Review
PDF EndNote BibTex RIS Cite

CONSUMPTION AND CONCERNS FOR INSECT PROTEINS AS HUMAN FOOD

Year 2021, Volume 3, Issue 2, 11 - 22, 24.12.2021
https://doi.org/10.51973/head.1035367

Abstract

Despite the measures taken for the rapidly growing world population, industry and human-induced environmental pollution and global warming reduce agricultural lands and clean water resources that make it difficult to produce sufficient food and protein. Proteins are vital nutrients for the body, which are essential for nutrition and other metabolic activities, that are mostly obtained from plant or animal sources. It is expected that the world population will reach 9 billion by 2050 and the current food needs will be doubled. In parallel, the consumption of meat, which is one of the main sources of animal proteins, is expected to reach an average of 49 kg/person in 2050, and it is calculated that this corresponds to an increase of 40% when compared to the current production. Unsuitable agricultural lands and polluted clean water resources makes it difficult to raise cattle, sheep and poultry, and thereby to produce sufficient amount animal-based food. In addition, the fact that carbon dioxide and methane emissions caused by cattle trigger global warming has led academic and industrial circles to find alternative protein sources. Artificial meat, microbial and insect proteins have gained interest in the food industry with a potential of being an alternative to the proteins obtained from meat and meat products. For example, insect consumption, entomophagy, is a traditional feeding practice in some Asian, African and South American countries with as many as 2000 different insects. Most of the insects used for this purpose are beetles, butterflies and caterpillars, crickets, grasshoppers, bees, ants, etc. The biggest disadvantage of on-farm insect production and consumption, which has been proposed by the FAO as a remedy for food shortages, is that their acceptance is difficult due to the yuk factor/disgust for normal consumers. In addition, there are many biological and chemical health problems related with insect consumption, especially allergies, which occur with the consumption of their proteins. Although there have been some exceptions, people generally stay away from insect consumption due to health, religious and ethical concerns. In this article, the historical development and current situation of insect consumption, farm production and processing of their proteins, and the effects of these proteins on human health and nutrition, as well as the technical and socio-cultural dimensions of the process are discussed.

References

  • Adámková, A., Adámek, M., Mlček, J., Borkovcová, M., Bednářová, M., Kouřimská, L., ... & Vítová, E. (2017). Welfare of the mealworm (Tenebrio molitor) breeding with regard to nutrition value and food safety. Potravinarstvo Slovak J. Food Sci. 11 (1): 460–465.
  • Altıkat, A., Turan, T., Ekmekyapar Torun, F. ve Bingül, Z. (2013). Türkiye’de Pestisit Kullanımı ve Çevreye Olan Etkileri. Atatürk Üniv. Ziraat Fak. Derg., 40 (2): 87-92.
  • Anon. (2021a). Ultrasonik ile Geliştirilmiş Böcek Protein Üretimi. https://www.hielscher.com /tr/improved-insect-protein-production-with-ultrasonics.htm [Erişim Tarihi 25.10.2021].
  • Anon. (2021b). Hamam Böceği Türleri. https://www.bocekvar.com/pratik-bilgiler/hamam-bocegi-turleri-nelerdir/6 [Erişim Tarihi 02.11.2021].
  • Baum, J. I., Børsheim, E., Allman, B. R., & Walker, S. (2020). Health Benefits of Dietary Protein throughout the Life Cycle. In: The Health Benefits of Foods-Current Knowledge and Further Development, Salanță, L. C., (Ed.), IntechOpen, London, pp. 1-17.
  • Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: a critical review. Comprehensive Reviews in Food Science and Food Safety, 12 (3): 296-313.
  • Boran, M. (2020). Fıkıhta Çekirgenin Hükmü. 6 (1): 259-278.
  • Candoğan, K. ve Özdemir, G. (2021). Sürdürülebilir et üretimi için yenilikçi yaklaşımlar. GIDA 46 (2): 408-427.
  • de Gier, S. and Verhoeckx, K. (2018). Insect (food) allergy and allergens. Molecular immunology, 100: 82-106.
  • de Souza-Vilela, J., Andrew, N. R. and Ruhnke, I. (2019). Insect protein in animal nutrition. Animal Production Science, 59 (11): 2029-2036.
  • Dematheis, F., Kurtz, B., Vidal, S. and Smalla, K. (2012). Microbial communities associated with the larval gut and eggs of the western corn rootworm. Plos One. 7 (10): e44685.
  • Dossey, A. T., Morales-Ramos, J. A. and Rojas, M. G. (Eds.). (2016). Insects as sustainable food ingredients: production, processing, and food applications. Academic Press, pp 385.
  • Douglas, A. E. (2015). Multiorganismal insects: diversity and function of resident microorganisms. Annual Review of Entomology, 60: 17-34.
  • Elhassan, M., Wendin, K., Olsson, V., & Langton, M. (2019). Quality aspects of insects as food-nutritional, sensory, and related concepts. Foods, 8 (3): 95.
  • Francuski, L., & Beukeboom, L. W. (2020). Insects in production – an introduction. Entomologia Experimentalis et Applicata, 168 (6-7): 422-431.
  • FAO, 2013. Edible Insects: Future Prospects for Food and Feed Security, vol. 171, Food and Agriculture Organization of the United Nations.
  • Food and Agriculture Organization of the United Nations (Rome). (2013). Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation, 31 March-2 April, 2011, Auckland, New Zealand. Food and Agriculture Organization of the United Nations.
  • Giaccone, V. (2005). Hygiene and health features of "minilivestock". In: Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails. Paoletti M.G., (Ed.), Science Publishers, Enfield, NH, USA, pp. 579–598.
  • Graczyk, T. K., Knight, R. and Tamang, L. (2005). Mechanical transmission of human protozoan parasites by insects. Clinical microbiology reviews, 18 (1): 128-132.
  • Haber, M., Mishyna, M., Martinez, J. I., & Benjamin, O. (2019). The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT, 115: 108395.
  • Hussain, I., Khan, S., Sultan, A., Chand, N., Khan, R., Alam, W., & Ahmad, N. (2017). Meal worm (Tenebrio molitor) as potential alternative source of protein supplementation in broiler. Int. J. Biosci, 10 (4): 225-262.
  • Hwangbo, J., Hong, E. C., Jang, A., Kang, H. K., Oh, J. S., Kim, B. W., and Park, B. S. (2009). Utilization of house flymaggots, a feed supplement in the production of broiler chickens. J. Environmental Biology, 30 (4): 609-614.
  • Kibar, S. 2017. Böcek Yemenin nesi yanlış?, ÇAKÜ Sosyal Bilimler Enst. Derg., 8 (1): 96-113.
  • Kim, S. Y., Kim, M. J., Jung, S. K., & Kim, H. Y. (2019a). Development of a fast real-time PCR assay based on TaqMan probe for identification of edible rice grasshopper (Oxya chinensis) in processed food products. Food Research International, 116: 441-446.
  • Kim, T. K., Yong, H. I., Kim, Y. B., Kim, H. W. and Choi, Y. S. (2019b). Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food science of animal resources, 39 (4): 521.
  • Köhler, R., Kariuki, L., Lambert, C. and Biesalski, H.K. (2019). Protein, amino acid and mineral composition of some edible insects from Thailand, J. Asia-Pacific Entomology, 22 (1): 372-378.
  • Lam, P. Y., Latif, N. S. A., Thevan, K., Rao, P. V., & Muhamed, W. Z. W. (2018). Nutrient composition of Blaptica dubia (Order: Blattodea) as an alternative protein source. Journal of Tropical Resources and Sustainable Science (JTRSS), 6 (2): 88-92.
  • Liceaga, A. M. (2021). Processing insects for use in the food and feed industry. Current opinion in insect science, 48: 32-36.
  • Mariotti, F. (2017). Plant protein, animal protein, and protein quality. In Vegetarian and plant-based diets in health and disease prevention. Academic Press., pp. 621-642.
  • Meyer-Rochow, V. B., Gahukar, R. T., Ghosh, S. and Jung, C. (2021). Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods, 10 (5): 1036.
  • Ortiz, J. C., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., ... & Jullien, R. L. (2016). Insect mass production technologies. In Insects as sustainable food ingredients. Academic Press., pp. 153-201.
  • Park, J. B., Choi, W. H., Kim, S. H., Jin, H. J., Han, Y. S., Lee, Y. S., & Kim, N. J. (2014). Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. International Journal of Industrial Entomology, 28 (1): 5-9.
  • Phillips, S. M., Fulgoni III, V. L., Heaney, R. P., Nicklas, T. A., Slavin, J. L., & Weaver, C. M. (2015). Commonly consumed protein foods contribute to nutrient intake, diet quality, and nutrient adequacy. The American journal of clinical nutrition, 101 (6): 1346S-1352S.
  • Ramos-Elorduy, J., González, E. A., Hernández, A. R., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal of economic entomology, 95 (1): 214-220.
  • Ribeiro, J. C., Cunha, L. M., Sousa‐Pinto, B., & Fonseca, J. (2018). Allergic risks of consuming edible insects: A systematic review. Molecular Nutrition & Food Research, 62 (1): 1700030.
  • Rumpold, B. A. and Schlüter, O. (2015). Insect-based protein sources and their potential for human consumption: Nutritional composition and processing. Animal Frontiers, 5 (2): 20-24.
  • Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular nutrition & food research, 57 (5): 802-823.
  • Sagu, S. T., Landgräber, E., Henkel, I. M., Huschek, G., Homann, T., Bußler, S., ... & Rawel, H. (2021). Effect of Cereal α-Amylase/Trypsin Inhibitors on Developmental Characteristics and Abundance of Digestive Enzymes of Mealworm Larvae (Tenebrio molitor L.). Insects, 12 (5): 454.
  • Sarquis, O., Carvalho‐Costa, F. A., Oliveira, L. S., Duarte, R., D′ Andrea, P. S., De Oliveira, T. G., & Lima, M. M. (2010). Ecology of Triatoma brasiliensis in northeastern Brazil: seasonal distribution, feeding resources, and Trypanosoma cruzi infection in a sylvatic population. J. Vector Ecology, 35 (2): 385-394.
  • Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W., ... & Engel, K. H. (2017). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition & Food Research, 61 (6): 1600520.
  • Sehgal, R., Bhatti, H. P., Bhasin, D. K., Sood, A. K., Nada, R., Malla, N. and Singh, K. (2002). Intestinal myiasis due to Musca domestica: a report of two cases. Japanese journal of infectious diseases, 55 (6): 191-193.
  • Shang, N., Chaplot, S., & Wu, J. (2018). Food proteins for health and nutrition. In Proteins in Food Processing. Woodhead Publishing., pp. 301-336.
  • Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K. A., Polak-Juszczak, L., Jarocki, A., & Jedras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food, Agricultural Sciences, 4 (6): 287-291.
  • Skotnicka, M., Karwowska, K., Kłobukowski, F., Borkowska, A., & Pieszko, M. (2021). Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods, 10 (4), 766.
  • Tajudeen, A. L. (2020). Halal Certification of Insect-Based Food: a critique. International Journal of Islamic Business Ethics, 5 (2): 100-112.
  • van Huis, A. (2016). Edible insects are the future? Proceedings of the Nutrition Society, 75 (3): 294-305.
  • Vijver, M., Jager, T., Posthuma, L., and Peijnenburg, W. (2003). Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicology and Environmental Safety, 54 (3): 277-289.
  • Virginia, M. R., Quirino-Barreda, T., García-Núñez, M., Díaz-García, R., Sánchez-Herrera, K., & Schettino-Bermudez, B. (2015). Grasshoppers, Sphenarium purpurascens Ch. Source of proteins and essential amino acids. J. Chem. Eng, 9: 472-476.
  • Watford, M., & Wu, G. (2018). Protein. Advances in Nutrition, 9 (5): 651-653.
  • Wu, G. (2016). Dietary protein intake and human health. Food & function, 7 (3): 1251-1265.
  • Yun, J. H., Roh, S. W., Whon, T. W., Jung, M. J., Kim, M. S., Park, D. S., & Bae, J. W. (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 80 (17): 5254-5264.
  • Zagrobelny, M., Dreon, A. L., Gomiero, T., Marcazzan, G. L., Glaring, M. A., MøLler, B. L., and Paoletti, M. G. (2009). Toxic moths: source of a truly safe delicacy. J. Ethnobiology, 29 (1): 64-76.

İNSAN GIDASI OLARAK BÖCEK PROTEİNLERİ TÜKETİMİ VE GETİRDİĞİ SORUNLAR

Year 2021, Volume 3, Issue 2, 11 - 22, 24.12.2021
https://doi.org/10.51973/head.1035367

Abstract

Alınan tedbirlere rağmen hızla artan dünya nüfusu, endüstri ve insan kaynaklı çevre kirliliği ve küresel ısınma, tarım arazileri ve temiz su kaynaklarını azaltmakta ve yeterli gıda dolayısıyla da protein üretimini zorlaştırmaktadır. Proteinler, beslenme için gerekli ve büyük bölümü bitkisel veya hayvansal kaynaklardan karşılanan, vücutta hayati öneme sahip besin ögeleridir. Dünya nüfusunun 2050 yılına kadar 9 milyara ve mevcut gıda ihtiyacının da iki katına çıkması beklenmektedir. Paralelinde 2050 yılında proteinlerin ana kaynaklarından olan et tüketiminin de ortalama 49 kg/kişi olması beklenmekte ve mevcut üretimle kıyaslandığında bunun %40 oranında bir artışa karşılık geldiği hesaplanmaktadır. Elverişsiz hale gelen tarım arazileri ve kirletilen temiz su kaynakları; büyükbaş, küçükbaş ve kümes hayvanlarının beslenmesini, dolayısı ile de yeterli miktarda hayvansal gıda üretimini gün geçtikçe zorlaştırmaktadır. Ayrıca, büyükbaş hayvanların neden olduğu karbondioksit ve metan gazı salınımının küresel ısınmayı tetiklediği gerçeği, akademik ve endüstri çevrelerini alternatif protein kaynakları bulmaya yönlendirmiştir. Yapay et, mikrobiyal ve böcek proteinleri, et ve et ürünlerinden karşılanan proteinlere alternatif olabilme potansiyeli ile gıda sektörünün ilgi alanına girmiştir. Örneğin, böcek tüketimi, entomofaji, bazı Asya, Afrika ve Güney Amerika ülkelerinde 2000 kadar farklı böcekle gerçekleştirilen geleneksel bir beslenme yöntemidir. Tüketilen böceklerin çoğunu da kın kanatlılar, kelebek ve tırtıllar, cırcır böceği, çekirge, arı, karınca vb. haşerat oluşturmaktadır. FAO tarafından besin kıtlığına çare olarak gösterilen çiftlikte böcek üretimi ve tüketiminin en büyük dezavantajı, iğrenme veya tiksinti kaynaklı nedenlerle bunların kabul edilebilirliklerinin düşük olmasıdır. Ayrıca, böcek proteinlerinin tüketimi ile ortaya çıkan başta alerji olmak üzere biyolojik ve kimyasal kaynaklı pek çok sağlık sorunu da bulunmaktadır. Bazı istisnaları olmakla birlikte genel olarak insanlar sağlık, dini ve etik kaygılarla böcek tüketimine karşı mesafeli durmaktadırlar. Bu makalede, böcek tüketiminin tarihsel gelişimi ve mevcut durumu ile böceklerin çiftlikte üretimi, işlenmesi, elde edilen proteinlerin insan sağlığı ve beslenmesine etkileri yanında sürecin, teknik ve sosyokültürel boyutlarına işaret edilmiştir.

References

  • Adámková, A., Adámek, M., Mlček, J., Borkovcová, M., Bednářová, M., Kouřimská, L., ... & Vítová, E. (2017). Welfare of the mealworm (Tenebrio molitor) breeding with regard to nutrition value and food safety. Potravinarstvo Slovak J. Food Sci. 11 (1): 460–465.
  • Altıkat, A., Turan, T., Ekmekyapar Torun, F. ve Bingül, Z. (2013). Türkiye’de Pestisit Kullanımı ve Çevreye Olan Etkileri. Atatürk Üniv. Ziraat Fak. Derg., 40 (2): 87-92.
  • Anon. (2021a). Ultrasonik ile Geliştirilmiş Böcek Protein Üretimi. https://www.hielscher.com /tr/improved-insect-protein-production-with-ultrasonics.htm [Erişim Tarihi 25.10.2021].
  • Anon. (2021b). Hamam Böceği Türleri. https://www.bocekvar.com/pratik-bilgiler/hamam-bocegi-turleri-nelerdir/6 [Erişim Tarihi 02.11.2021].
  • Baum, J. I., Børsheim, E., Allman, B. R., & Walker, S. (2020). Health Benefits of Dietary Protein throughout the Life Cycle. In: The Health Benefits of Foods-Current Knowledge and Further Development, Salanță, L. C., (Ed.), IntechOpen, London, pp. 1-17.
  • Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: a critical review. Comprehensive Reviews in Food Science and Food Safety, 12 (3): 296-313.
  • Boran, M. (2020). Fıkıhta Çekirgenin Hükmü. 6 (1): 259-278.
  • Candoğan, K. ve Özdemir, G. (2021). Sürdürülebilir et üretimi için yenilikçi yaklaşımlar. GIDA 46 (2): 408-427.
  • de Gier, S. and Verhoeckx, K. (2018). Insect (food) allergy and allergens. Molecular immunology, 100: 82-106.
  • de Souza-Vilela, J., Andrew, N. R. and Ruhnke, I. (2019). Insect protein in animal nutrition. Animal Production Science, 59 (11): 2029-2036.
  • Dematheis, F., Kurtz, B., Vidal, S. and Smalla, K. (2012). Microbial communities associated with the larval gut and eggs of the western corn rootworm. Plos One. 7 (10): e44685.
  • Dossey, A. T., Morales-Ramos, J. A. and Rojas, M. G. (Eds.). (2016). Insects as sustainable food ingredients: production, processing, and food applications. Academic Press, pp 385.
  • Douglas, A. E. (2015). Multiorganismal insects: diversity and function of resident microorganisms. Annual Review of Entomology, 60: 17-34.
  • Elhassan, M., Wendin, K., Olsson, V., & Langton, M. (2019). Quality aspects of insects as food-nutritional, sensory, and related concepts. Foods, 8 (3): 95.
  • Francuski, L., & Beukeboom, L. W. (2020). Insects in production – an introduction. Entomologia Experimentalis et Applicata, 168 (6-7): 422-431.
  • FAO, 2013. Edible Insects: Future Prospects for Food and Feed Security, vol. 171, Food and Agriculture Organization of the United Nations.
  • Food and Agriculture Organization of the United Nations (Rome). (2013). Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation, 31 March-2 April, 2011, Auckland, New Zealand. Food and Agriculture Organization of the United Nations.
  • Giaccone, V. (2005). Hygiene and health features of "minilivestock". In: Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails. Paoletti M.G., (Ed.), Science Publishers, Enfield, NH, USA, pp. 579–598.
  • Graczyk, T. K., Knight, R. and Tamang, L. (2005). Mechanical transmission of human protozoan parasites by insects. Clinical microbiology reviews, 18 (1): 128-132.
  • Haber, M., Mishyna, M., Martinez, J. I., & Benjamin, O. (2019). The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT, 115: 108395.
  • Hussain, I., Khan, S., Sultan, A., Chand, N., Khan, R., Alam, W., & Ahmad, N. (2017). Meal worm (Tenebrio molitor) as potential alternative source of protein supplementation in broiler. Int. J. Biosci, 10 (4): 225-262.
  • Hwangbo, J., Hong, E. C., Jang, A., Kang, H. K., Oh, J. S., Kim, B. W., and Park, B. S. (2009). Utilization of house flymaggots, a feed supplement in the production of broiler chickens. J. Environmental Biology, 30 (4): 609-614.
  • Kibar, S. 2017. Böcek Yemenin nesi yanlış?, ÇAKÜ Sosyal Bilimler Enst. Derg., 8 (1): 96-113.
  • Kim, S. Y., Kim, M. J., Jung, S. K., & Kim, H. Y. (2019a). Development of a fast real-time PCR assay based on TaqMan probe for identification of edible rice grasshopper (Oxya chinensis) in processed food products. Food Research International, 116: 441-446.
  • Kim, T. K., Yong, H. I., Kim, Y. B., Kim, H. W. and Choi, Y. S. (2019b). Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food science of animal resources, 39 (4): 521.
  • Köhler, R., Kariuki, L., Lambert, C. and Biesalski, H.K. (2019). Protein, amino acid and mineral composition of some edible insects from Thailand, J. Asia-Pacific Entomology, 22 (1): 372-378.
  • Lam, P. Y., Latif, N. S. A., Thevan, K., Rao, P. V., & Muhamed, W. Z. W. (2018). Nutrient composition of Blaptica dubia (Order: Blattodea) as an alternative protein source. Journal of Tropical Resources and Sustainable Science (JTRSS), 6 (2): 88-92.
  • Liceaga, A. M. (2021). Processing insects for use in the food and feed industry. Current opinion in insect science, 48: 32-36.
  • Mariotti, F. (2017). Plant protein, animal protein, and protein quality. In Vegetarian and plant-based diets in health and disease prevention. Academic Press., pp. 621-642.
  • Meyer-Rochow, V. B., Gahukar, R. T., Ghosh, S. and Jung, C. (2021). Chemical Composition, Nutrient Quality and Acceptability of Edible Insects Are Affected by Species, Developmental Stage, Gender, Diet, and Processing Method. Foods, 10 (5): 1036.
  • Ortiz, J. C., Ruiz, A. T., Morales-Ramos, J. A., Thomas, M., Rojas, M. G., Tomberlin, J. K., ... & Jullien, R. L. (2016). Insect mass production technologies. In Insects as sustainable food ingredients. Academic Press., pp. 153-201.
  • Park, J. B., Choi, W. H., Kim, S. H., Jin, H. J., Han, Y. S., Lee, Y. S., & Kim, N. J. (2014). Developmental characteristics of Tenebrio molitor larvae (Coleoptera: Tenebrionidae) in different instars. International Journal of Industrial Entomology, 28 (1): 5-9.
  • Phillips, S. M., Fulgoni III, V. L., Heaney, R. P., Nicklas, T. A., Slavin, J. L., & Weaver, C. M. (2015). Commonly consumed protein foods contribute to nutrient intake, diet quality, and nutrient adequacy. The American journal of clinical nutrition, 101 (6): 1346S-1352S.
  • Ramos-Elorduy, J., González, E. A., Hernández, A. R., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal of economic entomology, 95 (1): 214-220.
  • Ribeiro, J. C., Cunha, L. M., Sousa‐Pinto, B., & Fonseca, J. (2018). Allergic risks of consuming edible insects: A systematic review. Molecular Nutrition & Food Research, 62 (1): 1700030.
  • Rumpold, B. A. and Schlüter, O. (2015). Insect-based protein sources and their potential for human consumption: Nutritional composition and processing. Animal Frontiers, 5 (2): 20-24.
  • Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular nutrition & food research, 57 (5): 802-823.
  • Sagu, S. T., Landgräber, E., Henkel, I. M., Huschek, G., Homann, T., Bußler, S., ... & Rawel, H. (2021). Effect of Cereal α-Amylase/Trypsin Inhibitors on Developmental Characteristics and Abundance of Digestive Enzymes of Mealworm Larvae (Tenebrio molitor L.). Insects, 12 (5): 454.
  • Sarquis, O., Carvalho‐Costa, F. A., Oliveira, L. S., Duarte, R., D′ Andrea, P. S., De Oliveira, T. G., & Lima, M. M. (2010). Ecology of Triatoma brasiliensis in northeastern Brazil: seasonal distribution, feeding resources, and Trypanosoma cruzi infection in a sylvatic population. J. Vector Ecology, 35 (2): 385-394.
  • Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W., ... & Engel, K. H. (2017). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition & Food Research, 61 (6): 1600520.
  • Sehgal, R., Bhatti, H. P., Bhasin, D. K., Sood, A. K., Nada, R., Malla, N. and Singh, K. (2002). Intestinal myiasis due to Musca domestica: a report of two cases. Japanese journal of infectious diseases, 55 (6): 191-193.
  • Shang, N., Chaplot, S., & Wu, J. (2018). Food proteins for health and nutrition. In Proteins in Food Processing. Woodhead Publishing., pp. 301-336.
  • Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K. A., Polak-Juszczak, L., Jarocki, A., & Jedras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food, Agricultural Sciences, 4 (6): 287-291.
  • Skotnicka, M., Karwowska, K., Kłobukowski, F., Borkowska, A., & Pieszko, M. (2021). Possibilities of the Development of Edible Insect-Based Foods in Europe. Foods, 10 (4), 766.
  • Tajudeen, A. L. (2020). Halal Certification of Insect-Based Food: a critique. International Journal of Islamic Business Ethics, 5 (2): 100-112.
  • van Huis, A. (2016). Edible insects are the future? Proceedings of the Nutrition Society, 75 (3): 294-305.
  • Vijver, M., Jager, T., Posthuma, L., and Peijnenburg, W. (2003). Metal uptake from soils and soil–sediment mixtures by larvae of Tenebrio molitor (L.) (Coleoptera). Ecotoxicology and Environmental Safety, 54 (3): 277-289.
  • Virginia, M. R., Quirino-Barreda, T., García-Núñez, M., Díaz-García, R., Sánchez-Herrera, K., & Schettino-Bermudez, B. (2015). Grasshoppers, Sphenarium purpurascens Ch. Source of proteins and essential amino acids. J. Chem. Eng, 9: 472-476.
  • Watford, M., & Wu, G. (2018). Protein. Advances in Nutrition, 9 (5): 651-653.
  • Wu, G. (2016). Dietary protein intake and human health. Food & function, 7 (3): 1251-1265.
  • Yun, J. H., Roh, S. W., Whon, T. W., Jung, M. J., Kim, M. S., Park, D. S., & Bae, J. W. (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 80 (17): 5254-5264.
  • Zagrobelny, M., Dreon, A. L., Gomiero, T., Marcazzan, G. L., Glaring, M. A., MøLler, B. L., and Paoletti, M. G. (2009). Toxic moths: source of a truly safe delicacy. J. Ethnobiology, 29 (1): 64-76.

Details

Primary Language Turkish
Subjects Food Science and Technology
Journal Section Research Articles
Authors

Mehmet DEMİRCİ> (Primary Author)
ISTANBUL SABAHATTIN ZAIM UNIVERSITY
0000-0002-4394-9852
Türkiye


Hasan YETİM>
İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ
0000-0002-5388-5856
Türkiye

Publication Date December 24, 2021
Acceptance Date December 21, 2021
Published in Issue Year 2021, Volume 3, Issue 2

Cite

APA Demirci, M. & Yetim, H. (2021). İNSAN GIDASI OLARAK BÖCEK PROTEİNLERİ TÜKETİMİ VE GETİRDİĞİ SORUNLAR . Helal ve Etik Araştırmalar Dergisi , 3 (2) , 11-22 . DOI: 10.51973/head.1035367

Dizinler ve Platformlar / Indexes and Platforms

22294    22295