Research Article
BibTex RIS Cite

Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode

Year 2020, Volume: 18 Issue: 1, 1 - 11, 30.04.2020
https://doi.org/10.24323/akademik-gida.729976

Abstract

In this study, low cost, sensitive and selective chronoamperometric determination of vanillin (VNL) is firstly achieved by using a disposable poly(Eriochrome Black T) modified pencil graphite electrode (poly(EBT)/PGE). Electro-oxidation behavior of 1.0 mM VNL was investigated at both poly(EBT)/PGE and PGE by the cyclic voltammetry (CV) method. CV measurements showed that oxidation current of VNL at poly (EBT)/PGE was much higher than the bare one. Furthermore, the pH effect on electro-oxidation current of VNL was tested at different pH values (2.0-8.0) of Britton Robinson Buffer solution (BRBS) for poly(EBT)/PGE and the highest current was obtained at pH 7.0 BRBS. Significant analytical parameters such as linear response range (LRR), limit of detection (LOD), and sensitivity were found as 0.050-10.0 µM, 0.013 µM and 5355 µA mM-1 cm-2, respectively. The fabricated sensor was tested on a VNL-containing sample (VNL content: 3.0%) and the result (3.04% ±0.01) obtained from the applicability study showed that the proposed sensor enables the determination of VNL with high accuracy and precision.

References

  • [1] Sun, Y.J., Jiang, X.W., Jin H., Gui, R.J. (2019). Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Analytica Chimica Acta, 1083, 101-109.
  • [2] Sinha, A.K., Sharma, U.K., Sharma, N. (2008). A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. International Journal of Food Science Nutrition, 59299-59326.
  • [3] Bettazzi, F., Palchetti, I., Sisalli, S., Mascini, M. (2006). A disposable electrochemical sensor for vanillin detection. Analytica Chimica Acta, 555, 134-138.
  • [4] Wang, Z.Y., Zeng, G.F., Wei, X.Q., Ding, B., Huang, C., Xu, B.J. (2016). Determination of vanillin and ethyl-vanillin in milk powder by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Analytical Methods, 9, 3360-3366.
  • [5] De Jager, L.S., Perfetti, G.A., Diachenko, G.W. (2008) Comparison of headspace-SPME-GC–MS and LC–MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products. Food Chemistry, 107, 1701-1709.
  • [6] Shu, M., Man, Y.R., Ma, H., Luan, F., Liu, H.T., Gao, Y. (2016). Determination of vanillin in milk powder by capillary electrophoresis combined with dispersive liquid-liquid microextraction. Food Analytical Methods, 9, 1706-1712.
  • [7] Ohashi, M., Omae, H., Hashida, M., Sowa, Y., Imai, S. (2007). Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis. Journal of Chromatography A, 1138, 262-267.
  • [8] Pérez-Esteve, É., Lerma-García, M.J., Fuentes, A., Palomares, C., Barat, J.M. (2016). Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control, 67, 171-176.
  • [9] Zhu, J.L., Chen, D.P., Ai, Y.H., Dang, X.P., Huang, J.L., Chen, H.X. (2017). A dummy molecularly imprinted monolith for selective solid-phase microextraction of vanillin and methyl vanillin prior to their determination by HPLC. Microchimica Acta, 184, 1161-1167.
  • [10] Dilgin, D.G. (2019). Voltammetric determination of vanillin using a pretreated pencil graphite electrode. Akademik Gıda, 17, 1-8.
  • [11] Dilgin, D.G. (2018) Determination of calcium dobesilate by differential pulse voltammetry at a disposable pencil graphite electrode. Analytical Letters, 51, 186-197.
  • [12] Teoman, İ., Karakaya, S., Dilgin, Y. (2019). Sensitive and rapid flow injection amperometric hydrazine sensor using a gold nanoparticle modified graphite pencil electrode. Analytical Letters, 52(13), 2041-2056.
  • [13] Ayaz, S., Dilgin, Y. (2017). Flow injection amperometric determination of hydrazine based on its electrocatalytic oxidation at pyrocatechol violet modified pencil graphite electrode. Electrochimica Acta, 258, 1086-1095.
  • [14] Dilgin, D.G., Ertek, B., Dilgin, Y. (2018). A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. Journal of the Iranian Chemical Society, 15, 1355-1363.
  • [15] Karakaya, S., Dilgin, D.G. (2019). Low-cost determination of cetirizine by square wave voltammetry in a disposable electrode. Monatshefte Fur Chemie, 150, 1003-1010.
  • [16] Özcan, A., Gürbüz, M., Özcan, A.A. (2018). Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly (thiophene) modified pencil graphite electrode. Talanta, 187, 125-132.
  • [17] Wang, J., Kawde, A.N., Sahlin, E. (2000). Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst, 125, 5-7.
  • [18] Aslışen, B., Koçak, Ç.C., Koçak, S. (2019). Electrochemical determination of sesamol in foods by square wave voltammetry at a boron-doped diamond electrode. Analytical Letters, 1-12.
  • [19] Jadon, N., Jain, R., Pandey, A. (2017). Electrochemical analysis of amlodipine in some pharmaceutical formulations and biological fluid using disposable pencil graphite electrode. Journal of Electroanalytical Chemistry, 788, 7-13.
  • [20] Abdul Aziz, M., Kawde, A.N. (2013). Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine. Talanta, 115, 214-221.
  • [21] Silva, T.R., Brondani, D., Zapp, E., Vieira, I.C. (2015). Electrochemical sensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) for determination of vanillin. Electroanalysis, 27, 465-472.
  • [22] Peng, J.Y., Hou, C.T., Hu, X.Y. (2012). A graphene-based electrochemical sensor for sensitive detection of vanillin. International Journal of Electrochemical Science, 7, 1724-1733.
  • [23] Qianwen, M., Yaping, D., Li, L., Anqing, W., Dingding, D., Yijun, Z. (2019). Electrospun MoS2 composite carbon nanofibers for determination of vanillin. Journal of Electroanalytical Chemistry, 833, 297-303.
  • [24] Zheng, D.Y., Hu, C.G., Gan, T.A., Dang, X.P., Hu, S.S. (2010). Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors and Actuators B-Chemical, 148, 247-252.
  • [25] Khalilzadeh, M.A., Arab, Z. (2017). High sensitive nanostructure square wave voltammetric sensor for determination of vanillin in food samples. Current Analytical Chemistry, 13, 81-86.
  • [26] Cheraghi, S., Taher, M.A., Karimi-Maleh, H. (2017). Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. Journal of Food Composition and Analysis, 62, 254-259.
  • [27] Gupta, V.K., Karimi-Maleh, H., Agarwal, S., Karimi, F., Bijad, M., Farsi, M., Shahisi, S.A. (2018). Fabrication of a food nano-platform sensor for determination of vanillin in food samples. Sensors (Basel), 18, 2817.
  • [28] David, I.G., Popa, D.E., Buleandra, (2017). M. Pencil graphite electrodes: a versatile tool in electroanalysis. Journal Analytical Methods in Chemistry, 1905968.
  • [29] Khoshroo, A., Hosseinzadeh, L., Sobhani-Nasab, A., Rahimi-Nasrabadi, M., Ahmadi, F. (2019). Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection. Microchemical Journal, 145, 1185-1190.
  • [30] Chen, H.Y., Yang, T., Liu, F.Q., Li, W.H. (2019). Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sensors and Actuators B-Chemical, 286, 401-407.
  • [31] Duan, D.D., Yang, H., Ding, Y.P., Li, L., Ma, G.H. (2019). A three-dimensional conductive molecularly imprinted electrochemical sensor based on MOF derived porous carbon/carbon nanotubes composites and prussian blue nanocubes mediated amplification for chiral analysis of cysteine enantiomers. Electrochimica Acta, 302, 137-144.
  • [32] Mo, F., Xie, J., Wu, T., Liu, M., Zhang, Y., Yao, S. (2019). A sensitive electrochemical sensor for bisphenol A on the basis of the AuPd incorporated carboxylic multi-walled carbon nanotubes. Food Chemistry, 292, 253-259.
  • [33] Bhanjana, G., Chaudhary, G.R., Dilbaghi, N., Chauhan, M., Kim, K.H., Kumar, S. (2019). Novel electrochemical sensor for mononitrotoluenes using silver oxide quantum dots. Electrochimica Acta, 293, 283-289.
  • [34] Li, Y.X., Li, Z.P., Ye, W.X., Zhao, S., Yang, Q.C., Ma, S., Xiao, G., Liu, G., Wang, Y., Yue, Z. (2019). Gold nanorods and graphene oxide enhanced BSA-AgInS2 quantum dot-based photoelectrochemical sensors for detection of dopamine. Electrochimica Acta, 295, 1006-1016.
  • [35] Abbas, M.W., Soomro, R.A., Kalwar, N.H., Zahoor, M., Avci, A., Pehlivan, E., Hallam, K.R., Willander, M. (2019). Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid. Microchemical Journal, 146, 517-524.
  • [36] Nemakal, M., Aralekallu, S., Mohammed, I., Pari, M., Reddy, K.R.V., Sannegowda, L.K. (2019). Nanomolar detection of 4-aminophenol using amperometric sensor based on a novel phthalocyanine. Electrochimica Acta, 318, 342-53.
  • [37] Zhao, L.Y., Li, J.G., Chen, X.L., Cheng, D., Zhang, J.Y., Yang, H.X. (2019). Highly sensitive electrochemical detection of hydrogen peroxide based on polyethyleneimine-Au nanoparticles-zinc protoporphyrin. Journal of the Electrochemical Society, 166, B631-B636.
  • [38] Gilbert, O., Swamy, B.E.K., Chandra, U., Sherigara, B.S. (2009). Electrocatalytic oxidation of dopamine and ascorbic acid at poly (eriochrome black-t) modified carbon paste electrode. International Journal of Electrochemical Science, 4, 582-591.
  • [39] Liu, X., Luo, L.Q., Ding, Y.P., Kang, Z.P., Ye, D.X. (2012). Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry, 86, 38-45.
  • [40] Kansal, S.K., Sood, S., Umar, A., Mehta, S.K. (2013). Photocatalytic degradation of eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. Journal of Alloys and Compounds, 581, 392-397.
  • [41] Yao, H., Sun, Y.Y., Lin, X.H., Tang, Y.H., Liu, A.L., Guangwen, L., Wei, L., Zhans, S. (2007). Selective determination of epinephrine in the presence of ascorbic acid and uric acid by electrocatalytic oxidation at poly(eriochrome black T) film-modified glassy carbon electrode. Analytical Sciences, 23, 677-682.
  • [42] Liu, X., Luo, L., Ding, Y., Kang, Z., Ye, D. (2012). Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry, 86, 38-45.
  • [43] Yao, H., Sun, Y.Y., Lin, X.H., Tang, Y.H., Huang, L.Y. (2007). Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochimica Acta, 52, 6165-6171.
  • [44] Wei, Y.L., Luo, L.Q., Ding, Y.P., Liu, X., Chu, Y.L. (2013). A glassy carbon electrode modified with poly(eriochrome black T) for sensitive determination of adenine and guanine. Microchimica Acta, 180, 887-893.
  • [45] Cittan, M., Celik, A. (2019). An electrochemical sensing platform for trace analysis of eriochrome black T using multi-walled carbon nanotube modified glassy carbon electrode by adsorptive stripping linear sweep voltammetry. International Journal of Environmental Analytical Chemistry, 1-13.
  • [46] Kutty, M., Settu, R., Chen, S.M., Chen, T.W., Tseng, T.W., Hatamleh, A.A., Yu, J., Ju, R., Huang, C.-C. (2019). An electrochemical detection of vanillin based on carbon black nanoparticles modified screen printed carbon electrode. International Journal of Electrochemical Science, 14, 5972-5983.
  • [47] Sivakumar, M., Sakthivel, M., Chen, S.M. (2017). Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. Journal of Colloid and Interface Science, 490, 719-726.
  • [48] Prabhu, P., Babu, R.S., Narayanan, S.S. (2019). Electrochemical determination of l-vanillin using copper hexacyanoferrate film modified gold nanoparticle graphite-wax composite electrode. Journal of Materials Science: Materials in Electronics, 30, 9955-9963.

Tek Kullanımlık Poli(Eriokrom Siyahı T) Modifiye Kalem Grafit Elektrotta Vanilinin Düşük Maliyetli, Seçici ve Duyarlı Kronoamperometrik Tayini

Year 2020, Volume: 18 Issue: 1, 1 - 11, 30.04.2020
https://doi.org/10.24323/akademik-gida.729976

Abstract

Bu çalışmada, vanilinin (VNL) düşük maliyetli, duyarlı ve seçici kronoamperometrik tayini tek kullanımlık bir poli(Eriokrom Siyahı T) modifiye kalem grafit elektrodun (poly(EBT)/PGE) kullanılması ile ilk defa gerçekleştirilmiştir. 1.0 mM VNL’nin elektro-yükseltgenme davranışı, hem PGE’de hem de poly(EBT)/PGE’de döngüsel voltammetri (CV) metodu ile incelenmiştir. CV ölçümleri poly(EBT)/PGE’deki yükseltgenme akımının yalın elektroda göre daha yüksek olduğunu göstermiştir. Ayrıca, poly(EBT)/PGE’de VNL’nin yükseltgenme akımına pH’nın etkisi, farklı pH değerlerindeki (2.0-8.0) Britton Robinson tampon çözeltilerinde (BRBS) test edilmiş ve en yüksek akımın pH 7.0 BRBS’de alındığı gözlenmiştir. Doğrusal yanıt aralığı (LRR), belirtme alt sınırı (LOD) ve duyarlılık gibi önemli analitiksel parametreler sırasıyla 0.050-10.0 µM, 0.013 µM ve 5355 µA mM-1 cm-2 olarak bulunmuştur. Tasarlanan sensör, VNL içeren bir örnekte (VNL içeriği %3.0) başarıyla test edilmiş ve uygulanabilirlik çalışmasından elde edilen sonuç (%3.04 ±0.01), önerilen sensörün, VNL’nin yüksek doğrulukta ve kesinlikte tayinine imkân sağladığını göstermiştir.

References

  • [1] Sun, Y.J., Jiang, X.W., Jin H., Gui, R.J. (2019). Ketjen black/ferrocene dual-doped MOFs and aptamer-coupling gold nanoparticles used as a novel ratiometric electrochemical aptasensor for vanillin detection. Analytica Chimica Acta, 1083, 101-109.
  • [2] Sinha, A.K., Sharma, U.K., Sharma, N. (2008). A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. International Journal of Food Science Nutrition, 59299-59326.
  • [3] Bettazzi, F., Palchetti, I., Sisalli, S., Mascini, M. (2006). A disposable electrochemical sensor for vanillin detection. Analytica Chimica Acta, 555, 134-138.
  • [4] Wang, Z.Y., Zeng, G.F., Wei, X.Q., Ding, B., Huang, C., Xu, B.J. (2016). Determination of vanillin and ethyl-vanillin in milk powder by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Food Analytical Methods, 9, 3360-3366.
  • [5] De Jager, L.S., Perfetti, G.A., Diachenko, G.W. (2008) Comparison of headspace-SPME-GC–MS and LC–MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products. Food Chemistry, 107, 1701-1709.
  • [6] Shu, M., Man, Y.R., Ma, H., Luan, F., Liu, H.T., Gao, Y. (2016). Determination of vanillin in milk powder by capillary electrophoresis combined with dispersive liquid-liquid microextraction. Food Analytical Methods, 9, 1706-1712.
  • [7] Ohashi, M., Omae, H., Hashida, M., Sowa, Y., Imai, S. (2007). Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis. Journal of Chromatography A, 1138, 262-267.
  • [8] Pérez-Esteve, É., Lerma-García, M.J., Fuentes, A., Palomares, C., Barat, J.M. (2016). Control of undeclared flavoring of cocoa powders by the determination of vanillin and ethyl vanillin by HPLC. Food Control, 67, 171-176.
  • [9] Zhu, J.L., Chen, D.P., Ai, Y.H., Dang, X.P., Huang, J.L., Chen, H.X. (2017). A dummy molecularly imprinted monolith for selective solid-phase microextraction of vanillin and methyl vanillin prior to their determination by HPLC. Microchimica Acta, 184, 1161-1167.
  • [10] Dilgin, D.G. (2019). Voltammetric determination of vanillin using a pretreated pencil graphite electrode. Akademik Gıda, 17, 1-8.
  • [11] Dilgin, D.G. (2018) Determination of calcium dobesilate by differential pulse voltammetry at a disposable pencil graphite electrode. Analytical Letters, 51, 186-197.
  • [12] Teoman, İ., Karakaya, S., Dilgin, Y. (2019). Sensitive and rapid flow injection amperometric hydrazine sensor using a gold nanoparticle modified graphite pencil electrode. Analytical Letters, 52(13), 2041-2056.
  • [13] Ayaz, S., Dilgin, Y. (2017). Flow injection amperometric determination of hydrazine based on its electrocatalytic oxidation at pyrocatechol violet modified pencil graphite electrode. Electrochimica Acta, 258, 1086-1095.
  • [14] Dilgin, D.G., Ertek, B., Dilgin, Y. (2018). A low-cost, fast, disposable and sensitive biosensor study: flow injection analysis of glucose at poly-methylene blue-modified pencil graphite electrode. Journal of the Iranian Chemical Society, 15, 1355-1363.
  • [15] Karakaya, S., Dilgin, D.G. (2019). Low-cost determination of cetirizine by square wave voltammetry in a disposable electrode. Monatshefte Fur Chemie, 150, 1003-1010.
  • [16] Özcan, A., Gürbüz, M., Özcan, A.A. (2018). Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly (thiophene) modified pencil graphite electrode. Talanta, 187, 125-132.
  • [17] Wang, J., Kawde, A.N., Sahlin, E. (2000). Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst, 125, 5-7.
  • [18] Aslışen, B., Koçak, Ç.C., Koçak, S. (2019). Electrochemical determination of sesamol in foods by square wave voltammetry at a boron-doped diamond electrode. Analytical Letters, 1-12.
  • [19] Jadon, N., Jain, R., Pandey, A. (2017). Electrochemical analysis of amlodipine in some pharmaceutical formulations and biological fluid using disposable pencil graphite electrode. Journal of Electroanalytical Chemistry, 788, 7-13.
  • [20] Abdul Aziz, M., Kawde, A.N. (2013). Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine. Talanta, 115, 214-221.
  • [21] Silva, T.R., Brondani, D., Zapp, E., Vieira, I.C. (2015). Electrochemical sensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) for determination of vanillin. Electroanalysis, 27, 465-472.
  • [22] Peng, J.Y., Hou, C.T., Hu, X.Y. (2012). A graphene-based electrochemical sensor for sensitive detection of vanillin. International Journal of Electrochemical Science, 7, 1724-1733.
  • [23] Qianwen, M., Yaping, D., Li, L., Anqing, W., Dingding, D., Yijun, Z. (2019). Electrospun MoS2 composite carbon nanofibers for determination of vanillin. Journal of Electroanalytical Chemistry, 833, 297-303.
  • [24] Zheng, D.Y., Hu, C.G., Gan, T.A., Dang, X.P., Hu, S.S. (2010). Preparation and application of a novel vanillin sensor based on biosynthesis of Au-Ag alloy nanoparticles. Sensors and Actuators B-Chemical, 148, 247-252.
  • [25] Khalilzadeh, M.A., Arab, Z. (2017). High sensitive nanostructure square wave voltammetric sensor for determination of vanillin in food samples. Current Analytical Chemistry, 13, 81-86.
  • [26] Cheraghi, S., Taher, M.A., Karimi-Maleh, H. (2017). Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. Journal of Food Composition and Analysis, 62, 254-259.
  • [27] Gupta, V.K., Karimi-Maleh, H., Agarwal, S., Karimi, F., Bijad, M., Farsi, M., Shahisi, S.A. (2018). Fabrication of a food nano-platform sensor for determination of vanillin in food samples. Sensors (Basel), 18, 2817.
  • [28] David, I.G., Popa, D.E., Buleandra, (2017). M. Pencil graphite electrodes: a versatile tool in electroanalysis. Journal Analytical Methods in Chemistry, 1905968.
  • [29] Khoshroo, A., Hosseinzadeh, L., Sobhani-Nasab, A., Rahimi-Nasrabadi, M., Ahmadi, F. (2019). Silver nanofibers/ionic liquid nanocomposite based electrochemical sensor for detection of clonazepam via electrochemically amplified detection. Microchemical Journal, 145, 1185-1190.
  • [30] Chen, H.Y., Yang, T., Liu, F.Q., Li, W.H. (2019). Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sensors and Actuators B-Chemical, 286, 401-407.
  • [31] Duan, D.D., Yang, H., Ding, Y.P., Li, L., Ma, G.H. (2019). A three-dimensional conductive molecularly imprinted electrochemical sensor based on MOF derived porous carbon/carbon nanotubes composites and prussian blue nanocubes mediated amplification for chiral analysis of cysteine enantiomers. Electrochimica Acta, 302, 137-144.
  • [32] Mo, F., Xie, J., Wu, T., Liu, M., Zhang, Y., Yao, S. (2019). A sensitive electrochemical sensor for bisphenol A on the basis of the AuPd incorporated carboxylic multi-walled carbon nanotubes. Food Chemistry, 292, 253-259.
  • [33] Bhanjana, G., Chaudhary, G.R., Dilbaghi, N., Chauhan, M., Kim, K.H., Kumar, S. (2019). Novel electrochemical sensor for mononitrotoluenes using silver oxide quantum dots. Electrochimica Acta, 293, 283-289.
  • [34] Li, Y.X., Li, Z.P., Ye, W.X., Zhao, S., Yang, Q.C., Ma, S., Xiao, G., Liu, G., Wang, Y., Yue, Z. (2019). Gold nanorods and graphene oxide enhanced BSA-AgInS2 quantum dot-based photoelectrochemical sensors for detection of dopamine. Electrochimica Acta, 295, 1006-1016.
  • [35] Abbas, M.W., Soomro, R.A., Kalwar, N.H., Zahoor, M., Avci, A., Pehlivan, E., Hallam, K.R., Willander, M. (2019). Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid. Microchemical Journal, 146, 517-524.
  • [36] Nemakal, M., Aralekallu, S., Mohammed, I., Pari, M., Reddy, K.R.V., Sannegowda, L.K. (2019). Nanomolar detection of 4-aminophenol using amperometric sensor based on a novel phthalocyanine. Electrochimica Acta, 318, 342-53.
  • [37] Zhao, L.Y., Li, J.G., Chen, X.L., Cheng, D., Zhang, J.Y., Yang, H.X. (2019). Highly sensitive electrochemical detection of hydrogen peroxide based on polyethyleneimine-Au nanoparticles-zinc protoporphyrin. Journal of the Electrochemical Society, 166, B631-B636.
  • [38] Gilbert, O., Swamy, B.E.K., Chandra, U., Sherigara, B.S. (2009). Electrocatalytic oxidation of dopamine and ascorbic acid at poly (eriochrome black-t) modified carbon paste electrode. International Journal of Electrochemical Science, 4, 582-591.
  • [39] Liu, X., Luo, L.Q., Ding, Y.P., Kang, Z.P., Ye, D.X. (2012). Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry, 86, 38-45.
  • [40] Kansal, S.K., Sood, S., Umar, A., Mehta, S.K. (2013). Photocatalytic degradation of eriochrome Black T dye using well-crystalline anatase TiO2 nanoparticles. Journal of Alloys and Compounds, 581, 392-397.
  • [41] Yao, H., Sun, Y.Y., Lin, X.H., Tang, Y.H., Liu, A.L., Guangwen, L., Wei, L., Zhans, S. (2007). Selective determination of epinephrine in the presence of ascorbic acid and uric acid by electrocatalytic oxidation at poly(eriochrome black T) film-modified glassy carbon electrode. Analytical Sciences, 23, 677-682.
  • [42] Liu, X., Luo, L., Ding, Y., Kang, Z., Ye, D. (2012). Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochemistry, 86, 38-45.
  • [43] Yao, H., Sun, Y.Y., Lin, X.H., Tang, Y.H., Huang, L.Y. (2007). Electrochemical characterization of poly(eriochrome black T) modified glassy carbon electrode and its application to simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochimica Acta, 52, 6165-6171.
  • [44] Wei, Y.L., Luo, L.Q., Ding, Y.P., Liu, X., Chu, Y.L. (2013). A glassy carbon electrode modified with poly(eriochrome black T) for sensitive determination of adenine and guanine. Microchimica Acta, 180, 887-893.
  • [45] Cittan, M., Celik, A. (2019). An electrochemical sensing platform for trace analysis of eriochrome black T using multi-walled carbon nanotube modified glassy carbon electrode by adsorptive stripping linear sweep voltammetry. International Journal of Environmental Analytical Chemistry, 1-13.
  • [46] Kutty, M., Settu, R., Chen, S.M., Chen, T.W., Tseng, T.W., Hatamleh, A.A., Yu, J., Ju, R., Huang, C.-C. (2019). An electrochemical detection of vanillin based on carbon black nanoparticles modified screen printed carbon electrode. International Journal of Electrochemical Science, 14, 5972-5983.
  • [47] Sivakumar, M., Sakthivel, M., Chen, S.M. (2017). Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. Journal of Colloid and Interface Science, 490, 719-726.
  • [48] Prabhu, P., Babu, R.S., Narayanan, S.S. (2019). Electrochemical determination of l-vanillin using copper hexacyanoferrate film modified gold nanoparticle graphite-wax composite electrode. Journal of Materials Science: Materials in Electronics, 30, 9955-9963.
There are 48 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Serkan Karakaya This is me 0000-0002-6401-3295

Publication Date April 30, 2020
Submission Date November 15, 2019
Published in Issue Year 2020 Volume: 18 Issue: 1

Cite

APA Karakaya, S. (2020). Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode. Akademik Gıda, 18(1), 1-11. https://doi.org/10.24323/akademik-gida.729976
AMA Karakaya S. Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode. Akademik Gıda. April 2020;18(1):1-11. doi:10.24323/akademik-gida.729976
Chicago Karakaya, Serkan. “Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode”. Akademik Gıda 18, no. 1 (April 2020): 1-11. https://doi.org/10.24323/akademik-gida.729976.
EndNote Karakaya S (April 1, 2020) Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode. Akademik Gıda 18 1 1–11.
IEEE S. Karakaya, “Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode”, Akademik Gıda, vol. 18, no. 1, pp. 1–11, 2020, doi: 10.24323/akademik-gida.729976.
ISNAD Karakaya, Serkan. “Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode”. Akademik Gıda 18/1 (April 2020), 1-11. https://doi.org/10.24323/akademik-gida.729976.
JAMA Karakaya S. Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode. Akademik Gıda. 2020;18:1–11.
MLA Karakaya, Serkan. “Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode”. Akademik Gıda, vol. 18, no. 1, 2020, pp. 1-11, doi:10.24323/akademik-gida.729976.
Vancouver Karakaya S. Low Cost, Sensitive and Selective Chronoamperometric Determination of Vanillin at a Disposable Poly(Eriochrome Black T)/Pencil Graphite Electrode. Akademik Gıda. 2020;18(1):1-11.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).