Research Article
BibTex RIS Cite

Taze ve Kurutulmuş Yaban Mersini (Vaccinium myrtillus) Meyve ve Yaprak Ekstraktlarının Probiyotik ve Patojen Bakteriler Üzerine Etkileri

Year 2019, Volume: 17 Issue: 3, 342 - 350, 18.11.2019
https://doi.org/10.24323/akademik-gida.647716

Abstract

Üzümsü meyveler arasında önemli bir yere sahip olan yaban mersini (Vaccinium myrtillus), antioksidan,
antimikrobiyal, antidiyabetik, antienflamatuar, antiseptik vb. özellikleri
bilinen pek çok fenolik bileşik açısından zengin bir kaynaktır. Son yıllarda
patojen bakterilere karşı antimikrobiyal etkiye sahip bitkisel kaynaklar
üzerindeki araştırmalar hız kazanmış olup, bu çalışmada Türkiye’nin Erdek ve
Kapıdağ yörelerinden 3 farklı lokasyonda doğal olarak yetişen taze ve
kurutulmuş yaban mersini meyve ve
yapraklarından elde edilen ekstraklar ile fenolik standartların bazı bakteri
türlerine karşı etkilerinin araştırılması amaçlanmıştır. Ekstraktların ve
standart fenolik bileşiklerin; gıda sanayiinde önem taşıyan
Salmonella Enteritidis (ATCC 13076), Escherichia coli (ATCC 25922), Staphylococcus
aureus
spp. aureus (ATCC 29213), Enterobacter aerogenes (ATCC 13048), Listeria monocytogenes serotype 1/2b, Salmonella Typhimurium, Lactobacillus delbrueckii subsp. bulgaricus NRRL B 548, Lactobacillus casei NRRL B 1922 ve Lactobacillus acidophilus NRRL B 4495 karşı etkileri, disk difüzyon
yöntemiyle test edilmiştir. Taze ve kurutulmuş yaban mersini meyve ve yaprak ekstraktları
doza ve fenolik bileşen içeriğine bağlı olarak patojen ve probiyotik bakteriler
üzerinde farklı etkiler göstermiştir. Bakterilere karşı (
L. acidophilus NRRL B 4495 hariç), kurutulmuş yaprak ekstraktları
pozitif kontrol (24-26 mm) ile karşılaştırıldığında en etkili ekstrakt (20-25
mm), şiringik asit (16-26 mm), trans
ferulik asit (14-26 mm) ve naringin (14-26 mm) en etkili; kafeik asit (16-18),
resveratrol (16-19 mm) ve (+)-kateşin (16-18 mm) en az etkili fenolik bileşik
olmuştur. Standart fenolik bileşiklere en dayanıklı patojenler sırasıyla S. Enteritidis
(ATCC 13076), L.
monocytogenes
serotype 1/2b ve S.
Typhimurium
’dur. Şiringik asit, hesperidin,
3-hidroksi-4-metoksi sinnamik asit ve rutin hidratın ise probiyotikler üzerinde
etkili olduğu tespit edilmiştir.
Elde edilen sonuçlara göre,
yaban mersini ekstraktlarının patojenlere ve LAB’ne (L. acidophilus hariç) karşı etkili olabileceği ve doğal koruyucu
olarak geliştirilme potansiyelinin bulunduğu, fenolik bileşiklerin ise farklı
etkiler gösterdiği belirlenmiştir. 

Supporting Institution

Bandırma Onyedi Eylül Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

BAP-18-BMYO-1009-082

Thanks

Bu çalışma Bandırma Onyedi Eylül Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından BAP-18-BMYO-1009-082 nolu projeyle desteklenmiştir.

References

  • [1] Sellappan, S., Akoh, C.C., Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry, 50(8), 2432-2438.
  • [2] Ehlenfeldt, M.K., Prior, R.L. (2001). Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. Journal of Agricultural and Food Chemistry, 49(5), 2222-2227.
  • [3] Puupponen-Pimiä, R., Nohynek, L., Meier, C., Kähkönen., M, Heinonen., M, Hopia, A., Oksman-Caldentey, K.M. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology, 90(4), 494-507.
  • [4] Deng, Y., Yang, G., Yue, J., Qian, B., Liu, Z., Wang, D., Zhong, Y., Zhao, Y. (2014). Influences of ripening stages and extracting solvents on the polyphenolic compounds, antimicrobial and antioxidant activities of blueberry leaf extracts. Food Control, 38, 184-191.
  • [5] Silva, S., Costa, E.M., Pereira, M.F., Costa, M.R., Pintado, M.E. (2013). Evaluation of the antimicrobial activity of aqueous extracts from dry Vaccinium corymbosum extrcats upon food microorganism. Food Control, 34(2), 645-650.
  • [6] Park, Y.J., Biswas, R., Phillips, R.D., Chen, J. (2011). Antibacterial activities of blueberry and muscadine phenolic extracts. Journal of Food Science, 76(2), 161-165.
  • [7] Kelebek, H., Jourdes, M., Selli, S., Teissedre, P.L. (2013). Comparative evaluation of the phenolic content and antioxidant capacity of sun-dried raisins. Journal of the Science of Food and Agriculture, 93(12), 2963-2972.
  • [8] Ieri, F., Martini, S., Innocenti, M., Mulinacci, N. (2013). Phenolic distribution in liquid preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochemical Analysis, 24(5), 467-475.
  • [9] Burdulis, D., Sarkinas, A., Jasutiené, E., Nikolajevas, L., Janulis, V. (2009). Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Poloniae Pharmaceutica, 66(4), 399-408.
  • [10] Li, C., Feng, J., Huang, W.Y., An, X.T. (2013). Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. Journal of Agricultural and Food Chemistry, 61(3), 523-531.
  • [11] Scalbert, A., Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. The Journal of Nutrition, 130(8), 2073-2085.
  • [12] Atacan, K., Yanık, D.K. (2017). Yaban mersini (Vaccinium corymbosum L.) suyu konsantresinin püskürtmeli kurutucuda kurutulması: Tepki yüzey yöntemiyle optimizasyon. Akademik Gıda, 15(2), 139-148.
  • [13] Nohynek, L.J., Alakomi, H.L., Kähkönen, M.P., Heinonen, M., Helander, I.M., Oksman-Caldentey, K.M., Puupponen-Pimiä, R.H. (2006). Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer, 54(1), 18-32.
  • [14] Biswas, D., Wideman, N.E., O’Bryan, C.A., Muthaiyan, A., Lingbeck, J.M., Crandall, P.G., Ricke, S.C. (2012). Pasteurized blueberry (Vaccinium corymbosum) juice growth of bacterial pathogens in milk but allows survival of probiotic bacteria. Journal of Food Safety, 32(2), 204-209.
  • [15] Bunea, A., Rugina, D.A., Pintea, A.M., Sconta, Z., Bunea, C.I., Socaciu, C. (2011). Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoco, 39(2), 70-76.
  • [16] Kim, S.M., Shanga, Y.F., Um, B.H. (2010). Preparative separation of chlorogenic acid by centrifugal partition chromatography from highbush blueberry (Vaccinium corymbosum L.). Phytochemical Analysis, 21(5), 457-462.
  • [17] Routray, W., Orsat, V. (2014). MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Industrial Crops and Products, 58, 36-45.
  • [18] Pervin, M., Hasnat, M.A., Lim, B.O. (2013). Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract. Asian Pacific Journal of Tropical Disease, 3(6), 444-453.
  • [19] Norberto, S., Silva, S., Meireles, M., Faria, A., Pintado, M., Calhau, C. (2013). Blueberry anthocyanins in health promotion: A metabolic overview. Journal of Functional Foods, 5(4), 1518-1528.
  • [20] Caillet, S., Côté, J., Sylvain, J.F., Lacroix, M. (2012). Antimicrobial effects of fractions from cranberry products on the growth of seven pathogenic bacteria. Food Control, 23, 419-428.
  • [21] Neto, C,C. (2007). Cranberry and blueberry: Evidence for protective effects against cancer and vascular diseases. Molecular Nutrition & Food Research, 51(6), 652-664.
  • [22] Lacombe, A., Wu, W.C.H., White, J., Tadepalli, S., Andre, E.E. (2012). The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food Microbiology, 30(1), 124-131.
  • [23] Sun, X.H., Zhou, T.T., Wei, C.H., Lan, W.Q., Zhao, Y., Pan, Y.J., Wu, V.C.H. (2018). Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 94, 155-161.
  • [24] Wu, V.C.H., Qiu, X.J., Bushway, A., Harper, L. (2008). Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT- Food Science and Technology, 41(10), 1834-1841.
  • [25] Yang, H., Hewes, D., Salaheen, S., Federman, C., Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37, 15-20.
  • [26] Connor, A.M., Luby, J.J., Tong, C.B.S., Finn, C.E., Hancock, J.K. (2002a). Genotypic and environmental variation in antioxidant activity, total phenolic contents, and anthocyanin content among blueberry cultivars. Journal of American Society Horticultural Sciences, 127(1), 89-97.
  • [27] Connor, A.M., Luby, J.J., Tong, C.B.S. (2002b). Variability in antioxidant activity in blueberry and correlations among different antioxidant activity assays. Journal of American Society Horticultural Sciences, 127(2), 238-244.
  • [28] Yang, G., Yue, J., Gong, X., Qian, B., Wang, H., Deng, Y., Zhao, Y. (2014). Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 92, 46-53.
  • [29] Kim, C.H., Jil, G., Ahn, C. (2000). Purification and molecular characterization of a bacteriocin from Pediococcus sp. KCA1303-10 isolated from fermented flatfish. Food Science and Biotechnology, 9(4), 270-276.
  • [30] Shen, X., Sun, X., Xie, Q.L.H., Zhao, Y., Pan, Y., Hwang, C.A., Wu, V.C.H. (2014). Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis. Food Control, 35, 159-165.
  • [31] Yow, C.M.N., Tang, H.M., Chu, E.S., Huang, Z. (2012). Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens. Photochemistry and Photobiology, 88(3), 626-632.
  • [32] Kleerebezem, M., Hols, P., Bernard, E., Rolain, T., Zhou, M. M., Siezen, R.J. (2010). The extracellular biology of the lactobacilli. FEMS Microbiology Reviews, 34, 199-230
  • [33] Lian, P.Y., Maseko, T., Rhee, M., Ng, K. (2012). The antimicrobial effects of cranberry against Staphylococcus aureus. Food Science and Technology International, 18, 179–186.
  • [34] Lacombe, A., McGivney, C., Tadepalli, S., Sun, X., Wu, V.C.H. (2013). The effect of American cranberry (Vaccinium macrocarpon) constituents on the growth inhibition, membrane integrity, and injury of Escherichia coli O157:H7 and Listeria monocytogenes in comparison to Lactobacillus rhamnosus. Food Microbiology, 34, 352-359.
  • [35] Rauha, J.P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., Pihlaja, K., Vuorela, H., Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56, 3-12.
  • [36] Česonienė, L., Jasutienė, I., Šarkinas, A. (2009). Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Medicina (Kaunas), 45(12), 992-999.
  • [37] Kylli, P., Nohynek, L., Puupponen-Pimiä, R., Westerlund-Wikström, B., Leppänen, T., Welling, J., Moilanen, E., Heinonen, M. (2011). Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. Journal of Agricultural and Food Chemistry, 59, 3373–3384.
  • [38] Mahboubi, M., Kazempour, N., Taghizadeh, M. (2013) In vitro antimicrobial and antioxidant activity of Vaccinium arctostaphylos L. Extracts. Journal of Biologically Active Products from Nature, 3(4), 241-247.
  • [39] Kryvtsova, M.V., Trush, K., Eftimova, J., Koščová, J., Spivak, M.J. (2019). Antimicrobial, antioxidant and some biochemcal properties of Vaccinium vitis-idaea L. Мікробіол. Журн, 81(3), 40-52.
  • [40] Miljković, V.M., Nikolić, G.S., Zvezdanović, J., Mihajlov-Krstev, T., Arsić, B.B., Miljković, M.N. (2018). Phenolic profile, mineral content and antibacterial activity of the methanol extract of Vaccinium myrtillus L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 122-127.
  • [41] Xiaoyong, S., Luming, C. (2014). Phenolic constituents, antimicrobial and antioxidant properties of blueberry leaves (V5). Journal of Food and Nutrition Research, 2(12), 973-979.
  • [42] Değirmencioğlu, N., Gürbüz, O., Karatepe, G.E., Irkin, R. (2017). Influence of hot air drying on phenolic compounds and antioxidant capacity of blueberry (Vaccinium myrtillus) fruit and leaf. Journal of Applied Botany and Food Quality, 90, 115-125.
  • [43] Skupień, K., Oszmiański, J., Kostrzewa-Nowak, D., Tarasiuk, J. (2006). In vitro antileukemic activity of extracts from berry plant leaves against sensitive and multidrug resistant HL60 cells. Cancer Letters, 236(2), 282-291.
  • [44] Oszmiański, J., Wojdyło, A., Gorzelany, J., Kapusta, I. (2011). Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. Journal of Agricultural and Food Chemistry, 59(24), 12830-12835.
  • [45] Cisowska, A., Wojnics, D., Hendrich, A.B. (2011). Anthocyanins as antimicrobial agents of natural plant origin. Natural Product Communications, 6(1), 149-156.
  • [46] Cueva, C., Moreno-Arribas, V., Martı´n-A´ lvarez, P.J., Bills, G., Vicente, M.F., Basilio, A., Rivas, C.L., Requena, T., Rodrı´guez, J.M., Bartolome´, B. (2010). Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 161(5), 372-382.
  • [47] Celiz, G., Daz, M., Audisio, M.C. (2011). Antibacterial activity of naringin derivatives against pathogenic strains. Journal of Applied in Microbiology, 111, 731-738.
  • [48] Cushnie, T.P.T., Lamb, A.J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356.
  • [49] Nikoo, M., Regenstein, J.M., Gavlighi, H.A. (2018). Antioxidant and antimicrobial activities of (-)-epigallocatechin-3-gallate (EGCG) and its potential to preserve the quality and safety of foods. Comprehensive Reviews in Food Science and Food Safety, 17(9), 732-752.
  • [50] Yoon, B.I., Bae, W.J., Choi, Y.S., Kim, S.J., Ha, U.S., Hong, S.H., Sohn, D.W., Kim, S.W. (2018). Anti-inflammatory and antimicrobial effects of anthocyanin extracted from black soybean on chronic bacterial prostatitis rat model. Chinese Journal of Integrative Medicine, 24(8), 621-626.
  • [51] EUCAST, (2018). European Committee on Antimicrobial Susceptibility Testing, 20p (https://www.ipna.csic.es/sites/default/files/users/user282/EUCAST%202018.pdf).
  • [52] Kang, C.G., Hah, D.S., Kim, C.H., Kim, Y.H., Kim, E., Kim, Y.S. (2011). Evaluation of antimicrobial activity of the methanol extracts from 8 traditional medicinal plants. Toxicological Research, 27(1), 31-36.
  • [53] Pastene, E., Speisky, H., García, A., Moreno, J., Troncoso, M., Figueroa, G. (2010). In vitro and in vivo effects of apple peel polyphenols against Helicobacter pylori. Journal of Agricultural and Food Chemistry, 58(12), 7172-7179.
  • [54] Hu, Y., Jia, J., Qiao, J., Ge, C., Cao, Z. (201016). Antimicrobial activity of pu-erh tea extracts in vitro and its effects on the preservation of cooled mutton. Journal of Food Safety, 30(1), 177-195.
  • [55] Duh, P.D., Yen, G.C., Yen, W.J., Wang, B.S. Chang, L.W. (2004). Effects of pu-erh tea on oxidative damage and nitric oxide scavenging. Journal of Agricultural and Food Chemistry, 52(26), 8169-8176.
  • [56] Shi, C., Sun, Y., Zheng, Z., Zhang, X., Song, K., Jia, Z., Chen, Y., Yang, M., Liu, X., Dong, R., Xia, X. (2016). Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chemistry, 197, 100–106.
  • [57] Borges, A., Ferreira, C., Saavedra, M.J., Simões, M. (2013). Antibacterial activity and more of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance, 19(4), 256-265.
  • [58] Vivas, N., Lonvaud-Funel, A., Glories, Y. (1997). Effect of phenolic acids and anthocyanins on growth, viability and malolactic activity of a lactic acid bacterium. Food Microbiology, 14, 291–300.
  • [59] Czyzowska, A., Kucharska, A.Z., Nowak, A., Sokół-Łętowska, A., Motyl, I., Piórecki, N. (2017). Suitability of the probiotic lactic acid bacteria strains as the starter cultures in unripe cornelian cherry (Cornus mas L.) fermentation. Journal of Food Science and Technology, 54(9), 2936-2946.
  • [60] Kot, B., Wicha, J., Piechota, M., Wolska, K., Gruzewska, A. (2015). Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turkish Journal of Medical Sciences, 45, 919-924.
  • [61] Lacombe, A., Wu, V.C.H. (2017). The potential of berries to serve as selective inhibitors of pathogens and promoters of beneficial microorganisms. Food Quality and Safety, 1, 3-12.

Effect of Fresh and Dried Blueberry (Vaccinium myrtillus) Fruit and Leaf Extracts on Probiotics and Pathogens

Year 2019, Volume: 17 Issue: 3, 342 - 350, 18.11.2019
https://doi.org/10.24323/akademik-gida.647716

Abstract

Blueberry
(Vaccinium myrtillus)
has a
significant place among berry fruits, and is a rich source of phenolic
compounds with antioxidant, antimicrobial, anti-diabetic and anti-inflammatory properties.
Recently, studies on plant-derived antimicrobial agents against pathogens have
increased. In this study, the antibacterial activity of fresh and dried
blueberry fruit and leaf extracts grown in three different locations of Erdek
and Kapıdağ, Turkey and phenolic standards were determined. The extracts and
phenolic standards were tested against Salmonella
Enteritidis
(ATCC 13076), Escherichia
coli
(ATCC 25922), Staphylococcus
aureus
spp. aureus
(ATCC 29213), Enterobacter
aerogenes
(ATCC 13048), Listeria
monocytogenes
serotype 1/2b, Salmonella
Typhimurium
, Lactobacillus
delbrueckii NRRL
B 548, Lactobacillus casei
NRRL B 1922, and Lactobacillus
acidophilus
NRRL B 4495 by the disc diffusion method. Fresh and
dried blueberry fruit and leaf extracts exhibited phenolic composition with a
dose-dependent inhibitory effect against the growth of pathogens and
probiotics.
The
dried leaf extracts were the most effective (20-25 mm) against all bacteria
(except
L. acidophilus NRRL B 4495) in comparison to positive control (24-26 mm) while
syringic acid (16-26 mm), trans
ferulic acid (14-26 mm), and naringin (14-26 mm) were the most effective and
caffeic acid (16-18 mm), resveratrol (16-19 mm) and (+)-catechin (16-18 mm)
were the least effective phenolics on all pathogens.
S. Enteritidis (ATCC
13076) was the most resistant to phenolics, followed by L. monocytogenes serotype
1/2b and S. Typhimurium.
Syringic acid, hesperidin, 3-hydroxyl-4-methoxy-cinnamic acid, and rutin
hydrate were the effective phenolics on LAB. Results indicated that blueberry extracts
are effective against pathogens and LABs (except L.acidophilus), and they may have an important potential as a
natural preservative while phenolic standards may exhibit variations in their
effects. 

Project Number

BAP-18-BMYO-1009-082

References

  • [1] Sellappan, S., Akoh, C.C., Krewer, G. (2002). Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. Journal of Agricultural and Food Chemistry, 50(8), 2432-2438.
  • [2] Ehlenfeldt, M.K., Prior, R.L. (2001). Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. Journal of Agricultural and Food Chemistry, 49(5), 2222-2227.
  • [3] Puupponen-Pimiä, R., Nohynek, L., Meier, C., Kähkönen., M, Heinonen., M, Hopia, A., Oksman-Caldentey, K.M. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of Applied Microbiology, 90(4), 494-507.
  • [4] Deng, Y., Yang, G., Yue, J., Qian, B., Liu, Z., Wang, D., Zhong, Y., Zhao, Y. (2014). Influences of ripening stages and extracting solvents on the polyphenolic compounds, antimicrobial and antioxidant activities of blueberry leaf extracts. Food Control, 38, 184-191.
  • [5] Silva, S., Costa, E.M., Pereira, M.F., Costa, M.R., Pintado, M.E. (2013). Evaluation of the antimicrobial activity of aqueous extracts from dry Vaccinium corymbosum extrcats upon food microorganism. Food Control, 34(2), 645-650.
  • [6] Park, Y.J., Biswas, R., Phillips, R.D., Chen, J. (2011). Antibacterial activities of blueberry and muscadine phenolic extracts. Journal of Food Science, 76(2), 161-165.
  • [7] Kelebek, H., Jourdes, M., Selli, S., Teissedre, P.L. (2013). Comparative evaluation of the phenolic content and antioxidant capacity of sun-dried raisins. Journal of the Science of Food and Agriculture, 93(12), 2963-2972.
  • [8] Ieri, F., Martini, S., Innocenti, M., Mulinacci, N. (2013). Phenolic distribution in liquid preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochemical Analysis, 24(5), 467-475.
  • [9] Burdulis, D., Sarkinas, A., Jasutiené, E., Nikolajevas, L., Janulis, V. (2009). Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Poloniae Pharmaceutica, 66(4), 399-408.
  • [10] Li, C., Feng, J., Huang, W.Y., An, X.T. (2013). Composition of polyphenols and antioxidant activity of rabbiteye blueberry (Vaccinium ashei) in Nanjing. Journal of Agricultural and Food Chemistry, 61(3), 523-531.
  • [11] Scalbert, A., Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. The Journal of Nutrition, 130(8), 2073-2085.
  • [12] Atacan, K., Yanık, D.K. (2017). Yaban mersini (Vaccinium corymbosum L.) suyu konsantresinin püskürtmeli kurutucuda kurutulması: Tepki yüzey yöntemiyle optimizasyon. Akademik Gıda, 15(2), 139-148.
  • [13] Nohynek, L.J., Alakomi, H.L., Kähkönen, M.P., Heinonen, M., Helander, I.M., Oksman-Caldentey, K.M., Puupponen-Pimiä, R.H. (2006). Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutrition and Cancer, 54(1), 18-32.
  • [14] Biswas, D., Wideman, N.E., O’Bryan, C.A., Muthaiyan, A., Lingbeck, J.M., Crandall, P.G., Ricke, S.C. (2012). Pasteurized blueberry (Vaccinium corymbosum) juice growth of bacterial pathogens in milk but allows survival of probiotic bacteria. Journal of Food Safety, 32(2), 204-209.
  • [15] Bunea, A., Rugina, D.A., Pintea, A.M., Sconta, Z., Bunea, C.I., Socaciu, C. (2011). Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoco, 39(2), 70-76.
  • [16] Kim, S.M., Shanga, Y.F., Um, B.H. (2010). Preparative separation of chlorogenic acid by centrifugal partition chromatography from highbush blueberry (Vaccinium corymbosum L.). Phytochemical Analysis, 21(5), 457-462.
  • [17] Routray, W., Orsat, V. (2014). MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Industrial Crops and Products, 58, 36-45.
  • [18] Pervin, M., Hasnat, M.A., Lim, B.O. (2013). Antibacterial and antioxidant activities of Vaccinium corymbosum L. leaf extract. Asian Pacific Journal of Tropical Disease, 3(6), 444-453.
  • [19] Norberto, S., Silva, S., Meireles, M., Faria, A., Pintado, M., Calhau, C. (2013). Blueberry anthocyanins in health promotion: A metabolic overview. Journal of Functional Foods, 5(4), 1518-1528.
  • [20] Caillet, S., Côté, J., Sylvain, J.F., Lacroix, M. (2012). Antimicrobial effects of fractions from cranberry products on the growth of seven pathogenic bacteria. Food Control, 23, 419-428.
  • [21] Neto, C,C. (2007). Cranberry and blueberry: Evidence for protective effects against cancer and vascular diseases. Molecular Nutrition & Food Research, 51(6), 652-664.
  • [22] Lacombe, A., Wu, W.C.H., White, J., Tadepalli, S., Andre, E.E. (2012). The antimicrobial properties of the lowbush blueberry (Vaccinium angustifolium) fractional components against foodborne pathogens and the conservation of probiotic Lactobacillus rhamnosus. Food Microbiology, 30(1), 124-131.
  • [23] Sun, X.H., Zhou, T.T., Wei, C.H., Lan, W.Q., Zhao, Y., Pan, Y.J., Wu, V.C.H. (2018). Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control, 94, 155-161.
  • [24] Wu, V.C.H., Qiu, X.J., Bushway, A., Harper, L. (2008). Antibacterial effects of American cranberry (Vaccinium macrocarpon) concentrate on foodborne pathogens. LWT- Food Science and Technology, 41(10), 1834-1841.
  • [25] Yang, H., Hewes, D., Salaheen, S., Federman, C., Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37, 15-20.
  • [26] Connor, A.M., Luby, J.J., Tong, C.B.S., Finn, C.E., Hancock, J.K. (2002a). Genotypic and environmental variation in antioxidant activity, total phenolic contents, and anthocyanin content among blueberry cultivars. Journal of American Society Horticultural Sciences, 127(1), 89-97.
  • [27] Connor, A.M., Luby, J.J., Tong, C.B.S. (2002b). Variability in antioxidant activity in blueberry and correlations among different antioxidant activity assays. Journal of American Society Horticultural Sciences, 127(2), 238-244.
  • [28] Yang, G., Yue, J., Gong, X., Qian, B., Wang, H., Deng, Y., Zhao, Y. (2014). Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biology and Technology, 92, 46-53.
  • [29] Kim, C.H., Jil, G., Ahn, C. (2000). Purification and molecular characterization of a bacteriocin from Pediococcus sp. KCA1303-10 isolated from fermented flatfish. Food Science and Biotechnology, 9(4), 270-276.
  • [30] Shen, X., Sun, X., Xie, Q.L.H., Zhao, Y., Pan, Y., Hwang, C.A., Wu, V.C.H. (2014). Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis. Food Control, 35, 159-165.
  • [31] Yow, C.M.N., Tang, H.M., Chu, E.S., Huang, Z. (2012). Hypericin-mediated photodynamic antimicrobial effect on clinically isolated pathogens. Photochemistry and Photobiology, 88(3), 626-632.
  • [32] Kleerebezem, M., Hols, P., Bernard, E., Rolain, T., Zhou, M. M., Siezen, R.J. (2010). The extracellular biology of the lactobacilli. FEMS Microbiology Reviews, 34, 199-230
  • [33] Lian, P.Y., Maseko, T., Rhee, M., Ng, K. (2012). The antimicrobial effects of cranberry against Staphylococcus aureus. Food Science and Technology International, 18, 179–186.
  • [34] Lacombe, A., McGivney, C., Tadepalli, S., Sun, X., Wu, V.C.H. (2013). The effect of American cranberry (Vaccinium macrocarpon) constituents on the growth inhibition, membrane integrity, and injury of Escherichia coli O157:H7 and Listeria monocytogenes in comparison to Lactobacillus rhamnosus. Food Microbiology, 34, 352-359.
  • [35] Rauha, J.P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., Pihlaja, K., Vuorela, H., Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. International Journal of Food Microbiology, 56, 3-12.
  • [36] Česonienė, L., Jasutienė, I., Šarkinas, A. (2009). Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Medicina (Kaunas), 45(12), 992-999.
  • [37] Kylli, P., Nohynek, L., Puupponen-Pimiä, R., Westerlund-Wikström, B., Leppänen, T., Welling, J., Moilanen, E., Heinonen, M. (2011). Lingonberry (Vaccinium vitis-idaea) and European cranberry (Vaccinium microcarpon) proanthocyanidins: Isolation, identification, and bioactivities. Journal of Agricultural and Food Chemistry, 59, 3373–3384.
  • [38] Mahboubi, M., Kazempour, N., Taghizadeh, M. (2013) In vitro antimicrobial and antioxidant activity of Vaccinium arctostaphylos L. Extracts. Journal of Biologically Active Products from Nature, 3(4), 241-247.
  • [39] Kryvtsova, M.V., Trush, K., Eftimova, J., Koščová, J., Spivak, M.J. (2019). Antimicrobial, antioxidant and some biochemcal properties of Vaccinium vitis-idaea L. Мікробіол. Журн, 81(3), 40-52.
  • [40] Miljković, V.M., Nikolić, G.S., Zvezdanović, J., Mihajlov-Krstev, T., Arsić, B.B., Miljković, M.N. (2018). Phenolic profile, mineral content and antibacterial activity of the methanol extract of Vaccinium myrtillus L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 122-127.
  • [41] Xiaoyong, S., Luming, C. (2014). Phenolic constituents, antimicrobial and antioxidant properties of blueberry leaves (V5). Journal of Food and Nutrition Research, 2(12), 973-979.
  • [42] Değirmencioğlu, N., Gürbüz, O., Karatepe, G.E., Irkin, R. (2017). Influence of hot air drying on phenolic compounds and antioxidant capacity of blueberry (Vaccinium myrtillus) fruit and leaf. Journal of Applied Botany and Food Quality, 90, 115-125.
  • [43] Skupień, K., Oszmiański, J., Kostrzewa-Nowak, D., Tarasiuk, J. (2006). In vitro antileukemic activity of extracts from berry plant leaves against sensitive and multidrug resistant HL60 cells. Cancer Letters, 236(2), 282-291.
  • [44] Oszmiański, J., Wojdyło, A., Gorzelany, J., Kapusta, I. (2011). Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. Journal of Agricultural and Food Chemistry, 59(24), 12830-12835.
  • [45] Cisowska, A., Wojnics, D., Hendrich, A.B. (2011). Anthocyanins as antimicrobial agents of natural plant origin. Natural Product Communications, 6(1), 149-156.
  • [46] Cueva, C., Moreno-Arribas, V., Martı´n-A´ lvarez, P.J., Bills, G., Vicente, M.F., Basilio, A., Rivas, C.L., Requena, T., Rodrı´guez, J.M., Bartolome´, B. (2010). Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 161(5), 372-382.
  • [47] Celiz, G., Daz, M., Audisio, M.C. (2011). Antibacterial activity of naringin derivatives against pathogenic strains. Journal of Applied in Microbiology, 111, 731-738.
  • [48] Cushnie, T.P.T., Lamb, A.J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343-356.
  • [49] Nikoo, M., Regenstein, J.M., Gavlighi, H.A. (2018). Antioxidant and antimicrobial activities of (-)-epigallocatechin-3-gallate (EGCG) and its potential to preserve the quality and safety of foods. Comprehensive Reviews in Food Science and Food Safety, 17(9), 732-752.
  • [50] Yoon, B.I., Bae, W.J., Choi, Y.S., Kim, S.J., Ha, U.S., Hong, S.H., Sohn, D.W., Kim, S.W. (2018). Anti-inflammatory and antimicrobial effects of anthocyanin extracted from black soybean on chronic bacterial prostatitis rat model. Chinese Journal of Integrative Medicine, 24(8), 621-626.
  • [51] EUCAST, (2018). European Committee on Antimicrobial Susceptibility Testing, 20p (https://www.ipna.csic.es/sites/default/files/users/user282/EUCAST%202018.pdf).
  • [52] Kang, C.G., Hah, D.S., Kim, C.H., Kim, Y.H., Kim, E., Kim, Y.S. (2011). Evaluation of antimicrobial activity of the methanol extracts from 8 traditional medicinal plants. Toxicological Research, 27(1), 31-36.
  • [53] Pastene, E., Speisky, H., García, A., Moreno, J., Troncoso, M., Figueroa, G. (2010). In vitro and in vivo effects of apple peel polyphenols against Helicobacter pylori. Journal of Agricultural and Food Chemistry, 58(12), 7172-7179.
  • [54] Hu, Y., Jia, J., Qiao, J., Ge, C., Cao, Z. (201016). Antimicrobial activity of pu-erh tea extracts in vitro and its effects on the preservation of cooled mutton. Journal of Food Safety, 30(1), 177-195.
  • [55] Duh, P.D., Yen, G.C., Yen, W.J., Wang, B.S. Chang, L.W. (2004). Effects of pu-erh tea on oxidative damage and nitric oxide scavenging. Journal of Agricultural and Food Chemistry, 52(26), 8169-8176.
  • [56] Shi, C., Sun, Y., Zheng, Z., Zhang, X., Song, K., Jia, Z., Chen, Y., Yang, M., Liu, X., Dong, R., Xia, X. (2016). Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chemistry, 197, 100–106.
  • [57] Borges, A., Ferreira, C., Saavedra, M.J., Simões, M. (2013). Antibacterial activity and more of action of ferulic and gallic acids against pathogenic bacteria. Microbial Drug Resistance, 19(4), 256-265.
  • [58] Vivas, N., Lonvaud-Funel, A., Glories, Y. (1997). Effect of phenolic acids and anthocyanins on growth, viability and malolactic activity of a lactic acid bacterium. Food Microbiology, 14, 291–300.
  • [59] Czyzowska, A., Kucharska, A.Z., Nowak, A., Sokół-Łętowska, A., Motyl, I., Piórecki, N. (2017). Suitability of the probiotic lactic acid bacteria strains as the starter cultures in unripe cornelian cherry (Cornus mas L.) fermentation. Journal of Food Science and Technology, 54(9), 2936-2946.
  • [60] Kot, B., Wicha, J., Piechota, M., Wolska, K., Gruzewska, A. (2015). Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropathogenic Escherichia coli. Turkish Journal of Medical Sciences, 45, 919-924.
  • [61] Lacombe, A., Wu, V.C.H. (2017). The potential of berries to serve as selective inhibitors of pathogens and promoters of beneficial microorganisms. Food Quality and Safety, 1, 3-12.
There are 61 citations in total.

Details

Primary Language Turkish
Journal Section Research Papers
Authors

Ali Değirmencioğlu This is me 0000-0003-1183-0838

Nurcan Değirmencioğlu 0000-0002-1186-3106

Project Number BAP-18-BMYO-1009-082
Publication Date November 18, 2019
Submission Date September 7, 2019
Published in Issue Year 2019 Volume: 17 Issue: 3

Cite

APA Değirmencioğlu, A., & Değirmencioğlu, N. (2019). Taze ve Kurutulmuş Yaban Mersini (Vaccinium myrtillus) Meyve ve Yaprak Ekstraktlarının Probiyotik ve Patojen Bakteriler Üzerine Etkileri. Akademik Gıda, 17(3), 342-350. https://doi.org/10.24323/akademik-gida.647716
AMA Değirmencioğlu A, Değirmencioğlu N. Taze ve Kurutulmuş Yaban Mersini (Vaccinium myrtillus) Meyve ve Yaprak Ekstraktlarının Probiyotik ve Patojen Bakteriler Üzerine Etkileri. Akademik Gıda. November 2019;17(3):342-350. doi:10.24323/akademik-gida.647716
Chicago Değirmencioğlu, Ali, and Nurcan Değirmencioğlu. “Taze Ve Kurutulmuş Yaban Mersini (Vaccinium Myrtillus) Meyve Ve Yaprak Ekstraktlarının Probiyotik Ve Patojen Bakteriler Üzerine Etkileri”. Akademik Gıda 17, no. 3 (November 2019): 342-50. https://doi.org/10.24323/akademik-gida.647716.
EndNote Değirmencioğlu A, Değirmencioğlu N (November 1, 2019) Taze ve Kurutulmuş Yaban Mersini (Vaccinium myrtillus) Meyve ve Yaprak Ekstraktlarının Probiyotik ve Patojen Bakteriler Üzerine Etkileri. Akademik Gıda 17 3 342–350.
IEEE A. Değirmencioğlu and N. Değirmencioğlu, “Taze ve Kurutulmuş Yaban Mersini (Vaccinium myrtillus) Meyve ve Yaprak Ekstraktlarının Probiyotik ve Patojen Bakteriler Üzerine Etkileri”, Akademik Gıda, vol. 17, no. 3, pp. 342–350, 2019, doi: 10.24323/akademik-gida.647716.
ISNAD Değirmencioğlu, Ali - Değirmencioğlu, Nurcan. “Taze Ve Kurutulmuş Yaban Mersini (Vaccinium Myrtillus) Meyve Ve Yaprak Ekstraktlarının Probiyotik Ve Patojen Bakteriler Üzerine Etkileri”. Akademik Gıda 17/3 (November 2019), 342-350. https://doi.org/10.24323/akademik-gida.647716.
JAMA Değirmencioğlu A, Değirmencioğlu N. Taze ve Kurutulmuş Yaban Mersini (Vaccinium myrtillus) Meyve ve Yaprak Ekstraktlarının Probiyotik ve Patojen Bakteriler Üzerine Etkileri. Akademik Gıda. 2019;17:342–350.
MLA Değirmencioğlu, Ali and Nurcan Değirmencioğlu. “Taze Ve Kurutulmuş Yaban Mersini (Vaccinium Myrtillus) Meyve Ve Yaprak Ekstraktlarının Probiyotik Ve Patojen Bakteriler Üzerine Etkileri”. Akademik Gıda, vol. 17, no. 3, 2019, pp. 342-50, doi:10.24323/akademik-gida.647716.
Vancouver Değirmencioğlu A, Değirmencioğlu N. Taze ve Kurutulmuş Yaban Mersini (Vaccinium myrtillus) Meyve ve Yaprak Ekstraktlarının Probiyotik ve Patojen Bakteriler Üzerine Etkileri. Akademik Gıda. 2019;17(3):342-50.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).