5-fluorouracil (5-FU) is an effective and widely used chemotherapeutic agent to treat various malignancies, but its therapeutic use is limited due to dose-related tissue toxicity. Many studies have confirmed that oxidative stress and inflammation play a major role in the pathogenesis of 5-FU-induced damage in the various tissues. Chrysin (CHS), a natural flavone, exhibits various beneficial activities, including antioxidant, anti-inflammatory and anticancer. The aim of this study was to determine the therapeutic effect of CHS against 5-FU-induced oxidative stress and inflammation in the ovary tissue of rats for the first time. Thirty female rats were divided into 5 groups: control, 5-FU (100 mg/kg), 5-FU+CHS (1 mg/kg), 5-FU+CHS (2 mg/kg) and CHS (2 mg/kg). 5-FU treatment was administered intraperitoneally (i.p.) on the first day and CHS (i.p.) were applied for the following 3 days. The ovarian tissue levels of malondialdehyde (MDA), total oxidant status (TOS), total antioxidant status (TAS), 8-hydroxy-2'-deoxyguanosine (8-OHdG), catalase (CAT) and interleukin-6 (IL-6) were determined using spectrophotometric methods. MDA, TOS, 8-OHdG and IL-6 levels were significantly higher (p<0.05) and TAS and CAT levels level were significantly lower (p<0.05) in the 5-FU group than in the control group. CHS treatments significantly restored the levels of oxidative stress and inflammation parameters in a dose-dependent manner (p<0.05). Our results suggest that CHS can have a therapeutic effect against 5-FU-induced ovarian damage and therefore the use of CHS after chemotherapy may be beneficial in abolishing 5-FU-induced reproductive toxicity.
El-Sayyad HI, El-Sherbiny MR, Abou-El-Naga AM, Gadallah AA, Areida ESK. Effects of adriamycin, cisplatin, and 5-fluorouracil on the testes of albino rats. British J Med Health Res. 2013; 1(5): 45-62.
Temel Y, Kucukler S, Yıldırım S, Caglayan C, Kandemir FM. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393(3): 325-337. DOI: 10.1007/s00210-019-01741-z.
El-Sayyad HI, Ismail MF, Shalaby FM, et al. Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. Int J Biol Sci. 2009; 5(5): 466-473. DOI: 10.7150/ijbs.5.466.
Gedikli S, Erbas E. Protective effects of naringin on lung toxicity induced by 5-fluorouracil in rats. Kocatepe Vet J. 2021; 14(1): 16-25. DOI: 10.30607/kvj.782356.
Al-Asmari AK, Khan AQ, Al-Masri N. Mitigation of 5-fluorouracil-induced liver damage in rats by vitamin C via targeting redox-sensitive transcription factors. Hum Exp Toxicol. 2016; 35(11): 1203-1213. DOI: 10.1177/0960327115626583.
Lambouras M, Liew SH, Horvay K, Abud HE, Stringer JM, Hutt KJ. Examination of the ovotoxicity of 5-fluorouracil in mice. J Assist Reprod Genet. 2018; 35: 1053-1060. DOI: 10.1007/s10815-018-1169-6.
Meirow D, Biederman H, Anderson RA, Wallace WHB. Toxicity of chemotherapy and radiation on female reproduction. Clin Obstet Gynecol. 2010; 53(4): 727-739. DOI: 10.1097/GRF.0b013e3181f96b54.
Stringer JM, Swindells EOK, Zerafa N, Liew SH, Hutt KJ. Multidose 5-fluorouracil is highly toxic to growing ovarian follicles in mice. Toxicol Sci. 2018; 166(1): 97-107. DOI: 10.1093/toxsci/kfy189.
Jurczyk M, Król M, Midro A, Kurnik-Łucka M, Poniatowski A, Gil K. Cardiotoxicity of fluoropyrimidines: Epidemiology, mechanisms, diagnosis, and management. J Clin Med. 2021; 10(19): 4426. DOI: 10.3390/jcm10194426.
Mentese A, Demir S, Alemdar NT, Aliyazicioglu Y, Deger O. The effect of chlorogenic acid on 5-fluorouracil-induced oxidative damage in rat ovarian tissue. Farabi Med J. 2022; 1(1): 1-7.
Rashid S, Ali N, Nafees S, et al. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol Mech Methods. 2013; 23(5): 337-345. DOI: 10.3109/15376516.2012.759306.
Rehman MU, Ali N, Rashid S, et al. Alleviation of hepatic injury by chrysin in cisplatin administered rats: probable role of oxidative and inflammatory markers. Pharmacol Rep. 2014; 66(6): 1050-1059. DOI: 10.1016/j.pharep.2014.06.004.
Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective effects of chrysin against drugs and toxic agents. Dose Response. 2017; 15(2): 1-10. DOI: 10.1177/1559325817711782.
Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother. 2017; 92: 998-1009. DOI: 10.1016/j.biopha.2017.06.003.
Pingili RB, Pawar AK, Challa SR, Kodali T, Koppula S, Toleti V. A comprehensive review on hepatoprotective and nephroprotective activities of chrysin against various drugs and toxic agents. Chem Biol Interact. 2019; 308: 51-60. DOI: 10.1016/j.cbi.2019.05.010.
Sultana S, Verma K, Khan R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J Pharm Pharmacol. 2012; 64(6): 872-881. DOI: 10.1111/j.2042-7158.2012.01470.x.
Rashid S, Ali N, Nafees S, Hasan SK, Sultana S. Mitigation of 5-fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem Toxicol. 2014; 66: 185-193. DOI: 10.1016/j.fct.2014.01.026.
Ali N, Rashid S, Nafees S, Hasan SK, Sultana S. Beneficial effects of chrysin against methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis. Mol Cell Biochem. 2014; 385(1-2): 215-223. DOI: 10.1007/s11010-013-1830-4.
Mantawy EM, Esmat A, El-Bakly WM, Salah-Eldin RA, El-Demerdash E. Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Sci Rep. 2017; 7(1): 4795. DOI: 10.1038/s41598-017-05005-9.
Mentese A, Alemdar NT, Livaoglu A, Ayazoglu Demir E, Aliyazicioglu Y, Demir S. Suppression of cisplatin-induced ovarian injury in rats by chrysin: an experimental study. J Obstet Gynaecol. 2022; doi:10.1080/01443615.2022.2130201, In Press.
Zhang S, Liu Y, Xiang D, et al. Assessment of dose-response relationship of 5-fluorouracil to murine intestinal injury. Biomed Pharmacother. 2018; 106: 910-916. DOI: 10.1016/j.biopha.2018.07.029.
Narayana K, D'Souza UJ, Sanyal AK, Rao KP. 5-fluorouracil (5-FU) induces the formation of giant cells and sloughing of seminiferous epithelium in the rat testis. Indian J Physiol Pharmacol. 2000; 44(3): 317-322.
Rodríguez-Landa JF, Hernández-López F, Cueto-Escobedo J, et al. Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats. Biomed Pharmacother. 2019; 109: 2387-2395. DOI: 10.1016/j.biopha.2018.11.111.
Ayazoglu Demir E, Mentese A, Livaoglu A, Alemdar NT, Demir S. Ameliorative effect of gallic acid on cisplatin-induced ovarian toxicity in rats. Drug Chem Toxicol. 2023; 46(1): 97-103. DOI: 10.1080/01480545.2021.2011312.
Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1): 271-278. DOI: 10.1016/0003-2697(78)90342-1.
Demir S, Kazaz IO, Aliyazicioglu Y, et al. Effect of ethyl pyruvate on oxidative state and endoplasmic reticulum stress in a rat model of testicular torsion. Biotech Histochem. 2020; 95(4): 317-322. DOI: 10.1080/10520295.2019.1695947.
Demir S, Kazaz IO, Kerimoglu G, et al. Astaxanthin protects testicular tissue against torsion/detorsion-induced injury via suppressing endoplasmic reticulum stress in rats. J Invest Surg. 2022; 35(5): 1044-1049. DOI: 10.1080/08941939.2021.1995540.
Ayazoglu Demir E, Mentese A, Kucuk H, Alemdar NT, Demir S. p-Coumaric acid alleviates cisplatin-induced ovarian toxicity in rats. J Obstet Gynaecol Res. 2022; 48(2): 411-419. DOI: 10.1111/jog.15119.
Gelen V, Şengül E, Yıldırım S, Senturk E, Tekin S, Kükürt A. The protective effects of hesperidin and curcumin on 5-fluorouracil-induced nephrotoxicity in mice. Environ Sci Pollut Res Int. 2021; 28(34): 47046-47055. DOI: 10.1007/s11356-021-13969-5.
Barary M, Hosseinzadeh R, Kazemi S, et al. The effect of propolis on 5-fluorouracil-induced cardiac toxicity in rats. Sci Rep. 2022; 12(1): 8661. DOI: 10.1038/s41598-022-12735-y.
Khan R, Khan AQ, Qamar W, et al. Chrysin protects against cisplatin-induced colon toxicity via amelioration of oxidative stress and apoptosis: probable role of p38MAPK and p53. Toxicol Appl Pharmacol. 2012; 258(3): 315-329. DOI: 10.1016/j.taap.2011.11.013.
Mantawy EM, El-Bakly WM, Esmat A, Badr AM, El-Demerdash E. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol. 2014; 728: 107-118. DOI: 10.1016/j.ejphar.2014.01.065.
Belhan S, Çomaklı S, Küçükler S, Gülyüz F, Yıldırım S, Yener Z. Effect of chrysin on methotrexate-induced testicular damage in rats. Andrologia. 2019; 51(1): e13145. DOI: 10.1111/and.13145.
Baykalir BG, Arslan AS, Mutlu SI, et al. The protective effect of chrysin against carbon tetrachloride-induced kidney and liver tissue damage in rats. Int J Vitam Nutr Res. 2021; 91(5-6): 427-438. DOI: 10.1024/0300-9831/a000653.
Rapa SF, Magliocca G, Pepe G, et al. Protective effect of pomegranate on oxidative stress and inflammatory response induced by 5-fluorouracil in human keratinocytes. Antioxidants (Basel). 2021; 10(2): 203. DOI: 10.3390/antiox10020203.
Kucukler S, Benzer F, Yildirim S, et al. Protective effects of chrysin against oxidative stress and inflammation induced by lead acetate in rat kidneys: A biochemical and histopathological approach. Biol Trace Elem Res. 2021; 199(4): 1501-1514. DOI: 10.1007/s12011-020-02268-8.
Belhan S, Ozkaraca M, Ozdek U, Komuroglu AU. Protective role of chrysin on doxorubicin-induced oxidative stress and DNA damage in rat testes. Andrologia. 2020; 52(9): e13747. DOI: 10.1111/and.13747.
Sıçanlarda 5-Florourasil Kaynaklı Yumurtalık Hasarına Karşı Krisinin Terapötik Etkisinin Değerlendirilmesi
5-florourasil (5-FU), çeşitli maligniteleri tedavi etmek için etkili ve yaygın olarak kullanılan bir kemoterapötik ajandır, ancak doza bağlı doku toksisitesi nedeniyle terapötik kullanımı sınırlıdır. Birçok çalışma, çeşitli dokularda 5-FU'nun neden olduğu hasarın patogenezinde oksidatif stres ve inflamasyonun önemli bir rol oynadığını doğrulamıştır. Doğal bir flavon olan krisin (CHS), antioksidan, anti-inflamatuvar ve antikanser de dahil olmak üzere çeşitli faydalı aktiviteler sergileyebilmektedir. Bu çalışmanın amacı, sıçanların yumurtalık dokusunda 5-FU ile indüklenen oksidatif stres ve inflamasyona karşı CHS'nin terapötik etkisini ilk kez belirlemekti. Otuz adet dişi sıçan kontrol, 5-FU (100 mg/kg), 5-FU+CHS (1 mg/kg), 5-FU+CHS (2 mg/kg) ve CHS (2 mg/kg) olmak üzere 5 gruba ayrıldı. İlk gün intraperitoneal (i.p.) 5-FU tedavisi, takip eden 3 gün CHS (i.p.) uygulandı. Yumurtalık dokularında malondialdehit (MDA), toplam oksidan durum (TOS), toplam antioksidan durum (TAS), 8-hidroksi-2'-deoksiguanozin (8-OHdG), katalaz (CAT) ve interlökin-6 (IL-6) seviyeleri spektrofotometrik yöntemlerle belirlendi. 5-FU grubunda kontrol grubuna göre MDA, TOS, 8-OHdG ve IL-6 düzeyleri anlamlı olarak yüksek iken (p<0,05), TAS ve CAT düzeyleri ise istatistiksel olarak anlamlı düzeyde düşüktü (p<0,05). CHS tedavileri, oksidatif stres ve inflamasyon parametrelerinin seviyelerini doza bağlı bir şekilde istatistiksel olarak anlamlı derecede düzeltti (p<0,05). Sonuçlarımız, CHS'nin 5-FU ile indüklenen yumurtalık hasarına karşı terapötik bir etkiye sahip olabileceğini ve bu nedenle kemoterapiden sonra CHS kullanımının 5-FU ile indüklenen üreme toksisitesini ortadan kaldırmada faydalı olabileceğini düşündürmektedir.
El-Sayyad HI, El-Sherbiny MR, Abou-El-Naga AM, Gadallah AA, Areida ESK. Effects of adriamycin, cisplatin, and 5-fluorouracil on the testes of albino rats. British J Med Health Res. 2013; 1(5): 45-62.
Temel Y, Kucukler S, Yıldırım S, Caglayan C, Kandemir FM. Protective effect of chrysin on cyclophosphamide-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393(3): 325-337. DOI: 10.1007/s00210-019-01741-z.
El-Sayyad HI, Ismail MF, Shalaby FM, et al. Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. Int J Biol Sci. 2009; 5(5): 466-473. DOI: 10.7150/ijbs.5.466.
Gedikli S, Erbas E. Protective effects of naringin on lung toxicity induced by 5-fluorouracil in rats. Kocatepe Vet J. 2021; 14(1): 16-25. DOI: 10.30607/kvj.782356.
Al-Asmari AK, Khan AQ, Al-Masri N. Mitigation of 5-fluorouracil-induced liver damage in rats by vitamin C via targeting redox-sensitive transcription factors. Hum Exp Toxicol. 2016; 35(11): 1203-1213. DOI: 10.1177/0960327115626583.
Lambouras M, Liew SH, Horvay K, Abud HE, Stringer JM, Hutt KJ. Examination of the ovotoxicity of 5-fluorouracil in mice. J Assist Reprod Genet. 2018; 35: 1053-1060. DOI: 10.1007/s10815-018-1169-6.
Meirow D, Biederman H, Anderson RA, Wallace WHB. Toxicity of chemotherapy and radiation on female reproduction. Clin Obstet Gynecol. 2010; 53(4): 727-739. DOI: 10.1097/GRF.0b013e3181f96b54.
Stringer JM, Swindells EOK, Zerafa N, Liew SH, Hutt KJ. Multidose 5-fluorouracil is highly toxic to growing ovarian follicles in mice. Toxicol Sci. 2018; 166(1): 97-107. DOI: 10.1093/toxsci/kfy189.
Jurczyk M, Król M, Midro A, Kurnik-Łucka M, Poniatowski A, Gil K. Cardiotoxicity of fluoropyrimidines: Epidemiology, mechanisms, diagnosis, and management. J Clin Med. 2021; 10(19): 4426. DOI: 10.3390/jcm10194426.
Mentese A, Demir S, Alemdar NT, Aliyazicioglu Y, Deger O. The effect of chlorogenic acid on 5-fluorouracil-induced oxidative damage in rat ovarian tissue. Farabi Med J. 2022; 1(1): 1-7.
Rashid S, Ali N, Nafees S, et al. Alleviation of doxorubicin-induced nephrotoxicity and hepatotoxicity by chrysin in Wistar rats. Toxicol Mech Methods. 2013; 23(5): 337-345. DOI: 10.3109/15376516.2012.759306.
Rehman MU, Ali N, Rashid S, et al. Alleviation of hepatic injury by chrysin in cisplatin administered rats: probable role of oxidative and inflammatory markers. Pharmacol Rep. 2014; 66(6): 1050-1059. DOI: 10.1016/j.pharep.2014.06.004.
Samarghandian S, Farkhondeh T, Azimi-Nezhad M. Protective effects of chrysin against drugs and toxic agents. Dose Response. 2017; 15(2): 1-10. DOI: 10.1177/1559325817711782.
Zeinali M, Rezaee SA, Hosseinzadeh H. An overview on immunoregulatory and anti-inflammatory properties of chrysin and flavonoids substances. Biomed Pharmacother. 2017; 92: 998-1009. DOI: 10.1016/j.biopha.2017.06.003.
Pingili RB, Pawar AK, Challa SR, Kodali T, Koppula S, Toleti V. A comprehensive review on hepatoprotective and nephroprotective activities of chrysin against various drugs and toxic agents. Chem Biol Interact. 2019; 308: 51-60. DOI: 10.1016/j.cbi.2019.05.010.
Sultana S, Verma K, Khan R. Nephroprotective efficacy of chrysin against cisplatin-induced toxicity via attenuation of oxidative stress. J Pharm Pharmacol. 2012; 64(6): 872-881. DOI: 10.1111/j.2042-7158.2012.01470.x.
Rashid S, Ali N, Nafees S, Hasan SK, Sultana S. Mitigation of 5-fluorouracil induced renal toxicity by chrysin via targeting oxidative stress and apoptosis in wistar rats. Food Chem Toxicol. 2014; 66: 185-193. DOI: 10.1016/j.fct.2014.01.026.
Ali N, Rashid S, Nafees S, Hasan SK, Sultana S. Beneficial effects of chrysin against methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis. Mol Cell Biochem. 2014; 385(1-2): 215-223. DOI: 10.1007/s11010-013-1830-4.
Mantawy EM, Esmat A, El-Bakly WM, Salah-Eldin RA, El-Demerdash E. Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Sci Rep. 2017; 7(1): 4795. DOI: 10.1038/s41598-017-05005-9.
Mentese A, Alemdar NT, Livaoglu A, Ayazoglu Demir E, Aliyazicioglu Y, Demir S. Suppression of cisplatin-induced ovarian injury in rats by chrysin: an experimental study. J Obstet Gynaecol. 2022; doi:10.1080/01443615.2022.2130201, In Press.
Zhang S, Liu Y, Xiang D, et al. Assessment of dose-response relationship of 5-fluorouracil to murine intestinal injury. Biomed Pharmacother. 2018; 106: 910-916. DOI: 10.1016/j.biopha.2018.07.029.
Narayana K, D'Souza UJ, Sanyal AK, Rao KP. 5-fluorouracil (5-FU) induces the formation of giant cells and sloughing of seminiferous epithelium in the rat testis. Indian J Physiol Pharmacol. 2000; 44(3): 317-322.
Rodríguez-Landa JF, Hernández-López F, Cueto-Escobedo J, et al. Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats. Biomed Pharmacother. 2019; 109: 2387-2395. DOI: 10.1016/j.biopha.2018.11.111.
Ayazoglu Demir E, Mentese A, Livaoglu A, Alemdar NT, Demir S. Ameliorative effect of gallic acid on cisplatin-induced ovarian toxicity in rats. Drug Chem Toxicol. 2023; 46(1): 97-103. DOI: 10.1080/01480545.2021.2011312.
Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1): 271-278. DOI: 10.1016/0003-2697(78)90342-1.
Demir S, Kazaz IO, Aliyazicioglu Y, et al. Effect of ethyl pyruvate on oxidative state and endoplasmic reticulum stress in a rat model of testicular torsion. Biotech Histochem. 2020; 95(4): 317-322. DOI: 10.1080/10520295.2019.1695947.
Demir S, Kazaz IO, Kerimoglu G, et al. Astaxanthin protects testicular tissue against torsion/detorsion-induced injury via suppressing endoplasmic reticulum stress in rats. J Invest Surg. 2022; 35(5): 1044-1049. DOI: 10.1080/08941939.2021.1995540.
Ayazoglu Demir E, Mentese A, Kucuk H, Alemdar NT, Demir S. p-Coumaric acid alleviates cisplatin-induced ovarian toxicity in rats. J Obstet Gynaecol Res. 2022; 48(2): 411-419. DOI: 10.1111/jog.15119.
Gelen V, Şengül E, Yıldırım S, Senturk E, Tekin S, Kükürt A. The protective effects of hesperidin and curcumin on 5-fluorouracil-induced nephrotoxicity in mice. Environ Sci Pollut Res Int. 2021; 28(34): 47046-47055. DOI: 10.1007/s11356-021-13969-5.
Barary M, Hosseinzadeh R, Kazemi S, et al. The effect of propolis on 5-fluorouracil-induced cardiac toxicity in rats. Sci Rep. 2022; 12(1): 8661. DOI: 10.1038/s41598-022-12735-y.
Khan R, Khan AQ, Qamar W, et al. Chrysin protects against cisplatin-induced colon toxicity via amelioration of oxidative stress and apoptosis: probable role of p38MAPK and p53. Toxicol Appl Pharmacol. 2012; 258(3): 315-329. DOI: 10.1016/j.taap.2011.11.013.
Mantawy EM, El-Bakly WM, Esmat A, Badr AM, El-Demerdash E. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol. 2014; 728: 107-118. DOI: 10.1016/j.ejphar.2014.01.065.
Belhan S, Çomaklı S, Küçükler S, Gülyüz F, Yıldırım S, Yener Z. Effect of chrysin on methotrexate-induced testicular damage in rats. Andrologia. 2019; 51(1): e13145. DOI: 10.1111/and.13145.
Baykalir BG, Arslan AS, Mutlu SI, et al. The protective effect of chrysin against carbon tetrachloride-induced kidney and liver tissue damage in rats. Int J Vitam Nutr Res. 2021; 91(5-6): 427-438. DOI: 10.1024/0300-9831/a000653.
Rapa SF, Magliocca G, Pepe G, et al. Protective effect of pomegranate on oxidative stress and inflammatory response induced by 5-fluorouracil in human keratinocytes. Antioxidants (Basel). 2021; 10(2): 203. DOI: 10.3390/antiox10020203.
Kucukler S, Benzer F, Yildirim S, et al. Protective effects of chrysin against oxidative stress and inflammation induced by lead acetate in rat kidneys: A biochemical and histopathological approach. Biol Trace Elem Res. 2021; 199(4): 1501-1514. DOI: 10.1007/s12011-020-02268-8.
Belhan S, Ozkaraca M, Ozdek U, Komuroglu AU. Protective role of chrysin on doxorubicin-induced oxidative stress and DNA damage in rat testes. Andrologia. 2020; 52(9): e13747. DOI: 10.1111/and.13747.
Ayazoglu Demir E, Mentese A, Demir S, Küçük H, Türkmen N, Aliyazıcıoğlu Y. Evaluation of Therapeutic Effect of Chrysin Against 5-Fluorouracil-Induced Ovarian Damage in Rats. Farabi Med J. March 2023;2(1):1-7.
*The articles to be sent to the journal should be prepared according to the sample files given below. Manuscripts not prepared in accordance with the journal format will be returned to the Author(s).