Review
BibTex RIS Cite

GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ

Year 2019, Volume: 44 Issue: 6, 1008 - 1019, 06.10.2019
https://doi.org/10.15237/gida.GD19102

Abstract

Gıda ambalaj malzemesi olarak petrol bazlı polimerlerin
kullanımı hem geri çevrilemez çevre problemlerine yol açmaktadır hem de
sürdürülebilir değildir. Bu nedenle son yıllarda petrol bazlı ambalaj
malzemelerine alternatif olarak doğada bozunabilen ve kullanımdan sonra tekrar
işlenebilen biyobozunur ambalajlar geliştirilmektedir. Diğer yandan gıda
sanayisi tonlarca atık üretmektedir. Bu atıklar kimya, tıp, kozmetik ya da
hayvancılık gibi farklı alanlarda değerlendirilmektedir. Sanayi atıklarının
yüksek kalitede polisakkarit, esansiyel yağ ve protein içerdiği düşünüldüğünde
biyobozunur ambalaj üretiminde kullanılması hem çevresel sorunları azaltacak,
hem de atıkların tekrar işlenmesi ile katma değeri daha yüksek ürünlere
dönüştürülerek ekonomik kazanç sağlayacaktır. Bu derleme makale ile potansiyel
gıda atıklarından gıda ambalaj malzemesi üretilmesi ve bu malzemelerin mekanik,
yapısal, termal ve bariyer özelliklerinin değerlendirilmesi ve gıdalarda
kullanım potansiyeli irdelenecektir. 

References

  • Ahmed, J., Hiremath, N., Jacob, H. (2017). Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese. Int J Food Prop, 20(1), 53-67, doi: 10.1080/10942912.2015.1131165.
  • Al-Naamani, L., Dobretsov, S., Dutta, J. (2016). Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol, 38, 231-237, doi: 10.1016/j.ifset.2016.10.010.
  • Atarés, L., Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol, 48, 51-62, doi: 10.1016/j.tifs.2015.12.001.
  • Attaran, S. A., Hassan, A., & Wahit, M. U. (2017). Materials for food packaging applications based on bio-based polymer nanocomposites: A review. J Thermoplas Compos Mater, 30(2), 143-173, doi: 10.1177/0892705715588801.
  • Aygören, E., Sancak, A.Z., Akdağ, E., Demirtaş, M., Dönmez, D., Sancak, K. (2013). Türkiye’de Meyve Suyu Üretim Sektörü. 11. Ulusal Tarım Ekonomisi Kongresi, 03-05 Eylül 2013, Samsun, Türkye, 1540-1548.
  • Bağış C. (2015). TiO2 kullanımının pva esaslı biyobozunur kompozitlerin mekanik özellikleri üzerine etkisi. Selçuk-Tek Derg, 14(2), 997-1004.
  • Bátori, V., Jabbari, M., Åkesson, D., Lennartsson,, P.R., Taherzadeh, M.J., Zamani, A. (2017). Production of pectin-cellulose biofilms: A new approach for citrus waste recycling. Int J Pol Sci, 2017:1-9, doi: 10.1155/2017/9732329.
  • Berthet, M.A., Angellier-Coussy, H., Guillard, V., Gontard, N. (2016). Vegetal fiber-based biocomposites: Which stakes for food packaging applications. J Appl Pol Sci, 133: 42528-42546, doi: 10.1002/app.42528.
  • Borah, P.P., Das, P., Badwaik, L.S. (2017). Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultra sonochem, 36: 11-19, doi: 10.1016/j.ultsonch.2016.11.010.
  • Canbolat, Ö., Kamalak, A., Kara, H. (2014). Nar posası silajına (Punica granatum L.) katılan ürenin silaj fermantasyonu, aerobik stabilite ve in vitro gaz üretimi üzerine etkisi. Ankara Üniv Vet Fak Derg, 61: 217-223.
  • Chutia, M., Bhuyan, P.D., Pathak, M.G., Sarma, T.C., Boruah, P. (2009). Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT-Food Sci Technol, 42(3): 777-780, doi: 10.1016/j.lwt.2008.09.015.
  • Çankaya, N., Sökmen, Ö. (2016). Kitosan-Kil Biyonanokompozitleri. Politek, 19(3), 283-295.
  • Da Silva, I.S.V., Neto, W.P.F., Silvério, H.A., Pasquini, D., Zeni Andrade, M., Otaguro, H. (2017). Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Pol Adv Technol, 28(8): 1005-1012, doi: 10.1002/pat.3734.
  • Deniz, E., Yeşilören, G., İşçi, N.Ö. (2015). Türkiye'de Gıda Endüstrisi Kaynaklı Biyokütle ve Biyoyakıt Potansiyeli. Gıda, 40(1), 47-54, doi: 10.15237/gida.GD14037.
  • Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., Yang, Y. (2013). Adsorption of cesium from aqueous solution using agricultural residue–walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water research, 47(7), 2563-2571, doi: 10.1016/j.watres.2013.02.014.
  • El Achaby, M., El Miri, N., Aboulkas, A., Zahouily, M., Bilal, E., Barakat, A., Solhy, A. (2017). Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol, 96, 340-352, doi: 10.1016/j.ijbiomac.2016.12.040.
  • Ferhat, M.A., Meklati, B.Y., Chemat, F. (2007). Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’distillation. Flavour Fragr J, 22(6): 494-504, doi: 10.1002/ffj.1829.
  • Fortunati, E., Luzi, F., Puglia, D., Petrucci, R., Kenny, J.M., Torre, L. (2015). Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crops Prod, 67, 439-447, doi: 10.1016/j.indcrop.2015.01.075.
  • González-Montelongo, R., Lobo, M.G., González, M. (2010). Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem, 119(3): 1030-1039, doi: 10.1016/j.foodchem.2009.08.012.
  • Grigoriadi, K., Giannakas, A., Ladavos, A.K., Barkoula, N.M. (2015). Interplay between processing and performance in chitosan-based clay nanocomposite films. Polym Bulle, 72(5), 1145-116, doi: 10.1007/s00289-015-1329-0.
  • Günkaya, Z., Demirel, R., Banar, M. (2016). Portakal kabuğu atıklarından üretilen biyokompozit ambalaj filminin aflatoksinlere karşı etkisinin incelenmesi. Pamukkale Univ Muh Bilim Derg, 22(6), 513-519, doi: 10.5505/pajes.2016.92653.
  • Harini, K., Mohan, C.C., Ramya, K., Karthikeyan, S., Sukumar, M. (2018). Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells. Carbohydr Polym, 184(2018): 231-242, doi: 10.1016/j.carbpol.2017.12.072.
  • Hazer, B. (2011). Biyobozunur Plastik Ambalaj Malzemeleri Çerçeve Çalışması. http://www.bioplasttr.net/BIOPLASTICS.pdf (05.01.2011).
  • Kanmaz, E.Ö., Saral, Ö. (2017). Portakal kabuğundan elde edilen kritik altı su ekstraksiyonlarında antioksidan aktivite değerleri ile fenolik bileşikler arasındaki ilişki. J Food, 42(5), 485-493, doi: 10.15237/gida.GD17029.
  • Keskin, B., Altay B., Akyol, M., Meral, G., Uyar, O. (2018). Global Packaging Trends. 6. Uluslararası Matbaa Teknolojileri Sempozyumu 01-03 Kasım, İstanbul Türkiye, 483-503.
  • Koshy, R.R., Mary, S.K., Thomas, S., Pothan, L.A. (2015). Environment friendly green composites based on soy protein isolate–A review. Food Hydrocoll, 50, 174-192, doi: 10.1016/j.foodhyd.2015.04.023.
  • Kowalczyk, M., Piorkowska, E. (2012). Mechanisms of plastic deformation in biodegradable polylactide/poly (1, 4‐cis‐isoprene) blends. . J Appl Pol Sci, 124(6): 4579-4589, doi: 10.1002/app.35489.
  • Li, L., Zhao, C., Zhang, Y., Yao, J., Yang, W., Hu, Q., Cao, C. (2017). Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in storage of rice. Food Chem, 215, 477-482, doi: 10.1016/j.foodchem.2016.08.013.
  • Long, M., Wang, J., Zhuang, H., Zhang, Y., Wu, H., Zhang, J. (2014). Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms–Salmonella typhimurium and Listeria monocytogenes. Food Control, 39:68–74, doi: 10.1016/j.foodcont.2013.10.033.
  • Maciel, V.B.V., Yoshida, C.M., Franco, T. (2015). Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr Polym, 132, 537-545, doi: 10.1016/j.carbpol.2015.06.047.
  • Muller, J., González-Martínez, C., Chiralt, A. (2017). Combination of poly (lactic) acid and starch for biodegradable food packaging. Mater, 10(8), 952, doi: 10.3390/ma10080952.
  • Muppalla, S.R., Kanatt, S.R., Chawla, S.P., Sharma, A. (2014). Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Pack Shelf Life, 2(2), 51-58, doi: 10.1016/j.fpsl.2014.07.002.
  • Oliveira, T.Í.S., Rosa, M.F., Cavalcante, F.L., Pereira, P.H.F., Moates, G.K., Wellner, N., Azeredo, M. (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem, 198, 113-118, doi: 10.1016/j.foodchem.2015.08.080.
  • Oliveira, T.Í.S., Rosa, M.F, Ridout, M.J., Cross, K., Brito, E.S., Silva, L.M., Azeredo, H.M. (2017). Bionanocomposite films based on polysaccharides from banana peels. Int J Biol Macromol, 101: 1-8, doi: 10.1016/j.ijbiomac.2017.03.068.
  • Oliveira, T.Í.S., Zea-Redondo, L., Moates, G.K., Wellner, N., Cross, K., Waldron, K.W., Azeredo, H.M. (2016). Pomegranate peel pectin films as affected by montmorillonite. Food Chem, 198: 107-112, doi: 10.1016/j.foodchem.2015.09.109.
  • PAGÇEV (2017). Atık İstatistikleri. http://www.pagcev.org/atik-istatistikleri
  • PAGEV (2018). Türkiye Plastik Ambalaj Malzemeleri Sektör İzleme Raporu 3 Aylık, https://www.pagev.org/upload/files/Hammadde%20Yeni%20Tebli%C4%9F%20Bilg.%203/Plastik%20Ambalaj%20Malzemeleri%20Sekt%C3%B6r%20Raporu%202018%20Ocak%20-%20Mart.pdf (27.06.2018).
  • Pereira, P.H.F., Oliveirai T.Í.S., Rosa, M.F., Cavalcante, F.L., Moates, G.K., Wellner, N., Azeredo, H.M. (2016). Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol, 88, 373-379, doi: 10.1016/j.ijbiomac.2016.03.074.
  • Pitak, N., Rakshit, S.K. (2011). Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving fresh-cut vegetables. Food Sci Technol (LWT), 44(10): 2310-2315, doi: 10.1016/j.lwt.2011.05.024.
  • Qin, Y., Zhang, S., Yu, J., Yang, J., Xiong, L., Sun, Q. (2016). Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydr Polym, 147, 372-378, doi: 10.1016/j.carbpol.2016.03.095.
  • Reesha, K.V., Panda, S.K., Bindu, J., Varghese, T.O. (2015). Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int J Bio Macromol, 79, 934-942, doi: 10.1016/j.ijbiomac.2015.06.016.
  • Rogols, S., Sirovatka, D.M., Widmaier, R.G. (2003). Composite food product comprising potato peel product. U.S. Patent No 6,524,639.
  • Romero-Bastida, C.A., Tapia-Blácido, D.R., Méndez-Montealvo, G., Bello-Pérez, L.A., Velázquez, G., Alvarez-Ramirez, J. (2016). Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydr Polym, 152, 351-360, doi: 10.1016/j.carbpol.2016.07.009.
  • Saklar Ayyıldız, S. (2008). Ambalaj ve Nanoteknoloji. http://www.gidabilimi.com/tr/makaleler-1/1553-ambalaj-ve-nanoteknoloji (06.01.2008).Sanuja, S., Agalya, A., Umapathy, M.J. (2015). Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol, 74, 76-84, doi: 10.1016/j.ijbiomac.2014.11.036.
  • Sarsari, N.A., Pourmousa, S., Tajdini, A. (2016). Physical and Mechanical Properties of Walnut Shell Flour-Filled Thermoplastic Starch. Compos BioResour, 11(3), 6968-6983.
  • Siripatrawan, U., Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll, 61, 695-702, doi: 10.1016/j.foodhyd.2016.06.001.
  • Sorrentino, A., Gorrasi, G., Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol, 18(2): 84-95, doi: 10.1016/j.tifs.2006.09.004
  • Staroszczyk, H., Malinowska‐Pańczyk, E., Gottfried, K., Kołodziejska, I. (2017). Fish gelatin‐nanoclay films. Part I: Effect of a kind of nanoclays and glycerol concentration on mechanical and water barrier properties of nanocomposites. J Food Process Preser, 41(5), e13211, doi: 10.1111/jfpp.13211.
  • Tawakkal, I.S., Cran, M.J., Miltz, J., Bigger, S.W. (2014). A review of poly (lactic acid)‐based materials for antimicrobial packaging. Int J Food Sci Technol, 79(8): R1477-R1490, doi: 10.1111/1750-3841.12534.
  • Tencati, A., Pogutz, S., Moda, B., Brambilla, M., Cacia, C. (2016). Prevention policies addressing packaging and packaging waste: Some emerging trends. Waste Manag, 56: 35-45, doi: 10.1016/j.wasman.2016.06.025.
  • Thakur, S., Chaudhary, J., Sharma, B., Verma, A., Tamulevicius, S., Thakur, V. K. (2018). Sustainability of bioplastics: Opportunities and challenges. Curr Opin Green Sustain Chem, 13, 68-75, doi: 10.1016/j.cogsc.2018.04.013.
  • Trifol, J., Plackett, D., Sillard, C., Szabo, P., Bras, J., Daugaard, A.E. (2016). Hybrid poly (lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polym Inr, 65(8), 988-995, doi: 10.1002/pi.5154.
  • TÜDAM (2018). Dünya Çevre Günü Türkiye Raporu, http://www.cmo.org.tr/resimler/ekler/0d4a5b926c005a6_ek.pdf (05.06.2018).
  • TÜİK (2016). Meyveler, İçecek ve Baharat Bitkilerin Üretim Miktarları, http://www.tuik.gov.tr/PreIstatistikTablo.do?istab_id=1 564 (16.03.2016).
  • Väisänen, T., Haapala, A., Lappalainen, R., Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag, 54: 62-73, doi: 10.1016/j.wasman.2016.04.037.
  • Villarruel, S., Giannuzzi, L., Rivero, S., Pinotti, A. (2015). Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose. Mater Sci Eng: C, 56, 545-554, doi: 10.1016/j.msec.2015.07.003
  • Wang, H., Wang, L. (2017). Developing a bio-based packaging film from soya by-products incorporated with valonea tannin. J Clean Product, 143, 624-633, doi: 10.1016/j.jclepro.2016.12.064.
  • Wikiera, A., Mika, M., Starzyńska-Janiszewska, A., Stodolak, B. (2016). Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydr Polym, 142, 199-205, doi : 10.1016/j.carbpol.2016.01.063.
  • Yılmaz, M.T., Muslu, A., Karasu, S., Bozkurt, F., Dertli, E. (2017). Portakal Posasından Modifiye Pektin Eldesi ve Optimizasyonu, Kompozisyonel ve Yatışkan Faz Özelliklerinin Karakterizasyonu. Tekirdağ Ziraat Fak Derg, 14(2), 71-80.
  • Yuliana, M., Huynh, L.K., Hob, Q.P., Truong, C.T., Ju, Y.H. (2012). Defatted cashew nut shell starch as renewable polymeric material: isolation and characterization. Carbohydr Polym, 87: 2576–2581, doi: 10.1016/j.carbpol.2011.11.044.

PRODUCTION OF ENVIRONMENTALLY FRIENDLY BIODEGRADABLE PACKAGING MATERIALS FROM FOOD WASTE

Year 2019, Volume: 44 Issue: 6, 1008 - 1019, 06.10.2019
https://doi.org/10.15237/gida.GD19102

Abstract

The use of petroluem based plastics as food packaging
materials has led not only to irreversible ecological problems but also they
are not sustainable. Thus, recently biodegradable packaging materials that
dissolved in soil and reprocessable have been developed as an alternative to
the petroluem based plastics. On the other hand, food industry has generated
tons of food waste which has been recycled in different areas such as
chemistry, medicine, cosmetics or animal husbandry. Considering that these
waste contains high quality polysaccharides, essential oils and proteins,
conversion of food waste into biodegradable packaging materials not only solves
environmental problems but also creates value added products with economic
benefit. This paper reviews development of biodegradale packaging materials
from potential food wastes and characterization of mechanical, morphological,
thermal and barrier properties of developed biodegradable films and potential
use for food. 

References

  • Ahmed, J., Hiremath, N., Jacob, H. (2017). Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against L. monocytogenes and S. typhimurium on contaminated cheese. Int J Food Prop, 20(1), 53-67, doi: 10.1080/10942912.2015.1131165.
  • Al-Naamani, L., Dobretsov, S., Dutta, J. (2016). Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol, 38, 231-237, doi: 10.1016/j.ifset.2016.10.010.
  • Atarés, L., Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol, 48, 51-62, doi: 10.1016/j.tifs.2015.12.001.
  • Attaran, S. A., Hassan, A., & Wahit, M. U. (2017). Materials for food packaging applications based on bio-based polymer nanocomposites: A review. J Thermoplas Compos Mater, 30(2), 143-173, doi: 10.1177/0892705715588801.
  • Aygören, E., Sancak, A.Z., Akdağ, E., Demirtaş, M., Dönmez, D., Sancak, K. (2013). Türkiye’de Meyve Suyu Üretim Sektörü. 11. Ulusal Tarım Ekonomisi Kongresi, 03-05 Eylül 2013, Samsun, Türkye, 1540-1548.
  • Bağış C. (2015). TiO2 kullanımının pva esaslı biyobozunur kompozitlerin mekanik özellikleri üzerine etkisi. Selçuk-Tek Derg, 14(2), 997-1004.
  • Bátori, V., Jabbari, M., Åkesson, D., Lennartsson,, P.R., Taherzadeh, M.J., Zamani, A. (2017). Production of pectin-cellulose biofilms: A new approach for citrus waste recycling. Int J Pol Sci, 2017:1-9, doi: 10.1155/2017/9732329.
  • Berthet, M.A., Angellier-Coussy, H., Guillard, V., Gontard, N. (2016). Vegetal fiber-based biocomposites: Which stakes for food packaging applications. J Appl Pol Sci, 133: 42528-42546, doi: 10.1002/app.42528.
  • Borah, P.P., Das, P., Badwaik, L.S. (2017). Ultrasound treated potato peel and sweet lime pomace based biopolymer film development. Ultra sonochem, 36: 11-19, doi: 10.1016/j.ultsonch.2016.11.010.
  • Canbolat, Ö., Kamalak, A., Kara, H. (2014). Nar posası silajına (Punica granatum L.) katılan ürenin silaj fermantasyonu, aerobik stabilite ve in vitro gaz üretimi üzerine etkisi. Ankara Üniv Vet Fak Derg, 61: 217-223.
  • Chutia, M., Bhuyan, P.D., Pathak, M.G., Sarma, T.C., Boruah, P. (2009). Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT-Food Sci Technol, 42(3): 777-780, doi: 10.1016/j.lwt.2008.09.015.
  • Çankaya, N., Sökmen, Ö. (2016). Kitosan-Kil Biyonanokompozitleri. Politek, 19(3), 283-295.
  • Da Silva, I.S.V., Neto, W.P.F., Silvério, H.A., Pasquini, D., Zeni Andrade, M., Otaguro, H. (2017). Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Pol Adv Technol, 28(8): 1005-1012, doi: 10.1002/pat.3734.
  • Deniz, E., Yeşilören, G., İşçi, N.Ö. (2015). Türkiye'de Gıda Endüstrisi Kaynaklı Biyokütle ve Biyoyakıt Potansiyeli. Gıda, 40(1), 47-54, doi: 10.15237/gida.GD14037.
  • Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., Yang, Y. (2013). Adsorption of cesium from aqueous solution using agricultural residue–walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water research, 47(7), 2563-2571, doi: 10.1016/j.watres.2013.02.014.
  • El Achaby, M., El Miri, N., Aboulkas, A., Zahouily, M., Bilal, E., Barakat, A., Solhy, A. (2017). Processing and properties of eco-friendly bio-nanocomposite films filled with cellulose nanocrystals from sugarcane bagasse. Int J Biol Macromol, 96, 340-352, doi: 10.1016/j.ijbiomac.2016.12.040.
  • Ferhat, M.A., Meklati, B.Y., Chemat, F. (2007). Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’distillation. Flavour Fragr J, 22(6): 494-504, doi: 10.1002/ffj.1829.
  • Fortunati, E., Luzi, F., Puglia, D., Petrucci, R., Kenny, J.M., Torre, L. (2015). Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crops Prod, 67, 439-447, doi: 10.1016/j.indcrop.2015.01.075.
  • González-Montelongo, R., Lobo, M.G., González, M. (2010). Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem, 119(3): 1030-1039, doi: 10.1016/j.foodchem.2009.08.012.
  • Grigoriadi, K., Giannakas, A., Ladavos, A.K., Barkoula, N.M. (2015). Interplay between processing and performance in chitosan-based clay nanocomposite films. Polym Bulle, 72(5), 1145-116, doi: 10.1007/s00289-015-1329-0.
  • Günkaya, Z., Demirel, R., Banar, M. (2016). Portakal kabuğu atıklarından üretilen biyokompozit ambalaj filminin aflatoksinlere karşı etkisinin incelenmesi. Pamukkale Univ Muh Bilim Derg, 22(6), 513-519, doi: 10.5505/pajes.2016.92653.
  • Harini, K., Mohan, C.C., Ramya, K., Karthikeyan, S., Sukumar, M. (2018). Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells. Carbohydr Polym, 184(2018): 231-242, doi: 10.1016/j.carbpol.2017.12.072.
  • Hazer, B. (2011). Biyobozunur Plastik Ambalaj Malzemeleri Çerçeve Çalışması. http://www.bioplasttr.net/BIOPLASTICS.pdf (05.01.2011).
  • Kanmaz, E.Ö., Saral, Ö. (2017). Portakal kabuğundan elde edilen kritik altı su ekstraksiyonlarında antioksidan aktivite değerleri ile fenolik bileşikler arasındaki ilişki. J Food, 42(5), 485-493, doi: 10.15237/gida.GD17029.
  • Keskin, B., Altay B., Akyol, M., Meral, G., Uyar, O. (2018). Global Packaging Trends. 6. Uluslararası Matbaa Teknolojileri Sempozyumu 01-03 Kasım, İstanbul Türkiye, 483-503.
  • Koshy, R.R., Mary, S.K., Thomas, S., Pothan, L.A. (2015). Environment friendly green composites based on soy protein isolate–A review. Food Hydrocoll, 50, 174-192, doi: 10.1016/j.foodhyd.2015.04.023.
  • Kowalczyk, M., Piorkowska, E. (2012). Mechanisms of plastic deformation in biodegradable polylactide/poly (1, 4‐cis‐isoprene) blends. . J Appl Pol Sci, 124(6): 4579-4589, doi: 10.1002/app.35489.
  • Li, L., Zhao, C., Zhang, Y., Yao, J., Yang, W., Hu, Q., Cao, C. (2017). Effect of stable antimicrobial nano-silver packaging on inhibiting mildew and in storage of rice. Food Chem, 215, 477-482, doi: 10.1016/j.foodchem.2016.08.013.
  • Long, M., Wang, J., Zhuang, H., Zhang, Y., Wu, H., Zhang, J. (2014). Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms–Salmonella typhimurium and Listeria monocytogenes. Food Control, 39:68–74, doi: 10.1016/j.foodcont.2013.10.033.
  • Maciel, V.B.V., Yoshida, C.M., Franco, T. (2015). Chitosan/pectin polyelectrolyte complex as a pH indicator. Carbohydr Polym, 132, 537-545, doi: 10.1016/j.carbpol.2015.06.047.
  • Muller, J., González-Martínez, C., Chiralt, A. (2017). Combination of poly (lactic) acid and starch for biodegradable food packaging. Mater, 10(8), 952, doi: 10.3390/ma10080952.
  • Muppalla, S.R., Kanatt, S.R., Chawla, S.P., Sharma, A. (2014). Carboxymethyl cellulose–polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Pack Shelf Life, 2(2), 51-58, doi: 10.1016/j.fpsl.2014.07.002.
  • Oliveira, T.Í.S., Rosa, M.F., Cavalcante, F.L., Pereira, P.H.F., Moates, G.K., Wellner, N., Azeredo, M. (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem, 198, 113-118, doi: 10.1016/j.foodchem.2015.08.080.
  • Oliveira, T.Í.S., Rosa, M.F, Ridout, M.J., Cross, K., Brito, E.S., Silva, L.M., Azeredo, H.M. (2017). Bionanocomposite films based on polysaccharides from banana peels. Int J Biol Macromol, 101: 1-8, doi: 10.1016/j.ijbiomac.2017.03.068.
  • Oliveira, T.Í.S., Zea-Redondo, L., Moates, G.K., Wellner, N., Cross, K., Waldron, K.W., Azeredo, H.M. (2016). Pomegranate peel pectin films as affected by montmorillonite. Food Chem, 198: 107-112, doi: 10.1016/j.foodchem.2015.09.109.
  • PAGÇEV (2017). Atık İstatistikleri. http://www.pagcev.org/atik-istatistikleri
  • PAGEV (2018). Türkiye Plastik Ambalaj Malzemeleri Sektör İzleme Raporu 3 Aylık, https://www.pagev.org/upload/files/Hammadde%20Yeni%20Tebli%C4%9F%20Bilg.%203/Plastik%20Ambalaj%20Malzemeleri%20Sekt%C3%B6r%20Raporu%202018%20Ocak%20-%20Mart.pdf (27.06.2018).
  • Pereira, P.H.F., Oliveirai T.Í.S., Rosa, M.F., Cavalcante, F.L., Moates, G.K., Wellner, N., Azeredo, H.M. (2016). Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol, 88, 373-379, doi: 10.1016/j.ijbiomac.2016.03.074.
  • Pitak, N., Rakshit, S.K. (2011). Physical and antimicrobial properties of banana flour/chitosan biodegradable and self sealing films used for preserving fresh-cut vegetables. Food Sci Technol (LWT), 44(10): 2310-2315, doi: 10.1016/j.lwt.2011.05.024.
  • Qin, Y., Zhang, S., Yu, J., Yang, J., Xiong, L., Sun, Q. (2016). Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydr Polym, 147, 372-378, doi: 10.1016/j.carbpol.2016.03.095.
  • Reesha, K.V., Panda, S.K., Bindu, J., Varghese, T.O. (2015). Development and characterization of an LDPE/chitosan composite antimicrobial film for chilled fish storage. Int J Bio Macromol, 79, 934-942, doi: 10.1016/j.ijbiomac.2015.06.016.
  • Rogols, S., Sirovatka, D.M., Widmaier, R.G. (2003). Composite food product comprising potato peel product. U.S. Patent No 6,524,639.
  • Romero-Bastida, C.A., Tapia-Blácido, D.R., Méndez-Montealvo, G., Bello-Pérez, L.A., Velázquez, G., Alvarez-Ramirez, J. (2016). Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites. Carbohydr Polym, 152, 351-360, doi: 10.1016/j.carbpol.2016.07.009.
  • Saklar Ayyıldız, S. (2008). Ambalaj ve Nanoteknoloji. http://www.gidabilimi.com/tr/makaleler-1/1553-ambalaj-ve-nanoteknoloji (06.01.2008).Sanuja, S., Agalya, A., Umapathy, M.J. (2015). Synthesis and characterization of zinc oxide–neem oil–chitosan bionanocomposite for food packaging application. Int J Biol Macromol, 74, 76-84, doi: 10.1016/j.ijbiomac.2014.11.036.
  • Sarsari, N.A., Pourmousa, S., Tajdini, A. (2016). Physical and Mechanical Properties of Walnut Shell Flour-Filled Thermoplastic Starch. Compos BioResour, 11(3), 6968-6983.
  • Siripatrawan, U., Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll, 61, 695-702, doi: 10.1016/j.foodhyd.2016.06.001.
  • Sorrentino, A., Gorrasi, G., Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol, 18(2): 84-95, doi: 10.1016/j.tifs.2006.09.004
  • Staroszczyk, H., Malinowska‐Pańczyk, E., Gottfried, K., Kołodziejska, I. (2017). Fish gelatin‐nanoclay films. Part I: Effect of a kind of nanoclays and glycerol concentration on mechanical and water barrier properties of nanocomposites. J Food Process Preser, 41(5), e13211, doi: 10.1111/jfpp.13211.
  • Tawakkal, I.S., Cran, M.J., Miltz, J., Bigger, S.W. (2014). A review of poly (lactic acid)‐based materials for antimicrobial packaging. Int J Food Sci Technol, 79(8): R1477-R1490, doi: 10.1111/1750-3841.12534.
  • Tencati, A., Pogutz, S., Moda, B., Brambilla, M., Cacia, C. (2016). Prevention policies addressing packaging and packaging waste: Some emerging trends. Waste Manag, 56: 35-45, doi: 10.1016/j.wasman.2016.06.025.
  • Thakur, S., Chaudhary, J., Sharma, B., Verma, A., Tamulevicius, S., Thakur, V. K. (2018). Sustainability of bioplastics: Opportunities and challenges. Curr Opin Green Sustain Chem, 13, 68-75, doi: 10.1016/j.cogsc.2018.04.013.
  • Trifol, J., Plackett, D., Sillard, C., Szabo, P., Bras, J., Daugaard, A.E. (2016). Hybrid poly (lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polym Inr, 65(8), 988-995, doi: 10.1002/pi.5154.
  • TÜDAM (2018). Dünya Çevre Günü Türkiye Raporu, http://www.cmo.org.tr/resimler/ekler/0d4a5b926c005a6_ek.pdf (05.06.2018).
  • TÜİK (2016). Meyveler, İçecek ve Baharat Bitkilerin Üretim Miktarları, http://www.tuik.gov.tr/PreIstatistikTablo.do?istab_id=1 564 (16.03.2016).
  • Väisänen, T., Haapala, A., Lappalainen, R., Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Manag, 54: 62-73, doi: 10.1016/j.wasman.2016.04.037.
  • Villarruel, S., Giannuzzi, L., Rivero, S., Pinotti, A. (2015). Changes induced by UV radiation in the presence of sodium benzoate in films formulated with polyvinyl alcohol and carboxymethyl cellulose. Mater Sci Eng: C, 56, 545-554, doi: 10.1016/j.msec.2015.07.003
  • Wang, H., Wang, L. (2017). Developing a bio-based packaging film from soya by-products incorporated with valonea tannin. J Clean Product, 143, 624-633, doi: 10.1016/j.jclepro.2016.12.064.
  • Wikiera, A., Mika, M., Starzyńska-Janiszewska, A., Stodolak, B. (2016). Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydr Polym, 142, 199-205, doi : 10.1016/j.carbpol.2016.01.063.
  • Yılmaz, M.T., Muslu, A., Karasu, S., Bozkurt, F., Dertli, E. (2017). Portakal Posasından Modifiye Pektin Eldesi ve Optimizasyonu, Kompozisyonel ve Yatışkan Faz Özelliklerinin Karakterizasyonu. Tekirdağ Ziraat Fak Derg, 14(2), 71-80.
  • Yuliana, M., Huynh, L.K., Hob, Q.P., Truong, C.T., Ju, Y.H. (2012). Defatted cashew nut shell starch as renewable polymeric material: isolation and characterization. Carbohydr Polym, 87: 2576–2581, doi: 10.1016/j.carbpol.2011.11.044.
There are 60 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Eylem Karakuş 0000-0002-6441-3483

Zehra Ayhan 0000-0001-9114-4445

Publication Date October 6, 2019
Published in Issue Year 2019 Volume: 44 Issue: 6

Cite

APA Karakuş, E., & Ayhan, Z. (2019). GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ. Gıda, 44(6), 1008-1019. https://doi.org/10.15237/gida.GD19102
AMA Karakuş E, Ayhan Z. GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ. The Journal of Food. October 2019;44(6):1008-1019. doi:10.15237/gida.GD19102
Chicago Karakuş, Eylem, and Zehra Ayhan. “GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ”. Gıda 44, no. 6 (October 2019): 1008-19. https://doi.org/10.15237/gida.GD19102.
EndNote Karakuş E, Ayhan Z (October 1, 2019) GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ. Gıda 44 6 1008–1019.
IEEE E. Karakuş and Z. Ayhan, “GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ”, The Journal of Food, vol. 44, no. 6, pp. 1008–1019, 2019, doi: 10.15237/gida.GD19102.
ISNAD Karakuş, Eylem - Ayhan, Zehra. “GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ”. Gıda 44/6 (October 2019), 1008-1019. https://doi.org/10.15237/gida.GD19102.
JAMA Karakuş E, Ayhan Z. GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ. The Journal of Food. 2019;44:1008–1019.
MLA Karakuş, Eylem and Zehra Ayhan. “GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ”. Gıda, vol. 44, no. 6, 2019, pp. 1008-19, doi:10.15237/gida.GD19102.
Vancouver Karakuş E, Ayhan Z. GIDA ATIKLARINDAN ÇEVRE DOSTU BİYOBOZUNUR AMBALAJ MALZEMESİ ÜRETİMİ. The Journal of Food. 2019;44(6):1008-19.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/