Research Article
BibTex RIS Cite

Effect of Fermentation Time on Bio-Viability of Kombucha Tea

Year 2019, , 200 - 211, 02.09.2019
https://doi.org/10.24323/akademik-gida.613567

Abstract

Kombucha is a symbiotic system including
synergistic effects of yeasts and acetic acid bacteria, produced by the fermentation
of tea leaves and the incorporation of kombucha cultures under aerobic
conditions. In this study, kombucha samples were produced using different tea
leaves (white, green, oolong, black
and pu-erh), and the number of lactic
acid bacteria (LAB), total yeast (TM), total acetic acid (TAA) and total
gluconobacter (TGB) were determined in these samples during the fermentation of
21 days (30°C, dark conditions). Moreover, the survival rates of the present
microbiota were investigated by using the in
vitro
artificial gastrointestinal model depending on the various
fermentation periods. On the 12th day of fermentation, the highest
vitality rates were obtained for acetic acid bacteria (91.16-99.61%) and
gluconobacteria (90.84-99.37%) in artificial gastrointestinal model. At the end
of the fermentation period, TAA and TGB counts were 7.77-10.66 and 7.68-9.68
log cfu/mL, respectively. LAB counts increased first, followed by a reduction
of 60% due to high acidity (11.17 g/L, as acetic acid) and a decrease in pH
(2.82). In terms of antibacterial activity; E.
coli
was the most sensitive microorganism and Lactobacillus acidophilus was the most resistant microorganism to
the elevated acidity. The Kombucha tea produced by Pu-erh tea leaves had the highest antibacterial effect on the
microorganisms investigated (p<0.05). In terms of the industrial production
of Kombucha tea and the viability of the probiotics, it was concluded that the
ideal fermentation period should be 2 weeks, and the fermentation conditions
should be standardized in order to maintain its functional properties.

References

  • [1] Leal, J.M., Suárez, L.V., Jayabalan, R., Oros, J.H., Escalante-Aburto, A. (2018). A review on health benefits of kombucha nutritional compounds and metabolites. CyTA - Journal of Food, 16(1), 390-399.
  • [2] Goh, W.N.A., Rosma, A., Kaur, B., Fazilah, B., Karim, A.A., Bhat, R. (2012). Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on yield of microbial cellulose. International Food Research Journal, 19(1), 109-117.
  • [3] Jarrell, J., Cal, T., Bennett, J.W. (2000). The Kombucha consortia of yeasts and bacteria. Mycologist, 14(4), 166-170.
  • [4] Kurtzman, C.P., Robnett, C.J., Basehoar-Powers, E. (2001). Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from Kombucha tea. FEMS Yeast Research, 1(2), 133-138.
  • [5] İleri-Büyükoğlu, T., Taşçı, F., Şahindokuyucu, F. (2010). Kombucha ve sağlık üzerine etkileri. Uludag University Journal of the Faculty of Veterinary Medicine, 29(1), 69-76.
  • [6] Kreutzmann, S., Christensen, L.P., Edelenbos, M. (2008). Investigation of bitterness in carrots (Daucus carota L.) based on quantitative chemical and sensory analyses. LWT – Food Science and Technology, 41(2), 193-205.
  • [7] Greenwalt, C.J., Steinkraus, K.H., Ledford, R.A. (2000). Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. Journal of Food Protection, 63(7), 976-981.
  • [8] Sreeramulu, G., Zhu, Y., Knol, W. (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry, 48(6), 2589-2594.
  • [9] Teoh, A.L., Heard, G., Cox, J. (2004). Yeast ecology of kombucha fermentation. International Journal of Food Microbiology, 95(2), 119-126.
  • [10] Jayabalan, R., Malbaša, R.V., Lončar, E.S., Vitas, J.S., Sathishkumar, M. (2014). A review on kombucha tea—Microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13(4), 538-550.
  • [11] Jayabalan, R., Malini, K., Sathishkumar, M., Swaminathan, K., Yun, S.E. (2010). Biochemical characteristics of tea fungus produced during Kombucha fermentation. Food Science and Biotechnology, 19(3), 843-847.
  • [12] Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63-72.
  • [13] Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Coton, E. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology, 93(5), 1-16.
  • [14] Marsh, A.J., O’Sullivan, O., Hill, C., Ross, R.P., Cotter, P.D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple Kombucha (tea fungus) samples. Food Microbiology, 38, 171-178.
  • [15] İleri-Büyükoğlu, T., Taşçı, F., Şahindokuyucu, F. (2010). Kombucha ve sağlık üzerine etkileri. Uludag University Journal of the Faculty of Veterinary Medicine, 29(1), 69-76.
  • [16] Watawana, M.I., Jayawardena, N., Gunawardhana, C.B., Waisundara, V.Y. (2016). Enhancement of the antioxidant and starch hydrolase inhibitory activities of king coconut water (Cocos nucifera var. aurantiaca) by fermentation with Kombucha “tea fungus.” International Journal of Food Science and Technology, 51(2), 490-498.
  • [17] Villarreal-Soto, S.A., Beaufort, S., Bouajila, J., Souchard, J.P., Taillandier, P. (2018). Understanding kombucha tea fermentation: A Review. Journal of Food Science, 83(3), 580-588.
  • [18] Velićanski, A.S., Dragoljub, D., Markov, C.S.L., Tumbas Šaponjac, V.T., Vulić, J.J. (2014). Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technology and Biotechnology, 52(4), 420-429.
  • [19] Baschali, A., Tsakalidou, E., Kyriacou, A., Karavasiloğlu, N., Matalas, A.L. (2017). Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group. Nutrition Research Reviews, 30(1), 1-24.
  • [20] Reiss J. (1994). Influence of different sugars on the metabolism of the tea fungus. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 198(3), 258-261.
  • [21] Loncar, E., Djuric, M., Malbasa, R., Kolarov, L.J., Klasnja, M. (2006). Influence of working conditions upon Kombucha conducted fermentation of black tea. Food and Bioproducts Processing, 84(3), 186-192.
  • [22] Jayabalan, R., Marimuthu, S., Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392-398.
  • [23] Wang, Y., Ji, B., Wu, W., Wang, R., Yang, Z., Zhang, D., Tian, W. (2013). Hepatoprotective effects of Kombucha tea: Identification of functional strains and quantification of functional components. Journal of Agricultural and Food Chemistry, 94(2), 265-272.
  • [24] Watawana, M.I., Jayawardena, N., Waisundara, V.Y. (2015a). Enhancement of the functional properties of coffee through fermentation by “tea fungus” (Kombucha). Journal of Food Processing and Preservation, 39(6), 2596-2603.
  • [25] Watawana, M.I., Jayawardena, N., Gunawardhana, C.B., Waisundara, V.Y. (2015b). Health, wellness, and safety aspects of the consumption of kombucha. Journal of Chemistry, 1, 1-11.
  • [26] Mo, H., Zhu, Y., Chen, Z. (2008). Microbial fermented tea- a potential source of natural food preservatives. Trends in Food Science & Technology, 19(3), 124-130.
  • [27] Göçer E.M.Ç., Ergin, F., Küçükçetin, A. (2016). Sindirim sistemi modellerinde probiyotik mikroorganizmaların canlılığı. Akademik Gıda, 14(2), 158-165.
  • [28] Greenwalt, C.J., Ledford, R. A., Steinkraus, K. (1998). Determination and characterization of the antimicrobial activity of the fermented tea Kombucha. LWT-Food Science Technology, 31(3), 291-296.
  • [29] Bhattacharya, S., Manna, P., Gachhui, R., Sil, P.C. (2011a). Protective effect of Kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes. Indian Journal of Experimental Biology, 49(7), 511-524.
  • [30] Bhattacharya, S., Gachhui, R., Sil, P.C. (2011b). Hepatoprotective properties of Kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis. Pathophysiology, 18(3), 221-234.
  • [31] Bhattacharya, D., Bhattacharya, S., Patra, M.M., Chakravorty, S., Sarkar, S., Chakraborty, W., Koley, H., Gachhui, R. (2016). Antibacterial activity of polyphenolic fraction of Kombucha against enteric bacterial pathogens. Current Microbiology, 73(6), 885-896.
  • [32] Malbaša, R.V., Lončar, E.S., Vitas, J.S., Čanadanović-Brunet, J.M. (2011). Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry, 127(4), 1727-1731.
  • [33] Vina, I., Semjonovs, P., Linde, R., Patetko, A. (2013). Glucuronic acid containing fermented functional beverages produced by natural yeasts and bacteria associations. International Journal of Recent Research and Applied Studies, 14(1), 17-25.
  • [34] Kovacevic, Z., Davidovic, G., Vuckovic-Filipovic, J., Janicijevic-Petrovic, M., Janicijevic, K., Popovic, A. (2014). A toxic hepatitis caused the kombucha tea – Case report. Macedonian Journal of Medical Sciences, 2(1), 128-131.
  • [35] AOAC, (2005). Official methods of analysis of the AOAC.(18th ed.). Washington: Association of Official Analytical Chemists.
  • [36] Harrigan, W.F, McCance, M.E. (1990). Laboratory methods in food and dairy microbiology. Academic Press, London.
  • [37] Asai, T., Lizuka, H., Komagata, K. (1964). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. The Journal of General and Applied Microbiology, 10(2), 95-126.
  • [38] Nazzaro, F., Fratianni, F., Nicolaus, B., Poli, A., Orlando, P. (2012). The prebiotic source influences the growth biochemical features and survival under simulated gastrointestinal conditions of the probiotic Lactobacillus acidophilus. Anaerobe, 18(3), 280-285.
  • [39] Valero-Cases, E., Frutos, M.J. (2017). Effect of inulin on the viability of Lactobacillus plantarum during storage and in vitro digestion and on composition parameters of vegetable fermented juices. Plant Foods for Human Nutrition, 72(2), 161-167.
  • [40] Kim, E.S., Liang, Y.R., Jin, J., Sun, Q.F., Lu, J.L., Du, Y.Y., Lin, C. (2007). Impact of heating on chemical compositions of green tea liquor. Food Chemistry, 103(4), 1263-1267.
  • [41] Meilgaard, M. C., Giville, G. V., & Carr, B. T. (1999). The spectrum descriptive analysis method in sensory evaluation techniques. In: Sensory Evaluation of Techniques (3rd ed., Chapter 11), p:189-254, Boca Raton, FL: CRC Press. http://dx.doi.org/10.1201/9781439832271
  • [42] Liu C. H., Hsu W.H., Lee F.L., Liao C.C. (1996). The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13(6), 407-415.
  • [43] Chen C., Liu B.Y. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology, 89(5), 834-839.
  • [44] Zubaidaha, E., Afgani, C.A., Kalsum, U., Sriantac, I., Blanc, P. (2019). Comparison of in vivo antidiabetes activity of snake fruit Kombucha, black tea Kombucha and metformin. Biocatalysis and Agricultural Biotechnology, 17, 465–469.
  • [45] Zubaidah, E., Apriyadi, T.E., Kalsum, U., Widyastuti, E., Estiasih, T., Srianta, I., Blanc, P.J. (2018). In vivo evaluation of snake fruit Kombucha as hyperglycemia therapeutic agent. International Food Research Journal, 25(1), 453-457.
  • [46] Neffe-Skocińska, K., Sionek, B., Ścibisz, I., Kołożyn-Krajewska, D. (2017). Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA - Journal of Food, 15(4), 601-607.
  • [47] Yang, Z., Zhou, F., Ji, B., Li, B., Luo, Y., Yang, L., Li, T. (2010). Symbiosis between microorganisms from Kombucha and Kefir: potential significance to the enhancement of Kombucha function. Applied Biochemistry and Biotechnology, 160(2), 446-455.
  • [48] Sun, T.Z., Li, J.S., Chen, C. (2015). Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of Food and Drug Analysis, 23(4), 709-718.
  • [49] Gramza-Michałowska, A., Kulczyński, B., Xindi, Y., Gumienna, M. (2016). Research on the effect of culture time on the kombucha tea beverage’s antiradical capacity and sensory value. Acta Scientiarum Polonorum Technologia Alimentaria, 15(4), 447-457.
  • [50] Jayabalan, R., Subathradevi, P., Marimuthu, S., Satishkumar, M., -Swaminathan, K. (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry, 109(1), 227-234.
  • [51] Pure, A.E., Pure, M.E. (2016). Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Applied Food Biotechnology, 3(2),125-130.
  • [52] Güldane, M., Bayram, M., Topuz, S., Kaya, C., Gök, H.B., Bülbül, M., Koç, M. (2017). Beyaz, siyah ve yeşil çay kullanılarak üretilen kombuchaların bazı özelliklerinin belirlenmesi. Journal of Agricultural Faculty of Gaziosmanpasa University (JAFAG), 34(1), 46-56.
  • [53] Amarasinghe, H., Weerakkody, N.S., Waisundara, V.Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation. Food Science and Nutrition, 6(3), 659-665.
  • [54] Primiani, N., Pujiati, M.M., Ardhi, I.S. (2018). Kombucha fermentation test used for various types of herbal Teas. Journal of Physics: Conference Series,1025, 012073, 9p.
  • [55] Dufresne, C., Farnworth, E. (2000). Tea, Kombucha, and health: a review. Food Research International, 33(6), 409-421.
  • [56] Battikh, H., Chaieb, K., Bakhrouf, A., Ammar, E. (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry, 37(2), 231-236.
  • [57] Essawet, N.A., Cvetkovic, D., Velicanski, A., Canadanovic-Brunet, J., Vulic, J., Maksimovic, V., Markov, S. (2015). Polyphenols and antioxidant activities of Kombucha beverage enriched with Coffeberry extract. Chemical Industry and Chemical Engineering Quarterly, 21(3), 399-409.
  • [58] Lv, H.P., Zhang, Y.J., Lin, Z., Liang, Y.R. (2013). Processing and chemical constituents of Pu-erh tea: A review. Food Research International, 53(2), 608-618.
  • [59] Gladysheva, E.K., Skiba, E.A., Zolotukhin, V.N., Sakovich, G.V. (2018). Study of the conditions for the biosynthesis of bacterial cellulose by the producer Medusomyces gisevii Sa-12. Applied Biochemistry and Microbiology, 54(2), 179-187.
  • [60] Hubert, B., Eberl, L., Feucht, W. Polster, J. (2003). Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Zeitschrift für Naturforschung A, 58(11-12), 879-884.
  • [61] Ferrazzano, G.F., Amato, I., Ingenito, A., Zarrelli, A., Pinto, G., Pollio, A. (2011). Plant polyphenols and their anti-cariogenic properties: A review. Molecules, 16(2), 1486-1507.
  • [62] Siddiqui, Md. W., Sharangi, A.B., Singh, J.P., Thakur, P.K., Ayala-Zaala, J. F., Singh, A., Dhua, R.S. (2016). Antimicrobial properties of teas and their extracts in vitro. Critical Reviews in Food Science and Nutrition, 56(9), 1428-1439.
  • [63] Hu, Y., Jia, J., Qiao, J., Ge, C., Cao, Z. (2010). Antimicrobial activity of pu-erh tea extracts in vitro and its effects on the preservation of cooled mutton. Journal of Food Safety, 30(1), 177-195.
  • [64] Hazra, A., Saha, J., Dasgupta, N., Sengupta, C., Kumar, P.M., Das, S. (2017). Health-benefit assets of different Indian processed teas: a comparative approach. American Journal of Plant Sciences, 8(7),1607-1623.
  • [65] Padmini, E., Valarmathi, A. Rani, M.U. (2010). Comparative analysis of chemical composition and antibacterial activities of Mentha spicata and Camellia sinensis. Asian Journal of Experimental Biological Sciences, 1(4), 772-781.
  • [66] Chan, E.W.C., Soh, E.Y., Tie, P.P. Law, Y.P. (2011). Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis. Pharmacognosy Research, 3(4), 266-272.
  • [67] Ansari, F., Pourjafar, H., Esmailpour, S. (2017). Study on citric acid production and antibacterial activity of kombucha green tea beverage during production and storage. Annual Research and Review in Biology, 16(3), 1-8.
  • [68] Jiang, H.Y. (2009) White tea: its manufacture, chemistry, and health effects. In: Chemistry and Health-Promoting Properties, Edited by Chi-Tang Ho, Jen-Kun Lin, Fereidoon Shahidi, CRC Press, Boca Raton-Florida, USA pp.17-29.
  • [69] Carloni, P., Tiano, L., Padella, L., Bacchetti, T., Customu, C., Kay, A. Damiani, E. (2013). Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Research International, 53(2), 900-908.
  • [70] Chen, M., Zhu, Y., Zhang, H., Wang, J., Liu, X., Chen, Z., Zheng, M., Liu, B. (2017). Phenolic compounds and the biological effects of Puerh teas with long-term storage, International Journal of Food Properties, 20(8), 1715-1728.
  • [71] Duh, P.D., Yen, G.C., Yen, W.J., Wang, B.S. Chang, L.W. (2004). Effects of pu-erh tea on oxidative damage and nitric oxide scavenging. Journal of Agricultural and Food Chemistry, 52(26), 8169-8176.
  • [72] Bancirova, M. (2010). Comparison of the antioxidant capacity and the anti-microbial activity of black and green tea. Food Research International, 43(5),1379-82.
  • [73] Toda, M., Okubo, S., Hiyoshi, R., Shimamura, T. (1989). The bactericidal activity of tea and coffee. Letters in Applied Microbiology, 8(4), 123–125.
  • [74] Lee, Y.L., Cesario, T., Wang, Y., Shanbrom, E., Thrupp, L. (2003). Antibacterial activity of vegetables and juices. Nutrition, 19(11-12), 994-996.
  • [75] Yam, T.S., Shah, S., Hamilton-Miller, J.M.T. (1997). Microbiology activity of whole and fractionated crude extracts of tea (Camellia sinensis), and of tea components. FEMS Microbiology Letters, 152(1), 169-174.
  • [76] Sakanaka, S., Juneja, L.R., Tanigachi, M. (2000). Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria. Journal of Bioscience and Bioengineering, 90(1), 81-85.
  • [77] Yokihiko, H., Watanabe, M. (1989). Antibacterial activity of tea polyphenols against Clostridium botulinum. Journal of Japanese Society of Food Science Technology, 36(12), 951-955.
  • [78] Wu, S.C., Yen, G.C., Wang, B.S., Chiu, C.K., Yen, W.J., Chang, L.W. Duh, P.D. (2007). Antimutagenic and antimicrobial activities of pu-erh tea. LWT - Food Science and Technology, 40(3), 506-512.
  • [79] Michalczyk, M. Zawislak, A. (2008). The effect of tea infusions on the proliferation of selected bacteria important for the human intestinal tract. ACTA Scientiarum Polonorum Technologia Alimentaria, 7(1), 59-65.
  • [80] EUCAST, (2018). European Committee on Antimicrobial Susceptibility Testing, 20p (Erişim tarihi: 27.07.2019, https://www.ipna.csic.es/sites/default/files/users/user282/EUCAST%202018.pdf).
  • [81] Sreeramulu, G., Zhu, Y. Knol, W. (2001). Characterization of antimicrobial activity in Kombucha fermentation. Acta Biotechnologica, 21(1), 49-56.
  • [82] Mani-López, E., García, H.S., López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella inmeat and poultry products. Food Research International, 45(2), 713-721.
  • [83] Ayed, L., Abid, S.B., Hamdi, M. (2017). Development of a beverage from red grape juice fermented with the Kombucha consortium. Annals of Microbiology, 67(1), 111-121.
  • [84] Battıkh, H., Bakhrouf, A. Ammar, E. (2012). Antimicrobial effect of Kombucha analogues. LWT - Food Science and Technology, 47(1), 71-77.

Fermentasyon Süresinin Kombu Çayı Mikrobiyotası ve Canlılık Oranları Üzerine Etkileri

Year 2019, , 200 - 211, 02.09.2019
https://doi.org/10.24323/akademik-gida.613567

Abstract

Kombu çayı kültürü
ilavesiyle aerobik koşullarda çay yapraklarının fermentasyonuyla elde edilen
Kombu çayı, maya ve asetik asit bakterilerinin birlikte çalıştığı simbiyotik
bir sistemdir. Bu çalışmada, farklı çay (beyaz,
yeşil, oolong, siyah
ve pu-erh)
yaprakları kullanılarak üretilen kombu çaylarının, 21 gün (30°C, karanlık
koşullarda) fermentasyon süresince laktik asit bakterisi (LAB), toplam maya
(TM), toplam asetik asit (TAA) ve toplam glukonobakter (TGB) sayımları yapılmış
ve in vitro
yapay statik gastrointestinal
model kullanılarak mevcut
mikrobiyotanın canlı kalma oranları ile fermentasyon süresine bağlı olarak
değişimi incelenmiştir. Yapay mide-barsak ortamında en yüksek canlılık oranının
fermentasyonun 12. gününde asetik asit bakterileri ve glukonobakterlerde
(%91.16-99.61 ve %90.84-99.37) olduğu, fermentasyon sonunda, TAA ve TGB
sayılarının 7.77-10.66 ve 7.68-9.68 log kob/mL arasında değiştiği, LAB
sayılarında ise önce artış ardından yüksek asitlik (11.17 g/L, asetik asit
cinsinden) ve düşen pH (2.82) nedeniyle inhibisyon sonucu %60 oranında azalma
olduğu belirlenmiştir. Kombu çaylarının antibakteriyel etkisinin belirlenmesine
yönelik incelemede ise artan asitliğe en hassas mikroorganizmanın Escherichia coli ve en dirençli
mikroorganizmanın da Lactobacillus
acidophilus
olduğu belirlenmiştir. Pu-erh çay yapraklarıyla üretilen kombu
çaylarının ise mikroorganizmalar üzerinde en fazla antibakteriyel etki gösteren
çay yaprağı olduğu tespit edilmiştir (p<0.05). Sonuç olarak, ticari Kombu
çayı üretiminde probiyotiklerin canlılık özellikleri göz önünde bulundurularak
ideal fermentasyon süresi olarak 2 haftanın önerilebileceği, fonksiyonel
özelliklerin korunabilmesi için de fermentasyon koşullarının standardize
edilmesi gerektiği sonucuna varılmıştır. 

References

  • [1] Leal, J.M., Suárez, L.V., Jayabalan, R., Oros, J.H., Escalante-Aburto, A. (2018). A review on health benefits of kombucha nutritional compounds and metabolites. CyTA - Journal of Food, 16(1), 390-399.
  • [2] Goh, W.N.A., Rosma, A., Kaur, B., Fazilah, B., Karim, A.A., Bhat, R. (2012). Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on yield of microbial cellulose. International Food Research Journal, 19(1), 109-117.
  • [3] Jarrell, J., Cal, T., Bennett, J.W. (2000). The Kombucha consortia of yeasts and bacteria. Mycologist, 14(4), 166-170.
  • [4] Kurtzman, C.P., Robnett, C.J., Basehoar-Powers, E. (2001). Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from Kombucha tea. FEMS Yeast Research, 1(2), 133-138.
  • [5] İleri-Büyükoğlu, T., Taşçı, F., Şahindokuyucu, F. (2010). Kombucha ve sağlık üzerine etkileri. Uludag University Journal of the Faculty of Veterinary Medicine, 29(1), 69-76.
  • [6] Kreutzmann, S., Christensen, L.P., Edelenbos, M. (2008). Investigation of bitterness in carrots (Daucus carota L.) based on quantitative chemical and sensory analyses. LWT – Food Science and Technology, 41(2), 193-205.
  • [7] Greenwalt, C.J., Steinkraus, K.H., Ledford, R.A. (2000). Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. Journal of Food Protection, 63(7), 976-981.
  • [8] Sreeramulu, G., Zhu, Y., Knol, W. (2000). Kombucha fermentation and its antimicrobial activity. Journal of Agricultural and Food Chemistry, 48(6), 2589-2594.
  • [9] Teoh, A.L., Heard, G., Cox, J. (2004). Yeast ecology of kombucha fermentation. International Journal of Food Microbiology, 95(2), 119-126.
  • [10] Jayabalan, R., Malbaša, R.V., Lončar, E.S., Vitas, J.S., Sathishkumar, M. (2014). A review on kombucha tea—Microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13(4), 538-550.
  • [11] Jayabalan, R., Malini, K., Sathishkumar, M., Swaminathan, K., Yun, S.E. (2010). Biochemical characteristics of tea fungus produced during Kombucha fermentation. Food Science and Biotechnology, 19(3), 843-847.
  • [12] Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63-72.
  • [13] Coton, M., Pawtowski, A., Taminiau, B., Burgaud, G., Deniel, F., Coulloumme-Labarthe, L., Coton, E. (2017). Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. FEMS Microbiology Ecology, 93(5), 1-16.
  • [14] Marsh, A.J., O’Sullivan, O., Hill, C., Ross, R.P., Cotter, P.D. (2014). Sequence-based analysis of the bacterial and fungal compositions of multiple Kombucha (tea fungus) samples. Food Microbiology, 38, 171-178.
  • [15] İleri-Büyükoğlu, T., Taşçı, F., Şahindokuyucu, F. (2010). Kombucha ve sağlık üzerine etkileri. Uludag University Journal of the Faculty of Veterinary Medicine, 29(1), 69-76.
  • [16] Watawana, M.I., Jayawardena, N., Gunawardhana, C.B., Waisundara, V.Y. (2016). Enhancement of the antioxidant and starch hydrolase inhibitory activities of king coconut water (Cocos nucifera var. aurantiaca) by fermentation with Kombucha “tea fungus.” International Journal of Food Science and Technology, 51(2), 490-498.
  • [17] Villarreal-Soto, S.A., Beaufort, S., Bouajila, J., Souchard, J.P., Taillandier, P. (2018). Understanding kombucha tea fermentation: A Review. Journal of Food Science, 83(3), 580-588.
  • [18] Velićanski, A.S., Dragoljub, D., Markov, C.S.L., Tumbas Šaponjac, V.T., Vulić, J.J. (2014). Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa officinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technology and Biotechnology, 52(4), 420-429.
  • [19] Baschali, A., Tsakalidou, E., Kyriacou, A., Karavasiloğlu, N., Matalas, A.L. (2017). Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group. Nutrition Research Reviews, 30(1), 1-24.
  • [20] Reiss J. (1994). Influence of different sugars on the metabolism of the tea fungus. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 198(3), 258-261.
  • [21] Loncar, E., Djuric, M., Malbasa, R., Kolarov, L.J., Klasnja, M. (2006). Influence of working conditions upon Kombucha conducted fermentation of black tea. Food and Bioproducts Processing, 84(3), 186-192.
  • [22] Jayabalan, R., Marimuthu, S., Swaminathan, K. (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry, 102(1), 392-398.
  • [23] Wang, Y., Ji, B., Wu, W., Wang, R., Yang, Z., Zhang, D., Tian, W. (2013). Hepatoprotective effects of Kombucha tea: Identification of functional strains and quantification of functional components. Journal of Agricultural and Food Chemistry, 94(2), 265-272.
  • [24] Watawana, M.I., Jayawardena, N., Waisundara, V.Y. (2015a). Enhancement of the functional properties of coffee through fermentation by “tea fungus” (Kombucha). Journal of Food Processing and Preservation, 39(6), 2596-2603.
  • [25] Watawana, M.I., Jayawardena, N., Gunawardhana, C.B., Waisundara, V.Y. (2015b). Health, wellness, and safety aspects of the consumption of kombucha. Journal of Chemistry, 1, 1-11.
  • [26] Mo, H., Zhu, Y., Chen, Z. (2008). Microbial fermented tea- a potential source of natural food preservatives. Trends in Food Science & Technology, 19(3), 124-130.
  • [27] Göçer E.M.Ç., Ergin, F., Küçükçetin, A. (2016). Sindirim sistemi modellerinde probiyotik mikroorganizmaların canlılığı. Akademik Gıda, 14(2), 158-165.
  • [28] Greenwalt, C.J., Ledford, R. A., Steinkraus, K. (1998). Determination and characterization of the antimicrobial activity of the fermented tea Kombucha. LWT-Food Science Technology, 31(3), 291-296.
  • [29] Bhattacharya, S., Manna, P., Gachhui, R., Sil, P.C. (2011a). Protective effect of Kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes. Indian Journal of Experimental Biology, 49(7), 511-524.
  • [30] Bhattacharya, S., Gachhui, R., Sil, P.C. (2011b). Hepatoprotective properties of Kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis. Pathophysiology, 18(3), 221-234.
  • [31] Bhattacharya, D., Bhattacharya, S., Patra, M.M., Chakravorty, S., Sarkar, S., Chakraborty, W., Koley, H., Gachhui, R. (2016). Antibacterial activity of polyphenolic fraction of Kombucha against enteric bacterial pathogens. Current Microbiology, 73(6), 885-896.
  • [32] Malbaša, R.V., Lončar, E.S., Vitas, J.S., Čanadanović-Brunet, J.M. (2011). Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry, 127(4), 1727-1731.
  • [33] Vina, I., Semjonovs, P., Linde, R., Patetko, A. (2013). Glucuronic acid containing fermented functional beverages produced by natural yeasts and bacteria associations. International Journal of Recent Research and Applied Studies, 14(1), 17-25.
  • [34] Kovacevic, Z., Davidovic, G., Vuckovic-Filipovic, J., Janicijevic-Petrovic, M., Janicijevic, K., Popovic, A. (2014). A toxic hepatitis caused the kombucha tea – Case report. Macedonian Journal of Medical Sciences, 2(1), 128-131.
  • [35] AOAC, (2005). Official methods of analysis of the AOAC.(18th ed.). Washington: Association of Official Analytical Chemists.
  • [36] Harrigan, W.F, McCance, M.E. (1990). Laboratory methods in food and dairy microbiology. Academic Press, London.
  • [37] Asai, T., Lizuka, H., Komagata, K. (1964). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. The Journal of General and Applied Microbiology, 10(2), 95-126.
  • [38] Nazzaro, F., Fratianni, F., Nicolaus, B., Poli, A., Orlando, P. (2012). The prebiotic source influences the growth biochemical features and survival under simulated gastrointestinal conditions of the probiotic Lactobacillus acidophilus. Anaerobe, 18(3), 280-285.
  • [39] Valero-Cases, E., Frutos, M.J. (2017). Effect of inulin on the viability of Lactobacillus plantarum during storage and in vitro digestion and on composition parameters of vegetable fermented juices. Plant Foods for Human Nutrition, 72(2), 161-167.
  • [40] Kim, E.S., Liang, Y.R., Jin, J., Sun, Q.F., Lu, J.L., Du, Y.Y., Lin, C. (2007). Impact of heating on chemical compositions of green tea liquor. Food Chemistry, 103(4), 1263-1267.
  • [41] Meilgaard, M. C., Giville, G. V., & Carr, B. T. (1999). The spectrum descriptive analysis method in sensory evaluation techniques. In: Sensory Evaluation of Techniques (3rd ed., Chapter 11), p:189-254, Boca Raton, FL: CRC Press. http://dx.doi.org/10.1201/9781439832271
  • [42] Liu C. H., Hsu W.H., Lee F.L., Liao C.C. (1996). The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13(6), 407-415.
  • [43] Chen C., Liu B.Y. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology, 89(5), 834-839.
  • [44] Zubaidaha, E., Afgani, C.A., Kalsum, U., Sriantac, I., Blanc, P. (2019). Comparison of in vivo antidiabetes activity of snake fruit Kombucha, black tea Kombucha and metformin. Biocatalysis and Agricultural Biotechnology, 17, 465–469.
  • [45] Zubaidah, E., Apriyadi, T.E., Kalsum, U., Widyastuti, E., Estiasih, T., Srianta, I., Blanc, P.J. (2018). In vivo evaluation of snake fruit Kombucha as hyperglycemia therapeutic agent. International Food Research Journal, 25(1), 453-457.
  • [46] Neffe-Skocińska, K., Sionek, B., Ścibisz, I., Kołożyn-Krajewska, D. (2017). Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA - Journal of Food, 15(4), 601-607.
  • [47] Yang, Z., Zhou, F., Ji, B., Li, B., Luo, Y., Yang, L., Li, T. (2010). Symbiosis between microorganisms from Kombucha and Kefir: potential significance to the enhancement of Kombucha function. Applied Biochemistry and Biotechnology, 160(2), 446-455.
  • [48] Sun, T.Z., Li, J.S., Chen, C. (2015). Effects of blending wheatgrass juice on enhancing phenolic compounds and antioxidant activities of traditional kombucha beverage. Journal of Food and Drug Analysis, 23(4), 709-718.
  • [49] Gramza-Michałowska, A., Kulczyński, B., Xindi, Y., Gumienna, M. (2016). Research on the effect of culture time on the kombucha tea beverage’s antiradical capacity and sensory value. Acta Scientiarum Polonorum Technologia Alimentaria, 15(4), 447-457.
  • [50] Jayabalan, R., Subathradevi, P., Marimuthu, S., Satishkumar, M., -Swaminathan, K. (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry, 109(1), 227-234.
  • [51] Pure, A.E., Pure, M.E. (2016). Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusions. Applied Food Biotechnology, 3(2),125-130.
  • [52] Güldane, M., Bayram, M., Topuz, S., Kaya, C., Gök, H.B., Bülbül, M., Koç, M. (2017). Beyaz, siyah ve yeşil çay kullanılarak üretilen kombuchaların bazı özelliklerinin belirlenmesi. Journal of Agricultural Faculty of Gaziosmanpasa University (JAFAG), 34(1), 46-56.
  • [53] Amarasinghe, H., Weerakkody, N.S., Waisundara, V.Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation. Food Science and Nutrition, 6(3), 659-665.
  • [54] Primiani, N., Pujiati, M.M., Ardhi, I.S. (2018). Kombucha fermentation test used for various types of herbal Teas. Journal of Physics: Conference Series,1025, 012073, 9p.
  • [55] Dufresne, C., Farnworth, E. (2000). Tea, Kombucha, and health: a review. Food Research International, 33(6), 409-421.
  • [56] Battikh, H., Chaieb, K., Bakhrouf, A., Ammar, E. (2013). Antibacterial and antifungal activities of black and green kombucha teas. Journal of Food Biochemistry, 37(2), 231-236.
  • [57] Essawet, N.A., Cvetkovic, D., Velicanski, A., Canadanovic-Brunet, J., Vulic, J., Maksimovic, V., Markov, S. (2015). Polyphenols and antioxidant activities of Kombucha beverage enriched with Coffeberry extract. Chemical Industry and Chemical Engineering Quarterly, 21(3), 399-409.
  • [58] Lv, H.P., Zhang, Y.J., Lin, Z., Liang, Y.R. (2013). Processing and chemical constituents of Pu-erh tea: A review. Food Research International, 53(2), 608-618.
  • [59] Gladysheva, E.K., Skiba, E.A., Zolotukhin, V.N., Sakovich, G.V. (2018). Study of the conditions for the biosynthesis of bacterial cellulose by the producer Medusomyces gisevii Sa-12. Applied Biochemistry and Microbiology, 54(2), 179-187.
  • [60] Hubert, B., Eberl, L., Feucht, W. Polster, J. (2003). Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Zeitschrift für Naturforschung A, 58(11-12), 879-884.
  • [61] Ferrazzano, G.F., Amato, I., Ingenito, A., Zarrelli, A., Pinto, G., Pollio, A. (2011). Plant polyphenols and their anti-cariogenic properties: A review. Molecules, 16(2), 1486-1507.
  • [62] Siddiqui, Md. W., Sharangi, A.B., Singh, J.P., Thakur, P.K., Ayala-Zaala, J. F., Singh, A., Dhua, R.S. (2016). Antimicrobial properties of teas and their extracts in vitro. Critical Reviews in Food Science and Nutrition, 56(9), 1428-1439.
  • [63] Hu, Y., Jia, J., Qiao, J., Ge, C., Cao, Z. (2010). Antimicrobial activity of pu-erh tea extracts in vitro and its effects on the preservation of cooled mutton. Journal of Food Safety, 30(1), 177-195.
  • [64] Hazra, A., Saha, J., Dasgupta, N., Sengupta, C., Kumar, P.M., Das, S. (2017). Health-benefit assets of different Indian processed teas: a comparative approach. American Journal of Plant Sciences, 8(7),1607-1623.
  • [65] Padmini, E., Valarmathi, A. Rani, M.U. (2010). Comparative analysis of chemical composition and antibacterial activities of Mentha spicata and Camellia sinensis. Asian Journal of Experimental Biological Sciences, 1(4), 772-781.
  • [66] Chan, E.W.C., Soh, E.Y., Tie, P.P. Law, Y.P. (2011). Antioxidant and antibacterial properties of green, black, and herbal teas of Camellia sinensis. Pharmacognosy Research, 3(4), 266-272.
  • [67] Ansari, F., Pourjafar, H., Esmailpour, S. (2017). Study on citric acid production and antibacterial activity of kombucha green tea beverage during production and storage. Annual Research and Review in Biology, 16(3), 1-8.
  • [68] Jiang, H.Y. (2009) White tea: its manufacture, chemistry, and health effects. In: Chemistry and Health-Promoting Properties, Edited by Chi-Tang Ho, Jen-Kun Lin, Fereidoon Shahidi, CRC Press, Boca Raton-Florida, USA pp.17-29.
  • [69] Carloni, P., Tiano, L., Padella, L., Bacchetti, T., Customu, C., Kay, A. Damiani, E. (2013). Antioxidant activity of white, green and black tea obtained from the same tea cultivar. Food Research International, 53(2), 900-908.
  • [70] Chen, M., Zhu, Y., Zhang, H., Wang, J., Liu, X., Chen, Z., Zheng, M., Liu, B. (2017). Phenolic compounds and the biological effects of Puerh teas with long-term storage, International Journal of Food Properties, 20(8), 1715-1728.
  • [71] Duh, P.D., Yen, G.C., Yen, W.J., Wang, B.S. Chang, L.W. (2004). Effects of pu-erh tea on oxidative damage and nitric oxide scavenging. Journal of Agricultural and Food Chemistry, 52(26), 8169-8176.
  • [72] Bancirova, M. (2010). Comparison of the antioxidant capacity and the anti-microbial activity of black and green tea. Food Research International, 43(5),1379-82.
  • [73] Toda, M., Okubo, S., Hiyoshi, R., Shimamura, T. (1989). The bactericidal activity of tea and coffee. Letters in Applied Microbiology, 8(4), 123–125.
  • [74] Lee, Y.L., Cesario, T., Wang, Y., Shanbrom, E., Thrupp, L. (2003). Antibacterial activity of vegetables and juices. Nutrition, 19(11-12), 994-996.
  • [75] Yam, T.S., Shah, S., Hamilton-Miller, J.M.T. (1997). Microbiology activity of whole and fractionated crude extracts of tea (Camellia sinensis), and of tea components. FEMS Microbiology Letters, 152(1), 169-174.
  • [76] Sakanaka, S., Juneja, L.R., Tanigachi, M. (2000). Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria. Journal of Bioscience and Bioengineering, 90(1), 81-85.
  • [77] Yokihiko, H., Watanabe, M. (1989). Antibacterial activity of tea polyphenols against Clostridium botulinum. Journal of Japanese Society of Food Science Technology, 36(12), 951-955.
  • [78] Wu, S.C., Yen, G.C., Wang, B.S., Chiu, C.K., Yen, W.J., Chang, L.W. Duh, P.D. (2007). Antimutagenic and antimicrobial activities of pu-erh tea. LWT - Food Science and Technology, 40(3), 506-512.
  • [79] Michalczyk, M. Zawislak, A. (2008). The effect of tea infusions on the proliferation of selected bacteria important for the human intestinal tract. ACTA Scientiarum Polonorum Technologia Alimentaria, 7(1), 59-65.
  • [80] EUCAST, (2018). European Committee on Antimicrobial Susceptibility Testing, 20p (Erişim tarihi: 27.07.2019, https://www.ipna.csic.es/sites/default/files/users/user282/EUCAST%202018.pdf).
  • [81] Sreeramulu, G., Zhu, Y. Knol, W. (2001). Characterization of antimicrobial activity in Kombucha fermentation. Acta Biotechnologica, 21(1), 49-56.
  • [82] Mani-López, E., García, H.S., López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella inmeat and poultry products. Food Research International, 45(2), 713-721.
  • [83] Ayed, L., Abid, S.B., Hamdi, M. (2017). Development of a beverage from red grape juice fermented with the Kombucha consortium. Annals of Microbiology, 67(1), 111-121.
  • [84] Battıkh, H., Bakhrouf, A. Ammar, E. (2012). Antimicrobial effect of Kombucha analogues. LWT - Food Science and Technology, 47(1), 71-77.
There are 84 citations in total.

Details

Primary Language Turkish
Journal Section Research Papers
Authors

Nurcan Değirmencioğlu 0000-0002-1186-3106

Elif Yıldız 0000-0003-1356-9012

Yasemin Şahan 0000-0003-3457-251X

Metin Güldaş 0000-0002-5187-9380

Ozan Gürbüz 0000-0001-7871-1628

Publication Date September 2, 2019
Submission Date April 25, 2019
Published in Issue Year 2019

Cite

APA Değirmencioğlu, N., Yıldız, E., Şahan, Y., Güldaş, M., et al. (2019). Fermentasyon Süresinin Kombu Çayı Mikrobiyotası ve Canlılık Oranları Üzerine Etkileri. Akademik Gıda, 17(2), 200-211. https://doi.org/10.24323/akademik-gida.613567
AMA Değirmencioğlu N, Yıldız E, Şahan Y, Güldaş M, Gürbüz O. Fermentasyon Süresinin Kombu Çayı Mikrobiyotası ve Canlılık Oranları Üzerine Etkileri. Akademik Gıda. September 2019;17(2):200-211. doi:10.24323/akademik-gida.613567
Chicago Değirmencioğlu, Nurcan, Elif Yıldız, Yasemin Şahan, Metin Güldaş, and Ozan Gürbüz. “Fermentasyon Süresinin Kombu Çayı Mikrobiyotası Ve Canlılık Oranları Üzerine Etkileri”. Akademik Gıda 17, no. 2 (September 2019): 200-211. https://doi.org/10.24323/akademik-gida.613567.
EndNote Değirmencioğlu N, Yıldız E, Şahan Y, Güldaş M, Gürbüz O (September 1, 2019) Fermentasyon Süresinin Kombu Çayı Mikrobiyotası ve Canlılık Oranları Üzerine Etkileri. Akademik Gıda 17 2 200–211.
IEEE N. Değirmencioğlu, E. Yıldız, Y. Şahan, M. Güldaş, and O. Gürbüz, “Fermentasyon Süresinin Kombu Çayı Mikrobiyotası ve Canlılık Oranları Üzerine Etkileri”, Akademik Gıda, vol. 17, no. 2, pp. 200–211, 2019, doi: 10.24323/akademik-gida.613567.
ISNAD Değirmencioğlu, Nurcan et al. “Fermentasyon Süresinin Kombu Çayı Mikrobiyotası Ve Canlılık Oranları Üzerine Etkileri”. Akademik Gıda 17/2 (September 2019), 200-211. https://doi.org/10.24323/akademik-gida.613567.
JAMA Değirmencioğlu N, Yıldız E, Şahan Y, Güldaş M, Gürbüz O. Fermentasyon Süresinin Kombu Çayı Mikrobiyotası ve Canlılık Oranları Üzerine Etkileri. Akademik Gıda. 2019;17:200–211.
MLA Değirmencioğlu, Nurcan et al. “Fermentasyon Süresinin Kombu Çayı Mikrobiyotası Ve Canlılık Oranları Üzerine Etkileri”. Akademik Gıda, vol. 17, no. 2, 2019, pp. 200-11, doi:10.24323/akademik-gida.613567.
Vancouver Değirmencioğlu N, Yıldız E, Şahan Y, Güldaş M, Gürbüz O. Fermentasyon Süresinin Kombu Çayı Mikrobiyotası ve Canlılık Oranları Üzerine Etkileri. Akademik Gıda. 2019;17(2):200-11.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).