020). Alternatif protein kaynaklarından yapay et üretimi kavramına eleştirel bir bakış. Helal ve Etik Araştırmaları Dergisi, 2 (2), 85-100.
  • Yıbar, A. & Çetin, E. (2014). Hayvan refahının et kalitesi üzerine etkileri. Uludağ Üniv Vet Fak Derg, 32 (2), 31-37.
  • Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J. & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. Trends Food Sci Technol, 97, 443-450.
  • Zhang, L., Hu, Y., Badar, I. H., Xia, X., Kong, B. & Chen, Q. (2021). Prospects of artificial meat: Opportunities and challenges around consumer acceptance. Trends Food Sci Technol, 116, 434-444.
  • Zhang, J., Shi, H. & Sheng, J. (2022). The effects of message framing on novel food introduction: Evidence from the artificial meat products in China, Food Policy, 112, 102361.

YAPAY ET ÜRETİMİNDE TEKNOLOJİK GELİŞMELER VE ENDÜSTRİSİNİN GELECEĞİ

Yıl 2023, Cilt: 14 Sayı: 1, 1 - 15, 06.05.2023
https://doi.org/10.38137/vftd.1231634

Öz

Although meat consumption is one of the most important conditions of healthy and a balanced diet, it becomes difficult to meet the demand per capita due to the increase in the world population. The change in consumer preferences and the constant increase in the use of resources in the traditional meat production method, the supply-demand imbalance that arises makes it necessary to turn to alternative protein sources. Because; genetically modified organisms (GMOs), meat alternatives obtained from plant-based sources, and cultured meat are among the emerging ideas for meeting protein needs. Artificial meat production is presented as a potential solution to reduce the serious problems related to nutrition and public health, climate change, environmental pollution, sustainability and animal welfare originating from traditional meat production. Preparation of artificial meat production procedures, providing taste criteria, determining risk analyzes and making necessary legal arrangements are important in terms of being among sustainable food sources. At the same time, it is important to specify the advantages in the production process against the problem of trust in consumer perception due to the high cost of artificial meat and ethical and religious beliefs. This article; It has been compiled from research on the historical development process of artificial meat production, production methods, alternative protein sources, advantages and disadvantages, the future of the artificial meat industry, consumers' attitudes and concerns towards artificial meat.

Kaynakça

  • Aisen, P., Enns, C. & Wessling-Resnick, M. (2001). Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol, 33, 940-959.
  • Akdogan, H. (1999). High moisture food extrusion. Int J Food Sci Technol, 34 (3), 195-207.
  • Akkaya, E. (2019). Farklı Enzim Uygulamalarının ve Olgunlaştırma Yöntemlerinin Sığır Etlerinin Kalite Parametreleri ve Raf Ömrü Üzerine Etkisi. Istanbul, Turkey, Thesis of PhD, IU, diss.
  • Ashley, B. (2002). Edible weights of wildlife species used for country food in the Northwest Territories and Nunavut. Wildlife and Fisheries Division, Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories Yellowknife, NWT, 2002, Manuscript Report No. 138, 1-82.
  • Aswad, H., Jalabert, A. & Rome, S. (2016). Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro. BMC Biotechnol, 16 (1), 1-12.
  • Atay, O., Gökdal, Ö., Aygün, T. & Ülker, H. (2004). Aydın İli Çine İlçesinde Kırmızı Et Tüketim Alışkanlıkları. 4. Ulusal Zootekni Bilim Kongresi, Isparta, 2004, 348-354.
  • Azadbakht, L., Kimiagar, M., Mehrabi, Y., Esmaillzadeh, A., Padyab, M., Hu, F. B. & Willett, W. C. (2007). Soy inclusion in the diet improves features of the metabolic syndrome: a randomized crossover study in postmenopausal women. Am J Clin Nutr, 85 (3), 735-741.
  • Ben-Arye, T. & Levenberg, S. (2019). Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems, 3, 46.
  • Benjaminson, M. A., Gilchriest, J. A. & Lorenz, M. (2002). In vitro edible muscle protein production system (MPPS): Stage 1, fish. Acta Astronaut, 51 (12), 879-889.
  • Bhat, Z. F., Kumar, S. & Fayaz, H. (2015). In vitro meat production: Challenges and benefits over conventional meat production. J Integr Agric, 14 (2), 241-248.
  • Bhat, Z. F., Kumar, S. & Bhat, H. F. (2017). In vitro meat: A future animal-free harvest. Crit Rev Food Sci Nutr, 57 (4), 782-789.
  • Bhat, Z. F., Bhat, H. & Kumar, S. (2020). Cultured meat-A humane meat production system. In, Principles of Tissue Engineering. Amsterdam, The Netherlands: Elsevier; 2020. pp. 1369-1388.
  • Bingöl, E. B. & Bostan, K. (2012). Bir gıda katkı maddesi olarak laktatların et ve et ürünlerinde kullanımı. Istanbul Univ Vet Fak Derg, 38 (1), 79-88.
  • Boland, T., Mironov, V., Gutowska, A., Roth, E. A. & Markwald, R. R. (2003). Cell and organ printing 2: Fusion of cell aggregates in three‐dimensional gels. Anat Rec Part A, 272 (2), 497-502.
  • Bryant, C., Szejda, K., Parekh, N., Desphande, V. & Tse B. (2020). A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Frontiers in Sustainable Food Systems, 3, 11.
  • Carrier, R. L., Rupnick, M., Langer, R., Schoen, F. J., Freed, L. E. & Vunjak-Novakovic, G. (2002). Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng, 8 (2), 175-188.
  • Choudhury, D., Tseng, T. W. & Swartz, E. (2020). The Business of Cultured Meat. Trends Biotechnol, 38 (6), 573-577.
  • Chriki, S. & Hocquette, J. F. (2020). The myth of cultured meat: a review. Front Nutr, 7, 7.
  • Das, A. K., Nanda, P. K., Bandyopadhyay, S., Banerjee, R., Biswas, S. & McClements, D. J. (2020). Application of nanoemulsion‐based approaches for improving the quality and safety of muscle foods: A comprehensive review. Compr Rev Food Sci Food Saf, 19 (5), 2677-2700.
  • Datar, I. & Betti, M. (2010). Possibilities for an in vitro meat production system. Innov Food Sci Emerg Technol, 11 (1), 13-22.
  • Dennis, R. G. & Kosnik, P. E. (2000). Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim, 36 (5), 327-335.
  • Denny, A., Aisbitt, B. & Lunn, J. (2008). Mycoprotein and health. Nutr Bull, 33 (4), 298-310.
  • Durfey, C. L., Swistek, S. E., Liao, S. F., Crenshaw, M. A., Clemente, H. J., Thirumalai, R. V., Steadman, C. S., Ryan, P. L., Willard, S. T. & Feugang, J. M. (2019). Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J Anim Sci Biotechnol, 10 (1), 1-12.
  • Eenennaam, V. & Louise, A. (2017). Genetic modification of food animals. Curr Opin Biotechnol, 44, 27-34. Erkmen, O. (2010). Gıda kaynaklı tehlikeler ve güvenli gıda üretimi. Çocuk Sağlığı ve Hastalıkları Dergisi, 53 (3), 2020-235.
  • European Commission. (2016). Innovative functional foods based on sweet lupin protein for cardiovascular prevention. https://cordis.europa.eu/project/id/285819/reporting.
  • Florini, J. R., Magri, K. A., Ewton, D. Z., James, P. L., Grindstaff, K. & Rotwein, P. S. (1991). “Spontaneous” differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J Biol Chem, 266 (24), 15917-15923.
  • Fountain, H. (2013). Building a $325,000 Burger. The New York Times. https://www.nytimes.com/2013/05/14/science/engineering-the-325000-in-vitro-burger.html.
  • Frezal, C., Nenert, C. & Gay, H. (2022). Meat protein alternatives opportunities and challenges for food systems’ transformation. OECD Food, Agriculture and Fisheries Papers, 182, 1-53.
  • Gross, R. (2014). How will religious authorities deal with lab-grown meat? https://geneticliteracyproject.org/2014/09 /17/how-will-religious-authorities-deal- with-lab-grown-meat/.
  • Hocquette, A., Lambert, C., Sinquin, C., Peterolff, L., Wagner, Z., Bonny, S. P. F., Lebert, A. & Hocquette, J. F. (2015). Educated consumers don’t believe artificial meat is the solution to the problems with the meat industry. J Integr Agric, 14 (2), 273-284.
  • Hoek, A. C., van Boekel, M. A., Voordouw, J. & Luning, P. A. (2011). Identification of new food alternatives: How do consumers categorize meat and meat substitutes?. Food Qual Prefer, 22 (4), 371-383.
  • Hopkins, P. D. & Dacey, A. (2008). Vegetarian meat: Could technology save animals and satisfy meat eaters?. J Agric Environ Ethics, 21 (6), 579-596.
  • Javaid, M. & Haleem, A. (2019). 4D printing applications in medical field: a brief review. Clin Epidemiology Glob Health, 7 (3), 317-321.
  • Johnson, D., Wang, S. & Suzuki, A. (2000). Edamame: A vegetable soybean for Colorado. Energy (Kcal), 582, 573.
  • Joshi, V. K. & Kumar, S. (2015). Meat analogues: Plant based alternatives to meat products-a review. Int J Food Ferment Technol, 5 (2), 107-119.
  • Ko, H. J., Wen, Y., Choi, J. H., Park, B. R., Kim, H. W. & Park, H. J. (2021). Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing. Food Hydrocoll, 120, 106898.
  • Krintiras, G. A., Diaz, J. G., Van Der Goot, A. J., Stankiewicz, A. I. & Stefanidis, G. D. (2016). On the use of the Couette Cell technology for large scale production of textured soy-based meat replacers. J Food Eng, 169, 205-213.
  • Kumar, P., Chatli, M. K., Mehta, N., Singh, P., Malav, O. P. & Verma, A. K. (2016). Meat analogues: Health promising sustainable meat substitutes. Crit Rev Food Sci Nutr, 57 (5), 923-932.
  • Li, B. J., Li, P. H., Huang, R. H., Sun, W. X., Wang, H., Li, Q. F., Chen, J., Wu, W. J. & Liu, H. L. (2015). Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian-Australas J Anim Sci, 28 (8), 1171.
  • Mannello, F. & Tonti, G. A. (2007). Concise review: No breakthroughs for human mesenchymal and embryonic stem cell culture: Conditioned medium, feeder layer, or feeder‐free; medium with fetal calf serum, human serum, or enriched plasma; serum‐free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold!. Stem cells, 25 (7), 1603-1609.
  • Martin, I., Wendt, D. & Heberer, M. (2004). The role of bioreactors in tissue engineering. Trends Biotechnol, 22 (2), 80-86.
  • Mateti, T., Laha, A. & Shenoy, P. (2022). Artificial Meat Industry: Production, methodology, challenges, and future. JOM, 74 (9), 3428-3444.
  • Mattice, K. D. & Marangoni, A. G. (2020). Comparing methods to produce fibrous material from zein. Food Res Int, 128, 108804.
  • Mc Clements, D. J. (2020). Future foods: How modern science is transforming the way we eat. Food & Function 11 (3), 1933-1945.
  • Muslu, M. (2021). Yapay Et (Sentetik Et-Kültür Eti), küresel protein gereksinimi için alternatif bir kaynak olabilir mi? 4th International Health Sciences and Life Congress Full Text Book-1, Burdur, Turkey, 2021, 339-348.
  • Nout, M. R. & Kiers, J. L. (2005). Tempe fermentation, innovation and functionality: update into the third millenium. J Appl Microbiol, 98 (4), 789-805.
  • OECD/FAO (2022). OECD-FAO Agrıcultural Outlook 2022-2031. OECD Publishing, Paris, 2022, 1-363.
  • Oikonomopoulos, A., van Deen, W. K., Manansala, A. R., Lacey, P. N., Tomakili, T. A., Ziman, A. & Hommes, D. W. (2015). Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci Rep, 5, 16570.
  • Orzechowski, A. (2015). Artificial meat? Feasible approach based on the experience from cell culture studies. J Integr Agric, 14 (2), 217-221.
  • Pandurangan, M. & Kim, D.H. (2015). A novel approach for in vitro meat production. Appl Microbiol Biotechnol, 99 (13), 5391-5395.
  • Petetin, L. (2012). The revival of modern agricultural biotechnology by the UK Government: what role for animal cloning? Eur Food Feed Law Rev, 7 (6), 296-311.
  • Poinski, M (2021). Aleph farms and the technion reveal world’s first cultivated ribeye steak. https://www.fooddive.com/news/aleph-farms-unveils-worlds-first-cell-based-ribeye-steak/594830/.
  • Polat, H. & Yılmaz Tuncel, N. (2020). Sürdürülebilir Et Üretimi. Gıda, 46 (1), 134-151.
  • Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Sci, 92 (3), 297-301.
  • Riaz, M. N. (1999). Healthy baking with soy ingredients. Cereal Foods World, 44, 136-139.
  • Saygın-Alparslan, Ö. & Demirbaş, N. (2019). Sağlık meslek mensuplarının kırmızı et ve işlenmiş kırmızı et tüketim tercihleri. J Anim Prod, 60 (2), 105-110.
  • Schmidinger, K. (2012). Worldwide alternatives to animal derived foods–overview and evaluation models. Solution to global problems caused by livestock. Vienna, Austria, Thesis of PhD, University of Natural Resources and Life Sciences, Diss.
  • Schneider, Z. (2013). In vitro meat: space travel, cannibalism, and federal regulation. Houst Law Rev, 5, 991.
  • Schnitzler, A. C., Verma, A., Kehoe, D. E., Jing, D., Murrell, J. R., Der, K. A., Aysola, M., Rapiejko, P. J., Punreddy, S. & Rook, M. S. (2016). Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges. Biochem Eng J, 108, 3-13.
  • Schreuders, F. K., Dekkers, B. L., Bodnár, I., Erni, P., Boom, R. M. & van der Goot, A. J. (2019). Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. J Food Eng, 261, 32-39.
  • Seah, J. S. H., Singh, S., Tan, L. P. & Choudhury, D. (2022). Scaffolds for the manufacture of cultured meat. Crit Rev Biotechnol, 42 (2), 311-323.
  • Shanmugasundaram, S. (1991). Vegetable Soybean: research needs for production and quality improvement: proceedings of a workshop held at Kenting, Taiwan, 1991, 91-346.
  • Siegrist, M., Sütterlin, B. & Hartmann, C. (2018). Perceived naturalness and evoked disgust influence acceptance of cultured meat. Meat Sci, 139, 213-219.
  • Sikka, T. (2020). The “embodied multi-material layering” of in vitro meat. Techné: Research in Philosophy and Technology, 24 (1-2), 158-177.
  • Skardal, A., Zhang, J. & Prestwich, G. D. (2010). Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31 (24), 6173-6181.
  • Snyman, C., Goetsch, K. P., Myburgh, K. H. & Niesler, C. U. (2013). Simple silicone chamber system for in vitro three-dimensional skeletal muscle tissue formation. Front Physiol, 4, 349.
  • Stanojevic, S., Barac, M., Pesic, M., Milovanovic, M. M. & Vucelic-Radovic, B. (2010). Protein composition in tofu of corrected quality. Acta Period Technol, (41), 77-86.
  • Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A. & Sexton, A. (2018). Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture Trends Food Sci Technol, 78, 155-166.
  • Uzundumlu, A. S., Işık, H. B. & Kırlı, M. H. (2011). İstanbul İli Küçük Çekmece İlçesinde En Uygun Et Tipinin Belirlenmesi. Alınteri Zirai Bilimler Dergisi, 21 (2), 40-48.
  • Verbeke, W., Marcu, A., Rutsaert, P., Gaspar, R., Seibt, B., Fletcher, D. & Barnett, J. (2015). ‘Would you eat cultured meat?’: Consumers' reactions and attitude formation in Belgium, Portugal and the United Kingdom. Meat Sci, 102, 49-58.
  • Verzijden, K. & Lawyers, A. (2012). EFSA Updateon Clonıng in Relatıon to Food Productıon. http://static.basenet.nl/cms/106131/website/Publicaties-2012/120716%20EFSA%20Statement%20on%20use%20of%20clones%20for%20food%20production.pdf.
  • Wang, H. J. & Murphy, P. A. (1994). Isoflavone content in commercial soybean foods. J Agric Food Chem, 42 (8), 1666-1673.
  • Wang, Y., Xiao, X. & Wang, L. (2020). In vitro characterization of goat skeletal muscle satellite cells. Anim Biotechnol, 31 (2), 115-121. WHO. (2020). Zoonoses. https://www.who.int/news-room/fact-sheets/detail/zoonoses.
  • Wild, F., Czerny, M., Janssen, A. M., Kole, A. P., Zunabovic, M. & Domig, K. J. (2014). The evolution of a plant-based alternative to meat. Agro Food Industry Hi Tech, 25 (1), 45-49.
  • Yetim, H. & Tekiner, İ. H. (2020). Alternatif protein kaynaklarından yapay et üretimi kavramına eleştirel bir bakış. Helal ve Etik Araştırmaları Dergisi, 2 (2), 85-100.
  • Yıbar, A. & Çetin, E. (2014). Hayvan refahının et kalitesi üzerine etkileri. Uludağ Üniv Vet Fak Derg, 32 (2), 31-37.
  • Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J. & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. Trends Food Sci Technol, 97, 443-450.
  • Zhang, L., Hu, Y., Badar, I. H., Xia, X., Kong, B. & Chen, Q. (2021). Prospects of artificial meat: Opportunities and challenges around consumer acceptance. Trends Food Sci Technol, 116, 434-444.
  • Zhang, J., Shi, H. & Sheng, J. (2022). The effects of message framing on novel food introduction: Evidence from the artificial meat products in China, Food Policy, 112, 102361.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Bilimleri
Bölüm Derleme
Yazarlar

Ömer Çakmak 0000-0001-7658-1284

Erdi Ergene 0000-0001-7555-5148

Ulaş Acaröz 0000-0002-1879-4414

Tuba Aldemir 0000-0001-7419-3640

Yayımlanma Tarihi 6 Mayıs 2023
Kabul Tarihi 18 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 14 Sayı: 1

Kaynak Göster

APA Çakmak, Ö., Ergene, E., Acaröz, U., Aldemir, T. (2023). YAPAY ET ÜRETİMİNDE TEKNOLOJİK GELİŞMELER VE ENDÜSTRİSİNİN GELECEĞİ. Veteriner Farmakoloji Ve Toksikoloji Derneği Bülteni, 14(1), 1-15. https://doi.org/10.38137/vftd.1231634