Optimizing Maize Yield under Subsurface Drip and Deficit Irrigation using Sowing Date and Temperature in CropSyst
Year 2025,
Volume: 9 Issue: 3, 690 - 705, 27.09.2025
Taofeek Samuel Wahab
,
Alkhan Sarıyev
,
Mert Acar
,
Celaleddin Barutçular
,
Ahmet Çilek
Abstract
Optimizing agricultural output through modeling can aid in planning, reduce the environmental impacts of agricultural activities, and enhance yields under deficit agricultural inputs. Climatic and agronomic data were collected from three subsurface irrigation regimes (I100 irrigation to field capacity (FC), I75 irrigation to 75% FC and I50 irrigation to 50% FC) over three years (2017–2019) at Cukurova University Agricultural Experimental Station. The treatments were applied in a completely randomized block design with three replications. 2019 data was used for model calibration, and 2017 and 2018 data were used for validation. Optimization involved adjusting the sowing date backward and manipulating temperature levels. The Cropping Systems Simulation Model (CropSyst) was successfully calibrated, except for the I50 Leaf area index (LAI), having a low regression coefficient and high root mean square error, an indication that CropSyst may not accurately simulate LAI at low deficit irrigation (DI). Promising results were obtained through sowing date optimization, particularly with I50 exhibiting the greatest yield improvement. Altering the average atmospheric temperature by a few degrees did not negatively affect I100, while DI applications resulted in yield loss at temperatures higher than 30 °C. CropSyst could not estimate maize yield at extreme temperatures for all treatments (above 40 °C) during the anthesis stage, indicating that the model may not be sensitive to certain maize growth stages. The optimization results indicate that for DI regimes to be competitively adopted as an alternative strategy for irrigation water conservation, the appropriate sowing date or temperature range must be carefully considered.
Supporting Institution
The Research Foundation of Cukurova University
Project Number
This study was supported by the Scientific Research Projects Unit of Çukurova University. Project number: FYL-2019-12298
Thanks
Thank you for taking your time to examine this manuscript
References
-
Abraha, M. G., Savage, M. J. (2006). Potential impacts of climate change on the grain yield of maize for the midlands of KwaZulu-Natal, South Africa. Agriculture, ecosystems & environment, 115(1-4), 150-160. https://doi.org/10/c62r8h
-
Ale, S., Omani, N., Himanshu, S. K., Bordovsky, J. P., Thorp, K. R., Barnes, E. M. (2020). Determining optimum irrigation termination periods for cotton production in the Texas High Plains. Transactions of the ASABE, 63(1), 105-115. https://doi.org/10.13031/trans.13483
-
Allen, R. G., Pereira, L. S., Raes, D., Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300.
-
Ambrona, C. G. H. D., Gigena, R., Mendoza, C. O. (2013). Climate change impacts on maize and dry bean yields of smallholder farmers in Honduras. Revista iberoamericana de estudios de desarrollo= Iberoamerican journal of development studies, 2(1), 4-22. http://doi.org/10.26754/ojs_ried/ijds.43
-
Araya, A., Kisekka, I., Holman, J. (2016). Evaluating deficit irrigation management strategies for grain sorghum using AquaCrop. Irrigation science, 34, 465-481. https://doi.org/10.1007/s00271-016-0515-7
-
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., ... Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature climate change, 3(9), 827-832. https://doi.org/10.1038/nclimate1916
-
Ayars, J. E., Fulton, A., Taylor, B. (2015). Subsurface drip irrigation in California—Here to stay?. Agricultural water management, 157, 39-47. https://doi.org/10.1016/j.agwat.2015.01.001
-
Bai, J., Chen, X., Dobermann, A., Yang, H., Cassman, K. G., Zhang, F. (2010). Evaluation of NASA satellite‐and model‐derived weather data for simulation of maize yield potential in China. Agronomy Journal, 102(1), 9-16. https://doi.org/10.2134/agronj2009.0085
-
Barker, J. B., Bhatti, S., Heeren, D. M., Neale, C. M., Rudnick, D. R. (2019). Variable rate irrigation of maize and soybean in West-Central Nebraska under full and deficit irrigation. Frontiers in big Data, 2, 34. https://doi.org/10.3389/fdata.2019.00034
-
Baum, M. E., Archontoulis, S. V., Licht, M. A. (2019). Planting date, hybrid maturity, and weather effects on maize yield and crop stage. Agronomy Journal, 111(1), 303-313. https://doi.org/10/gjhfkg
-
Bellocchi, G., Silvestri, N., Mazzoncini, M., Meini, S. (2002). Using the CropSyst model in continuous rainfed maize (Zea mais L.) under alternative management options. Italian Journal of Agronomy, 6(1), 43-56.
-
Bhattacharya, A. (2019). Global Climate Change and Its Impact on Agriculture. In: Changing Climate and Resource Use Efficiency in Plants. Elsevier, pp 1–50
-
Bocchiola, D., Nana, E., Soncini, A. (2013). Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy. Agricultural water management, 116, 50-61. https://doi.org/10/f4j5tq
-
Boonwichai, S., Shrestha, S., Babel, M. S., Weesakul, S., Datta, A. (2018). Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand. Journal of Cleaner Production, 198, 1157-1164. https://doi.org/10.1016/j.jclepro.2018.07.146
-
Bouniols, A., Cabelguenne, M., Jones, C. A., Chalamet, A., Charpenteau, J. L., Marty, J. R. (1991). Simulation of soybean nitrogen nutrition for a silty clay soil in southern France. Field Crops Research, 26(1), 19-34.
-
Brouwer, C., Heibloem, M. (1986). Irrigation water management: irrigation water needs. Training manual, 3, 1-5.
-
Cilek, A., Berberoglu, S. (2019). Biotope conservation in a Mediterranean agricultural land by incorporating crop modelling. Ecological Modelling, 392, 52-66. https://doi.org/10.1016/j.ecolmodel.2018.11.008
-
Cilek, A., Berberoglu, S., Donnez, C. (2019). Simulating Second Crop Maize Growth under Different Irrigation Regimes in Lower Seyhan Plain using CropSyst Model. In 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 1-4). IEEE., https://doi.org/10.1109/Agro-Geoinformatics.2019.8820658.
-
Comas, L. H., Trout, T. J., DeJonge, K. C., Zhang, H., Gleason, S. M. (2019). Water productivity under strategic growth stage-based deficit irrigation in maize. Agricultural water management, 212, 433-440. https://doi.org/10.1016/j.agwat.2018.07.015
-
Crafts-Brandner, S. J., Salvucci, M. E. (2002). Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant physiology, 129(4), 1773-1780. https://doi.org/10.1104/pp.002170
-
Çakir, R. (2004). Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research, 89(1), 1-16. https://doi.org/10/cnmwvq
-
Difallah, W., Benahmed, K., Draoui, B., Bounaama, F. (2017). Linear optimization model for efficient use of irrigation water. International Journal of Agronomy, 2017(1), 5353648. https://doi.org/10.1155/2017/5353648
-
Ding, Z., Ali, E. F., Elmahdy, A. M., Ragab, K. E., Seleiman, M. F., Kheir, A. M. (2021). Modeling the combined impacts of deficit irrigation, rising temperature and compost application on wheat yield and water productivity. Agricultural Water Management, 244, 106626. https://doi.org/10.1016/j.agwat.2020.106626
-
Dobor, L., Barcza, Z., Hlásny, T., Árendás, T., Spitkó, T., Fodor, N. (2016). Crop planting date matters: Estimation methods and effect on future yields. Agricultural and forest meteorology, 223, 103-115. https://doi.org/10.1016/j.agrformet.2016.03.023
-
Donatelli, M., Stöckle, C., Ceotto, E., Rinaldi, M. (1997). Evaluation of CropSyst for cropping systems at two locations of northern and southern Italy. European Journal of Agronomy, 6(1-2), 35-45. https://doi.org/10.1016/S1161-0301(96)02029-1
-
Douh, B., Boujelben, A. (2011). Improving water use efficiency for a sustainable productivity of agricultural systems with using subsurface drip irrigation for maize (Zea mays L.). J. Agric. Sci. Technol. B, 1, 881-888.
-
Dowswell, C. R., Paliwal, R. L., Cantrell, R. P. (2019) Maize in the Third World. CRC Press, Boca Raton.
-
Eitzinger, J., Thaler, S., Schmid, E., Strauss, F., Ferrise, R., Moriondo, M., ... Caylak, O. (2013). Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. The Journal of Agricultural Science, 151(6), 813-835. https://doi.org/10/f5q2k7
-
Farré, I., Faci, J. M. (2009). Deficit irrigation in maize for reducing agricultural water use in a Mediterranean environment. Agricultural water management, 96(3), 383-394. https://doi.org/10.1016/j.agwat.2008.07.002
-
Freitas, R. M. D., Dombroski, J. L., Freitas, F. C. D., Nogueira, N. W., Leite, T. S., Praxedes, S. C. (2019). Water use of cowpea under deficit irrigation and cultivation systems in semi-arid region. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(4), 271-276. https://doi.org/10.1590/1807-1929/agriambi.v23n4p271-276
-
Ge, T., Sui, F., Bai, L., Tong, C., Sun, N. (2012). Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiologiae Plantarum, 34, 1043-1053. https://doi.org/10/cw3b2p
-
Getachew, F., Bayabil, H. K., Hoogenboom, G., Teshome, F. T., Zewdu, E. (2021). Irrigation and shifting planting date as climate change adaptation strategies for sorghum. Agricultural Water Management, 255, 106988. https://doi.org/10.1016/j.agwat.2021.106988
-
Godwin, D. C., Allan Jones, C. (1991). Nitrogen Dynamics in Soi‐Plant Systems. Modeling plant and soil systems, 31, 287-321.
-
Gong, D., Mei, X., Hao, W., Wang, H., Caylor, K. K. (2017). Comparison of ET partitioning and crop coefficients between partial plastic mulched and non-mulched maize fields. Agricultural Water Management, 181, 23-34. https://doi.org/10.1016/j.agwat.2016.11.016
-
Gonzalez-Dugo, V., Ruz, C., Testi, L., Orgaz, F., Fereres, E. (2018). The impact of deficit irrigation on transpiration and yield of mandarin and late oranges. Irrigation science, 36, 227-239. https://doi.org/10.1007/s00271-018-0579-7
-
Guillaume, S., Bruzeau, C., Justes, E., Lacroix, B., Bergez, J. E. (2016). A conceptual model of farmers' decision-making process for nitrogen fertilization and irrigation of durum wheat. European Journal of Agronomy, 73, 133-143. https://doi.org/10.1016/j.eja.2015.11.012
-
Hatfield, J. L., Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and climate extremes, 10(Part A), 4-10. http://dx.doi.org/10.1016/j.wace.2015.08.001
-
Himanshu, S. K., Ale, S., Bordovsky, J., Darapuneni, M. (2019). Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains. Agricultural Water Management, 225, 105782. https://doi.org/10.1016/j.agwat.2019.105782
-
Irmak, S., Djaman, K., Rudnick, D. R. (2016). Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrigation Science, 34, 271-286. https://doi.org/10.1007/s00271-016-0502-z
-
Irmak, S., Mohammed, A. T., Kukal, M. S. (2022). Maize response to coupled irrigation and nitrogen fertilization under center pivot, subsurface drip and surface (furrow) irrigation: Growth, development and productivity. Agricultural Water Management, 263, 107457. https://doi.org/10.1016/j.agwat.2022.107457
-
Jalota, S. K., Singh, S., Chahal, G. B. S., Ray, S. S., Panigraghy, S., Singh, K. B. (2010). Soil texture, climate and management effects on plant growth, grain yield and water use by rainfed maize–wheat cropping system: Field and simulation study. Agricultural water management, 97(1), 83-90. https://doi.org/10/bfgh95
-
Jasemi, M., Darabi, F., Naseri, R., Naserirad, H., Bazdar, S. (2013). Effect of planting date and nitrogen fertilizer application on grain yield and yield components in maize (SC 704). American-Eurasian Journal of Agriculture and Environmental Science, 13(7), 914-919. https://doi.org/10.5829/idosi.aejaes.2013.13.07.1991
-
Karandish, F., Nouri, H., Brugnach, M. (2021). Agro-economic and socio-environmental assessments of food and virtual water trades of Iran. Scientific Reports, 11(1), 15022. https://doi.org/10.1038/s41598-021-93928-9
-
Kaur, R., Arora, V. K. (2018). Assessing spring maize responses to irrigation and nitrogen regimes in north-west India using CERES-Maize model. Agricultural Water Management, 209, 171-177. https://doi.org/10.1016/j.agwat.2018.07.022
-
Kucharik, C. J. (2008). Contribution of planting date trends to increased maize yields in the central United States. Agronomy Journal, 100(2), 328-336. https://doi.org/10.2134/agronj2007.0145
-
Kukal, M. S., Irmak, S. (2020). Light interactions, use and efficiency in row crop canopies under optimal growth conditions. Agricultural and Forest Meteorology, 284, 107887. https://doi.org/10.1016/j.agrformet.2019.107887
-
Leng, G., Leung, L. R., Huang, M. (2017). Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME L and Model. Journal of Advances in Modeling Earth Systems, 9(3), 1665-1683. https://doi.org/10.1002/2016MS000885
-
Lenka, S., Singh, A. K. (2011). Simulating interactive effect of irrigation and nitrogen on crop yield and water productivity in maize–wheat cropping system. Current Science, 1451-1461.
-
Li, F., Yu, D., Zhao, Y. (2019). Irrigation scheduling optimization for cotton based on the AquaCrop model. Water resources management, 33, 39-55. https://doi.org/10.1007/s11269-018-2087-1
-
Li, Q., Chen, Y., Sun, S., Zhu, M., Xue, J., Gao, Z., ... Tang, Y. (2022). Research on crop irrigation schedules under deficit irrigation—A meta-analysis. Water Resources Management, 36(12), 4799-4817. https://doi.org/10.1007/s11269-022-03278-y
-
Liao, Q., Ding, R., Du, T., Kang, S., Tong, L., Li, S. (2022). Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agricultural Water Management, 268, 107651. https://doi.org/10.1016/j.agwat.2022.107651
-
Linker, R., Kisekka, I. (2017). Model-based deficit irrigation of maize in Kansas. Transactions of the ASABE, 60(6), 2011-2022. https://doi.org/10.13031/trans.12341
-
Linker, R., Sylaios, G., Tsakmakis, I., Ramos, T., Simionesei, L., Plauborg, F., Battilani, A. (2018). Sub-optimal model-based deficit irrigation scheduling with realistic weather forecasts. Irrigation Science, 36, 349-362. https://doi.org/10.1007/s00271-018-0592-x
-
Lobell, D. B., Bänziger, M., Magorokosho, C., Vivek, B. (2011). Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature climate change, 1(1), 42-45. https://doi.org/10.1038/nclimate1043
-
Long, S. P., Ainsworth, E. A., Leakey, A. D., Nosberger, J., Ort, D. R. (2006). Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 312(5782), 1918-1921. https://doi.org/10.1126/science.1114722
-
Lu, J., Sun, G., McNulty, S. G., Amatya, D. M. (2005). A comparison of six potential evapotranspiration methods for regional use in the southeastern United States 1. JAWRA Journal of the American Water Resources Association, 41(3), 621-633. https://doi.org/10.1111/j.1752-1688.2005.tb03759.x
-
Luo, Q., Hoogenboom, G., Yang, H. (2022). Uncertainties in assessing climate change impacts and adaptation options with wheat crop models. Theoretical and Applied Climatology, 149(1), 805-816. https://doi.org/10.1007/s00704-022-04086-5
-
Ma, L., Ahuja, L. R., Islam, A., Trout, T. J., Saseendran, S. A., & Malone, R. W. (2017). Modeling yield and biomass responses of maize cultivars to climate change under full and deficit irrigation. Agricultural Water Management, 180, 88-98. https://doi.org/10.1016/j.agwat.2016.11.007
-
Marsal, J., Stöckle, C. O. (2012). Use of CropSyst as a decision support system for scheduling regulated deficit irrigation in a pear orchard. Irrigation Science, 30, 139-147. https://doi.org/10.1007/s00271-011-0273-5
-
Mendiburu, F. de (2021). agricolae: Statistical Procedures for Agricultural Research
-
Mirhashemi, S. H. (2022). Use of two hybrid algorithms in the investigation and prediction of the values of five quantitative traits of guar beans in different deficit irrigation methods. Applied Water Science, 12(12), 273. https://doi.org/10.1007/s13201-022-01789-y
-
Monteith, J. L. (1965). Evaporation and environment. In: Symposia of the society for experimental biology. Cambridge University Press (CUP) Cambridge, pp 205–234.
-
Montoya, F., Camargo, D., Domínguez, A., Ortega, J. F., Córcoles, J. I. (2018). Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment. Agricultural Water Management, 203, 297-310. https://doi.org/10.1016/j.agwat.2018.03.029
-
Morsy, M., El Afandi, G., Naif, E. (2018). Cropsyst simulation and response of some wheat cultivars to late season drought. Italian Journal of Agrometeorology, 1, 15-24. https://doi.org/10.19199/2018.1.2038-5625.015
-
Mugiyo, H., Mhizha, T., Chimonyo, V. G., & Mabhaudhi, T. (2021). Investigation of the optimum planting dates for maize varieties using a hybrid approach: A case of Hwedza, Zimbabwe. Heliyon, 7(2). https://doi.org/10.1016/j.heliyon.2021.e06109
-
Naz, S., Fatima, Z., Iqbal, P., Khan, A., Zakir, I., Ullah, H., ... Ahmad, S. (2022). An introduction to climate change phenomenon. Building climate resilience in agriculture: theory, practice and future perspective, 3-16.
-
Noreldin, T., Ouda, S., Mounzer, O., Abdelhamid, M. T. (2015). CropSyst model for wheat under deficit irrigation using sprinkler and drip irrigation in sandy soil. Journal of Water and Land Development. https://doi.org/10.1515/jwld-2015-0016
-
R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria
-
Ranum, P., Peña‐Rosas, J. P., Garcia‐Casal, M. N. (2014). Global maize production, utilization, and consumption. Annals of the new York academy of sciences, 1312(1), 105-112. https://doi.org/10/gnpkx9
-
Rivington, M., Matthews, K. B., Bellocchi, G., Buchan, K., Stöckle, C. O., Donatelli, M. (2007). An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems. Environmental Modelling & Software, 22(2), 202-210. https://doi.org/10.1016/j.envsoft.2005.07.018
-
Robinson, D., Hayes, A., & Couch, S. (2021). broom: Convert statistical objects into tidy tibbles. R package version 0.7, 5.
-
Rocha, J., Carvalho-Santos, C., Diogo, P., Beça, P., Keizer, J. J., Nunes, J. P. (2020). Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Science of the Total Environment, 736, 139477. https://doi.org/10.1016/j.scitotenv.2020.139477
-
Sariyev, A., Barutcular, C., Acar, M., Hossain, A., El Sabagh, A. (2020). Sub-surface drip irrigation in associated with H2O2 improved the productivity of maize under clay-rich soil of Adana, Turkey. PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 89(3). https://doi.org/10.32604/phyton.2020.09142
-
Sharda, V., Gowda, P. H., Marek, G., Kisekka, I., Ray, C., Adhikari, P. (2019). Simulating the impacts of irrigation levels on soybean production in Texas high plains to manage diminishing groundwater levels. JAWRA Journal of the American Water Resources Association, 55(1), 56-69. https://doi.org/10.1111/1752-1688.12720
-
Sommer, R., Wall, P. C., Govaerts, B. (2007). Model-based assessment of maize cropping under conventional and conservation agriculture in highland Mexico. Soil and Tillage Research, 94(1), 83-100. https://doi.org/10.1016/j.still.2006.07.007
-
Stockle, C. O., Cabelguenne, M., Debaeke, P. (1997). Comparison of CropSyst performance for water management in southwestern France using submodels of different levels of complexity. European Journal of Agronomy, 7(1-3), 89-98. https://doi.org/10.1016/S1161-0301(97)00033-6
-
Stockle, C. O., Campbell, G. S. (1989). Simulation of crop response to water and nitrogen: an example using spring wheat. Transactions of the ASAE, 32(1), 66-0074. https://doi.org/10.13031/2013.30964
-
Stöckle, C. O., Donatelli, M., Nelson, R. (2003). CropSyst, a cropping systems simulation model. European journal of agronomy, 18(3-4), 289-307. https://doi.org/10.1016/S1161-0301(02)00109-0
-
Stockle, C. O., Kiniry, J. R. (1990). Variability in crop radiation-use efficiency associated with vapor-pressure deficit. Field Crops Research, 25(3-4), 171-181. https://doi.org/10.1016/0378-4290(90)90001-R
-
Stockle, C. O., Nelson, R. (1994). Cropping Systems Simulation: Model Users Manual (Version 1. 02. 00). Biological Systems Engineering Department, Washington State University 167.
-
Tollenaar, M., Bruulsema, T. W. (1988). Efficiency of maize dry matter production during periods of complete leaf area expansion. Agronomy Journal, 80(4), 580-585. https://doi.org/10.2134/agronj1988.00021962008000040008x
-
Tsimba, R., Edmeades, G. O., Millner, J. P., Kemp, P. D. (2013). The effect of planting date on maize grain yields and yield components. Field Crops Research, 150, 135-144.https://doi.org/10.1016/j.fcr.2013.05.028
-
Tularam, G. A., Hassan, O. M. (2016). Water availability and food security: Implication of people’s movement and migration in sub-Saharan Africa (SSA). In: Thangarajan M, Vijay Singh P(eds) Groundwater assessment, modeling, and management, CRC Press, 405–426. https://doi.org/10.1201/9781315369044
-
Umair, M., Shen, Y., Qi, Y., Zhang, Y., Ahmad, A., Pei, H., Liu, M. (2017). Evaluation of the CropSyst model during wheat-maize rotations on the North China Plain for identifying soil evaporation losses. Frontiers in plant science, 8, 1667. https://doi.org/10.3389/fpls.2017.01667
-
Van Donk, S. J., Petersen, J. L., Davison, D. R. (2013). Effect of amount and timing of subsurface drip irrigation on corn yield. Irrigation Science, 31(4), 599-609. https://doi.org/10.1007/s00271-012-0334-4
-
Vories, E. D., Tacker, P. L., Lancaster, S. W., Glover, R. E. (2009). Subsurface drip irrigation of corn in the United States Mid-South. Agricultural Water Management, 96(6), 912-916. https://doi.org/10.1016/j.agwat.2008.12.004
-
Wang, J., Chen, R., Yang, T., Wei, T., Wang, X. (2021). A computationally-efficient finite element method for the hydraulic analysis and design of subsurface drip irrigation subunits. Journal of Hydrology, 595, 125990. https://doi.org/10.1016/j.jhydrol.2021.125990
-
Wang, Y. P., Zhang, L. S., Mu, Y., Liu, W. H., Guo, F. X., Chang, T. R. (2020). Effect of a root‐zone injection irrigation method on water productivity and apple production in a semi‐arid region in North‐Western China. Irrigation and drainage, 69(1), 74-85. https://doi.org/10.1002/ird.2379
-
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., ... Dunnington, D. (2021). ggplot2: Create elegant data visualisations using the grammar of graphics. 2021.
-
Williams, J. J., Henry, W. B., Varco, J. J., Reynolds, D. B., Buehring, N. W., Krutz, L. J., ... Boykin, D. L. (2018). Deficit irrigation, planting date, and hybrid selection impacts on a Mid‐South corn production system. Crop, Forage & Turfgrass Management, 4(1), 1-8. https://doi.org/10.2134/cftm2018.07.0052
-
Wu, Y., Du, T., Yuan, Y., Shukla, M. K. (2018). Stable isotope measurements show increases in corn water use efficiency under deficit irrigation. Scientific Reports, 8(1), 14113. https://doi.org/10.1038/s41598-018-32368-4
-
Yadav, A., Upreti, H., Singhal, G. D. (2024). Crop water stress index and its sensitivity to meteorological parameters and canopy temperature. Theoretical and Applied Climatology, 155(4), 2903-2915. https://doi.org/10.1007/s00704-023-04768-8
-
Zhang, H., Han, M., Comas, L. H., DeJonge, K. C., Gleason, S. M., Trout, T. J., Ma, L. (2019). Response of maize yield components to growth stage‐based deficit irrigation. Agronomy Journal, 111(6), 3244-3252. https://doi.org/10.2134/agronj2019.03.0214
-
Zhang, H., Ma, L., Douglas-Mankin, K. R., Han, M., Trout, T. J. (2021). Modeling maize production under growth stage-based deficit irrigation management with RZWQM2. Agricultural Water Management, 248, 106767. https://doi.org/10.1016/j.agwat.2021.106767
-
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., ... Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of sciences, 114(35), 9326-9331. https://doi.org/10.1073/pnas.1701762114
-
Zou, Y., Saddique, Q., Ali, A., Xu, J., Khan, M. I., Qing, M., ... Siddique, K. H. (2021). Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment. Agricultural Water Management, 243, 106483. https://doi.org/10.1016/j.agwat.2020.106483