Impact of Excess Irrigation on Nitrogen Balance and Growth Traits in Local Kale Genotypes
Year 2025,
Volume: 9 Issue: 3, 670 - 681, 27.09.2025
Enes Emiroğlu
,
Merve Erbil
,
Nergiz Dila Şenol Özdoğan
,
Hatice Filiz Boyacı
Abstract
Kale is a globally consumed vegetable of considerable economic importance. In countries with a long history of cultivation, open-field production is still practiced using traditional methods, often relying on local varieties. Nitrogen fertilization is essential for ensuring proper development. Production failures, caused by mistakes in application and meteorological events, lead to nitrate accumulation in the plant or soil, or to be leaching, causing environmental pollution. This study assessed the growth and nitrogen uptake responses of three local kale genotypes from Rize, Trabzon, and Giresun under varying irrigation levels simulating leaching conditions. Five irrigation treatments, ranging from field capacity to 100% excess water, were applied to induce nitrogen stress. Genotypes were compared using 14 parameters, including shoot and root development and some morphological attributes. Nitrogen analyses in leaves and soils were performed in all treatments of all genotypes. As a result, it was determined that the tested genotypes' growth, development and stress responses were different, and these differences were statistically meaningful. The T1 application contributed to the development of green parts of the plants in all genotypes. However, similar results were not found for the plant's dry weights. Depending on the increasing overwatering quantity, nitrogen levels in both plants and soil decreased. In conclusion, important scientific knowledge and practical applications were provided regarding increasing productivity and sustainable soil management in kale production.
Supporting Institution
The Scientific and Technological Research Council of Turkey (TUBITAK) 2209-A National Undergraduate Student Research Projects Support Program.
Project Number
This study was supported by the project, numbered 1919B012311343, within the scope of the Scientific and Technological Research Council of Turkey (TUBITAK) 2209-A National Undergraduate Student Research Projects Support Program.
References
-
Abbey, L., Young, C., Teitel-Payne, R., & Howe, K. (2012). Evaluation of proportions of vermicompost and coir in a medium for container-grown Swiss chard. International Journal of Vegetable Science, 18(2), 109–120. https://doi.org/10.1080/19315260.2011.563278
-
Abi Assaad, R. D., Abi Saab, M. T., Sellami, M. H., & Nemer, N. (2021). Kale (Brassica oleracea L. var. acephala) production in soilless systems in the Mediterranean region. Journal of Applied Horticulture, 23(2), 167–173. https://doi.org/10.37855/jah.2021.v23i02.30
-
Abiye, A. A., Kupası, D. M., Beesigamukama, D., Kassie, M., Mureithi, D., Thayru, D., Wesonga, J., Tanga, C. M., & Niassy, S. (2022). Agronomic performance of kale (Brassica oleracea) and Swiss chard (Beta vulgaris) grown on soil amended with black soldier fly frass fertilizer under wonder multistorey gardening system. Agronomy, 12(9), 2211. https://doi.org/10.3390/agronomy12092211
-
Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890. https://doi.org/10.1007/s13593-015-0285-2
-
Balkaya, A., & Yanmaz, R. (2004). Status of Brassica vegetable germplasm resources of Turkey. In III Balkan Symposium on Vegetables and Potatoes (pp. 115–119). Bursa, Turkey, September 6–10.
-
Balkaya, A. (2009). Exploring variation and sustainable progress of vegetable genetic resources in the Black Sea Region, Turkey. In First International Symposium on Sustainable Development. Science and Technology Proceedings (pp. 21–28). Sarajevo, Bosnia and Herzegovina, June 9–10.
-
Brazel, S. R., Barickman, T. C., & Sams, C. E. (2021). Short-term waterlogging of kale (Brassica oleracea L. var. acephala) plants causes a decrease in carotenoids and chlorophylls while increasing nutritionally important glucosinolates. In VIII International Symposium on Human Health Effects of Fruits and Vegetables—FAVHEALTH (pp. 175–180). Stuttgart, Germany, March 8–12.
-
Brazel, S. R., Olorunwa, O. J., Barickman, T. C., Sams, C. E., & Wilson, J. C. (2023). Overwatering may be as detrimental as underwatering in container-grown kale (Brassica oleracea L. var. acephala). Scientia Horticulturae, 316, 111961. https://doi.org/10.1016/j.scienta.2023.111961
-
Chakwizira, E., De Ruiter, J. M., & Maley, S. (2015). Effects of nitrogen fertiliser application rate on nitrogen partitioning, nitrogen use efficiency and nutritive value of forage kale. New Zealand Journal of Agricultural Research, 58(3), 259–270. https://doi.org/10.1080/00288233.2015.1040715
-
Çömlekçioğlu, N., & Kutlu, M. (2018). Seasonal changes in phytochemical content and antioxidant activity of kale (Brassica oleracea L. var. acephala) leaves. Journal of Agricultural Faculty of Ege University, 55(2), 119–127. https://doi.org/10.20289/zfdergi.405061
-
Dias, J. S. (2012). Nutritional quality and health benefits of vegetables: A review. Journal of Food and Nutrition Sciences, 3(10), 1354–1374. https://doi.org/10.4236/fns.2012.310179
-
Güler, S. (2005). Nitrogen fertilizer use in sustainable vegetable production. Atatürk University Journal of Agricultural Faculty, 36(2), 209–215. [In Turkish]
-
Issarakraisila, M., Ma, Q., & Turner, D. W. (2007). Photosynthetic and growth responses of juvenile Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) to waterlogging and water deficit. Scientia Horticulturae, 111(2), 107–113. https://doi.org/10.1016/j.scienta.2006.09.023
-
İbrikçi, H., Çetin, M., Sağır, H., Uçan, M., Gölpınar, M. S., & Karnez, E. (2016). Temporal monitoring of nitrogen losses due to drainage in a river irrigation basin where irrigated agriculture. Çukurova Journal of Agricultural and Food Science, 31(3), 153–163. [In Turkish]
-
Kaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., & Golden, B. R. (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 112(3), 1475–1501. https://doi.org/10.1002/agj2.20103
-
Kıran, S. (2019). Vermikompost uygulamalarının kuraklık stresi altındaki kıvırcık salatanın (Lactuca sativa var. crispa) mineral içerikleri üzerine etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22, 133–140. https://doi.org/10.18016/ksutarimdoga.vi.513345
-
Kıran, S., Furtana, G. B., Talhouni, M., & Ellialtıoğlu, Ş. Ş. (2019). Drought stress mitigation with humic acid in two Cucumis melo L. genotypes differ in their drought tolerance. Bragantia, 78, 490–497. https://doi.org/10.1590/1678-4499.20190253
-
Korus, A. (2010). Effect of the cultivar and harvest date of kale (Brassica oleracea L. var. acephala) on crop yield and plant morphological features. Vegetable Crops Research Bulletin, 73, 55–65. https://doi.org/10.2478/v10032-010-0017-3
-
Kumar, S., Sharma, S., Kumar, V., Sharma, R., Minhas, A., Boddu, R., Hernández-Ledesma, B., & Martínez-Villaluenga, C. (2022). Cruciferous vegetables: A mine of phytonutrients for functional and nutraceutical enrichment. In B. Hernández-Ledesma & C. Martínez-Villaluenga (Eds.), Current advances for development of functional foods modulating inflammation and oxidative stress (pp. 401–426). Academic Press. https://doi.org/10.1016/B978-0-12-821039-2.00022-0
-
Mazahar, S., Umar, S., & Iqbal, M. (2025). Genotypic variability of nitrate-accumulating leafy vegetables as affected by nitrogen doses: Morpho-physiological and biochemical approach. Discover Plants, 2(1), 122. https://doi.org/10.1007/s43811-025-00065-y
-
Motarjemi, S. K., Styczen, M. E., Petersen, R. J., Jensen, K. J., & Plauborg, F. (2023). Effects of different drainage conditions on nitrogen losses of an agricultural sandy loam soil. Journal of Environmental Management, 325, 116267. https://doi.org/10.1016/j.jenvman.2022.116267
-
Muratoglu, A. (2020). Assessment of wheat’s water footprint and virtual water trade: A case study for Turkey. Ecological Processes, 9, 1–16. https://doi.org/10.1186/s13717-020-00230-6
-
Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., & Nakazono, M. (2012). Mechanisms for coping with submergence and waterlogging in rice. Rice, 5, 1–14. https://doi.org/10.1186/1939-8433-5-2
-
Nygaard Sorensen, J., & Thorup‐Kristensen, K. (2011). Plant‐based fertilizers for organic vegetable production. Journal of Plant Nutrition and Soil Science, 174(2), 321–332. https://doi.org/10.1002/jpln.201000107
-
Pan, J., Sharif, R., Xu, X., & Chen, X. (2021). Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Frontiers in Plant Science, 11, 627331. https://doi.org/10.3389/fpls.2020.627331
-
Pipan, B., Neji, M., Meglič, V., & Sinkovič, L. (2024). Genetic diversity of kale (Brassica oleracea L. var. acephala) using agro-morphological and simple sequence repeat (SSR) markers. Genetic Resources and Crop Evolution, 71(3), 1221–1239. https://doi.org/10.1007/s10722-023-01635-w
-
Pratt, J. D., & Mooney, K. A. (2013). Clinal adaptation and adaptive plasticity in Artemisia californica: Implications for the response of a foundation species to predicted climate change. Global Change Biology, 19(8), 2454–2466. https://doi.org/10.1111/gcb.12205
-
Qiu, W., Wang, Z., Huang, C., Chen, B., & Yang, R. (2014). Nitrate accumulation in leafy vegetables and its relationship with water. Journal of Soil Science and Plant Nutrition, 14(4), 761–768. https://doi.org/10.4067/S0718-95162014005000060
-
Raij‐Hoffman, I., Dahan, O., Dahlke, H. E., Harter, T., Kisekka, I., & Water Resources Research Team. (2024). Assessing nitrate leaching during drought and extreme precipitation: Exploring deep vadose‐zone monitoring, groundwater observations, and field mass balance. Water Resources Research, 60(11), e2024WR037973. https://doi.org/10.1029/2024WR037973
-
Šamec, D., Urlić, B., & Salopek-Sondi, B. (2019). Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition, 59(15), 2411–2422. https://doi.org/10.1080/10408398.2018.1454400
-
Shock, C. C., Pereira, A. B., Hanson, B. R., & Cahn, M. D. (2007). Vegetable irrigation. Irrigation of Agricultural Crops, 30, 535–606. https://doi.org/10.2134/agronmonogr30.2ed.c12
-
Striker, G. G., & Colmer, T. D. (2017). Flooding tolerance of forage legumes. Journal of Experimental Botany, 68(8), 1851–1872. https://doi.org/10.1093/jxb/erx084
-
Tan, J., Jiang, H., Li, Y., He, R., Liu, K., Chen, Y., He, X., Liu, X., & Liu, H. (2023). Growth, phytochemicals, and antioxidant activity of kale grown under different nutrient-solution depths in hydroponic. Horticulturae, 9(1), 53. https://doi.org/10.3390/horticulturae9010053
-
Türkiye İstatistik Kurumu (TUİK). (2025, February 6). Bitkisel üretim istatistikleri 2024. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2024-53447
-
Valisakkagari, H., & Rupasinghe, H. V. (2025). Application of response surface methodology for the extraction of phytochemicals from upcycled kale (Brassica oleracea var. acephala). Nutraceuticals, 5(1), 2. https://doi.org/10.3390/nutraceuticals5010002
-
Van Veen, H., Akman, M., Jamar, D. C., Vreugdenhil, D., Kooiker, M., Van Tienderen, P., Voesenek, L. A. C. J., Schranz, M., & Sasidharan, R. (2014). Group VII ethylene response factor diversification and regulation in four species from flood‐prone environments. Plant, Cell & Environment, 37(10), 2421–2432. https://doi.org/10.1111/pce.12395
-
Yan, K., Zhao, S., Cui, M., Han, G., & Wen, P. (2018). Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging. Plant Physiology and Biochemistry, 125, 239–246. https://doi.org/10.1016/j.plaphy.2018.02.019
-
Yıldırım, Ç. D., Korkmaz, A., & Horuz, A. (2012). Changes in NO₃⁻ and NO₂⁻ contents in some vegetables depending on land topography. Anadolu Journal of Agricultural Sciences, 27(3), 152–157. [In Turkish]
-
Zhu, M., Li, F. H., & Shi, Z. S. (2016). Morphological and photosynthetic response of waxy corn inbred line to waterlogging. Photosynthetica, 54(4), 636–640. https://doi.org/10.1007/s11099-016-0211-6