Research Article
BibTex RIS Cite

Climate Change Impacts on Soil Erosion in the Ceyhan Basin Using the RUSLE Model under the SSP5-8.5 Scenario

Year 2025, Volume: 9 Issue: 3, 939 - 953, 27.09.2025
https://doi.org/10.31015/2025.3.34

Abstract

Worldwide topsoil loss through erosional processes creates substantial annual losses that threaten global food security and essential ecosystem functions. The Shared Socioeconomic Pathway 5 - Fossil-fueled Development (SSP5-8.5) forecasts reduced overall precipitation volumes, enhanced extreme rainfall events, and substantially elevated erosion susceptibility across the Mediterranean Basin. Within the Ceyhan Basin context, existing research lacks kilometer-resolution precipitation datasets spanning the 1995-2014 and 2041-2060 timeframes under SSP5-8.5 conditions for concurrent R factor calibration procedures. Considering these research gaps, this investigation seeks to assess the SSP5-8.5 pathway following AR6 temporal frameworks for mean annual soil loss rates (t ha⁻¹ yr⁻¹) throughout the Ceyhan Basin employing RUSLE methodology. Soil loss quantification utilized the Revised Universal Soil Loss Equation (RUSLE) framework. Computational analyses were performed using Google Earth Engine (GEE) cloud-based infrastructure at 250 m spatial resolution, incorporating CHIRPS datasets for the 1995-2014 baseline timeframe and NEX-GDDP-CMIP6 collections for the 2041-2060 projection period. Soil erodibility parameter (K) derivation employed SoilGrids 2.0, while topographic parameters originated from SRTM datasets. Conservation management parameter (P) was extracted from Copernicus Global Land Cover Layers collections. Reference period (1995-2014) mean soil loss measured 4.424 t ha⁻¹ yr⁻¹, with projections indicating an increase to 5.182 t ha⁻¹ yr⁻¹ during 2041-2060 under SSP5-8.5 conditions. Rainfall erosivity values demonstrated 7.6% enhancement, with peak values ranging from 239,689 MJ·mm·ha⁻¹·h⁻¹·yr⁻¹ to 258,017 MJ·mm·ha⁻¹·h⁻¹·yr⁻¹. Analysis revealed 93.8% of the study region maintaining existing erosion classifications, while 69,402 hectares will experience transitions from very low to low erosion categories. High-resolution climate dataset integration from CMIP6 combined with transition matrix methodologies indicate emerging erosion hotspots throughout southern and central basin areas with intensified erosion processes in environmentally critical zones.

References

  • Amiri, A., Ebtehaj, I., Soltani, K., Gumiere, S. J., & Bonakdari, H. (2025). Future soil erosion trends in Canadian agricultural lands from runoff and sustainability impacts. Scientific Reports, 15(1), 23184. https://doi.org/10.1038/s41598-025-05947-5
  • Anonymous. (2016). Ceyhan Havzası kirlilik önleme eylem planı. https://webdosya.csb.gov.tr/db/cygm/editordosya/ceyhan_KOEP.pdf
  • Anonymous. (2023). Ceyhan Havzası tanıtım [Rapor]. https://www.tarimorman.gov.tr/SYGM/Belgeler/havza tanıtım 23.03.2023/türkçe/Ceyhan Havzası Tanıtım.pdf
  • Arnheim, J. B., Peings, Y., & Magnusdottir, G. (2025). Contrasting Arctic Amplification Response in the Community Earth System Model Large Ensembles and Implications for the North Atlantic Region. Journal of Geophysical Research: Atmospheres, 130(6). https://doi.org/10.1029/2024JD042490
  • Arnoldus, H. M. J., Boodt, M. de, & Gabriels, D. (1980). An approximation of the rainfall factor in the Universal Soil Loss Equation. Assessment of Erosion., 127–132.
  • Barral Muñoz, M. Á. (2025). Positive rainfall erosivity trends compared with the reduction in soil erosion in a Mediterranean area (1996–2020). Catena, 249. https://doi.org/10.1016/j.catena.2024.108606
  • Başkan, O., & Dengiz, O. (2008). Comparison of traditional and geostatistical methods to estimate soil erodibility factor. Arid Land Research and Management, 22(1), 29-45. https://doi.org/10.1080/15324980701784144
  • Boix-Fayos, C., Martínez-Mena, M., Arnau-Rosalén, E., Calvo-Cases, A., Castillo, V., & Albaladejo, J. (2006). Measuring soil erosion by field plots: Understanding the sources of variation. Earth-Science Reviews, 78(3–4), 267–285. https://doi.org/10.1016/j.earscirev.2006.05.005
  • Borrelli, P., Märker, M., Panagos, P., & Schütt, B. (2014). Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. CATENA, 114, 45–58. https://doi.org/10.1016/j.catena.2013.10.007
  • Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.-E., Herold, M., & Fritz, S. (2020). Copernicus Global Land Cover Layers—Collection 2. Remote Sensing, 12(6), 1044. https://doi.org/10.3390/rs12061044
  • Cos, J., Doblas-Reyes, F., Jury, M., Marcos, R., Bretonnière, P.-A., & Samsó, M. (2022). The Mediterranean climate change hotspot in the CMIP5 and CMIP6 projections. Earth System Dynamics, 13(1), 321–340. https://doi.org/10.5194/esd-13-321-2022
  • Çuhadar, M. (2019). Kuraklık Koşullarında Uygun Sulama ve Tarım Tekniklerinin Üreticiler Tarafından Uygulanabilirliği: Ceyhan Havzası Örneği. Ege Üniversitesi.
  • Dallan, E., Bagarello, V., Ferro, V., Pampalone, V., & Borga, M. (2025). Evaluation and projected changes in rainfall erosivity: Topography dependence revealed by Convection-Permitting climate projections for the Mediterranean island of Sicily. CATENA, 254, 108975. https://doi.org/10.1016/j.catena.2025.108975
  • Darabi, H., Danandeh Mehr, A., Kum, G., Sönmez, M. E., Dumitrache, C. A., Diani, K., Celebi, A., & Torabi Haghighi, A. (2023). Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices. Hydrology, 10(8). https://doi.org/10.3390/hydrology10080157
  • Demir, S., & Dursun, İ. (2024). Assessment of pre- and post-fire erosion using the RUSLE equation in a watershed affected by the forest fire on Google Earth Engine: the study of Manavgat River Basin. Natural Hazards, 120(3), 2499–2527. https://doi.org/10.1007/s11069-023-06291-5
  • DeVilleneuve, S., Kelly, A., Miyanaka, N., Shanmuhasundaram, T., Murphree, P., & Wyatt, B. M. (2023). Impacts of vegetation and topsoil removal on soil erosion, soil moisture, and infiltration. Agrosystems, Geosciences and Environment, 6(3). https://doi.org/10.1002/agg2.20402
  • Dinku, T., Funk, C., Peterson, P., Maidment, R., Tadesse, T., Gadain, H., & Ceccato, P. (2018). Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society, 144, 292–312. https://doi.org/10.1002/qj.3244
  • Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35(2), 441–453. https://doi.org/10.1080/01431161.2013.871081
  • Eekhout, J. P. C., Nunes, J. P., Tramblay, Y., & de Vente, J. (2025). Severe Impacts on Water Resources Projected for the Mediterranean Basin. Wiley Interdisciplinary Reviews: Water, 12(2). https://doi.org/10.1002/wat2.70012
  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2). https://doi.org/10.1029/2005RG000183
  • Fenta, A. A., Tsunekawa, A., Haregeweyn, N., Yasuda, H., Tsubo, M., Borrelli, P., Kawai, T., Belay, A. S., Ebabu, K., Berihun, M. L., Sultan, D., Setargie, T. A., Elnashar, A., Arshad, A., & Panagos, P. (2024). An integrated modeling approach for estimating monthly global rainfall erosivity. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-59019-1
  • Ferreira, V., & Panagopoulos, T. (2014). Seasonality of Soil Erosion Under Mediterranean Conditions at the Alqueva Dam Watershed. Environmental Management, 54(1), 67–83. https://doi.org/10.1007/s00267-014-0281-3
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66
  • Gezici, K., Şengül, S., & Kesgin, E. (2025). Assessment of soil erosion risk in the mountainous region of northeastern Türkiye based on the RUSLE model and CMIP6 climate projections. Environmental Earth Sciences, 84(167). https://doi.org/10.1007/s12665-025-12184-6
  • Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., … Takahashi, K. (2019). Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Model Development, 12(4), 1443–1475. https://doi.org/10.5194/gmd-12-1443-2019
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Hateffard, F., Mohammed, S., Alsafadi, K., Enaruvbe, G. O., Heidari, A., Abdo, H. G., & Rodrigo-Comino, J. (2021). CMIP5 climate projections and RUSLE-based soil erosion assessment in the central part of Iran. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-86618-z
  • Hochman, A., Marra, F., Messori, G., Pinto, J. G., Raveh-Rubin, S., Yosef, Y., & Zittis, G. (2022). Extreme weather and societal impacts in the eastern Mediterranean. Earth System Dynamics, 13(2), 749–777. https://doi.org/10.5194/esd-13-749-2022
  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2
  • IPCC. (2021a). Chapter 8: Water cycle changes. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1055–1210). Cambridge University Press. https://doi.org/10.1017/9781009157896.010
  • IPCC. (2021b). Summary for Policymakers BT - Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (eds.); p. SPM-1-SPM-41). Cambridge University Press. https://doi.org/10.1017/9781009157896.001
  • IPCC. (2022). Climate Change and Land. In Climate Change and Land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge University Press. https://doi.org/10.1017/9781009157988
  • IPCC. (2023). Climate Change 2021 – The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/9781009157896
  • İrvem, A., Topaloglu, F., & Uygur, V. (2007). Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. Journal of Hydrology, 336(1-2), 30-37. https://doi.org/10.1016/j.jhydrol.2006.12.009
  • Jiang, K., Mo, S., Zhang, J., Yu, K., & Li, Z. (2025). Variation characteristics of soil erosion and their response to landscape patterns in a typical basin in the Upper Yangtze River. Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2025.1523891
  • Jodhani, K. H., Patel, D., Madhavan, N., Singh, S. K., Lakshmikantha, M. R., & Babu, S. (2023). Soil erosion assessment by RUSLE, Google Earth Engine, and geospatial techniques over Rel River watershed, Gujarat, India. Water Conservation Science and Engineering, 8(1), 1-18. https://doi.org/10.1007/s41101-023-00223-x
  • Karydas, C. G., Sekuloska, T., & Silleos, G. N. (2009). Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environmental Monitoring and Assessment, 149(1–4), 19–28. https://doi.org/10.1007/s10661-008-0179-8
  • Kilic, O. M., & Gunal, H. (2021). Spatial-temporal changes in rainfall erosivity in Turkey using CMIP5 global climate change scenario. Arabian Journal of Geosciences, 14(12), 1079. https://doi.org/10.1007/s12517-021-07184-2
  • Knijff, V. der, Jones, J. ., Jones, R. J. ., & Montanarella, L. (2000). Soil Erosion risk Assessment in Europe. European Commission, European Soil Bureau.
  • Kosmas, C., Danalatos, N., Cammeraat, L. H., Chabart, M., Diamantopoulos, J., Farand, R., Gutierrez, L., Jacob, A., Marques, H., Martinez-Fernandez, J., Mizara, A., Moustakas, N., Nicolau, J. M., Oliveros, C., Pinna, G., Puddu, R., Puigdefabregas, J., Roxo, M., Simao, A., … Vacca, A. (1997). The effect of land use on runoff and soil erosion rates under Mediterranean conditions. CATENA, 29(1), 45–59. https://doi.org/10.1016/S0341-8162(96)00062-8
  • Lazoglou, G., Hadjinicolaou, P., Sofokleous, I., Bruggeman, A., & Zittis, G. (2024). Climate change and extremes in the Mediterranean island of Cyprus: from historical trends to future projections. Environmental Research Communications, 6(9), 095020. https://doi.org/10.1088/2515-7620/ad7927
  • Lenderink, G., Barbero, R., Loriaux, J. M., & Fowler, H. J. (2017). Super-Clausius–Clapeyron Scaling of Extreme Hourly Convective Precipitation and Its Relation to Large-Scale Atmospheric Conditions. Journal of Climate, 30(15), 6037–6052. https://doi.org/10.1175/JCLI-D-16-0808.1
  • Lionello, P., & Scarascia, L. (2018). The relation between climate change in the Mediterranean region and global warming. Regional Environmental Change, 18(5), 1481–1493. https://doi.org/10.1007/s10113-018-1290-1
  • Meinshausen, M., Nicholls, Z. R. J., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J. G., Daniel, J. S., John, A., Krummel, P. B., Luderer, G., Meinshausen, N., Montzka, S. A., Rayner, P. J., Reimann, S., … Wang, R. H. J. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571–3605. https://doi.org/10.5194/gmd-13-3571-2020
  • Moore, I. D., & Burch, G. J. (1986). Physical Basis of the Length‐slope Factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50(5), 1294–1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x
  • Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47(5), 423 LP – 428. http://www.jswconline.org/content/47/5/423.abstract
  • Morgan, R. P. C. (2005). Soil erosion and conservation. In Environmental issues in the 1990s (3rd ed.). Blackwell Publishing.
  • Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Tadić, M. P., Michaelides, S., Hrabalíková, M., Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Beguería, S., & Alewell, C. (2015a). Rainfall erosivity in Europe. Science of the Total Environment, 511, 801–814. https://doi.org/10.1016/j.scitotenv.2015.01.008
  • Panagos, P., Borrelli, P., & Meusburger, K. (2015b). A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water. Geosciences, 5(2), 117–126. https://doi.org/10.3390/geosciences5020117
  • Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., & Montanarella, L. (2015c). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48, 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021
  • Panagos, P., Borrelli, P., Meusburger, K., van der Zanden, E. H., Poesen, J., & Alewell, C. (2015d). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environmental Science and Policy, 51, 23–34. https://doi.org/10.1016/j.envsci.2015.03.012
  • Panagos, P., Borrelli, P., Meusburger, K., Yu, B., Klik, A., Lim, K. J., Yang, J. E., Ni, J., Miao, C., Chattopadhyay, N., Sadeghi, S. H., Hazbavi, Z., Zabihi, M., Larionov, G. A., Krasnov, S. F., Gorobets, A. V., Levi, Y., Erpul, G., Birkel, C., … Ballabio, C. (2017). Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-04282-8
  • Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total Environment, 479–480(1), 189–200. https://doi.org/10.1016/j.scitotenv.2014.02.010
  • Poggio, L., De Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., & Rossiter, D. (2021). SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil, 7(1), 217–240. https://doi.org/10.5194/soil-7-217-2021
  • Pontius, R. G., Shusas, E., & McEachern, M. (2004). Detecting important categorical land changes while accounting for persistence. Agriculture, Ecosystems & Environment, 101(2–3), 251–268. https://doi.org/10.1016/j.agee.2003.09.008
  • Renard, K., Foster, G., Weesies, G., McCool, D., & Yoder, D. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook No. 703, 404. http://www.ars.usda.gov/SP2UserFiles/Place/64080530/RUSLE/AH_703.pdf
  • Saygın, S. (2021). Effects of season and phenology-based changes on soil erodibility and other dynamic RUSLE factors for semi-arid winter wheat fields. Journal of Agricultural Sciences, 27(4), 526-535. https://doi.org/10.15832/ankutbd.749181
  • Sud, A., Sajan, B., Kanga, S., Singh, S. K., Singh, S., Durin, B., & Meraj, G. (2024). Integrating RUSLE model with cloud-based geospatial analysis: A Google Earth Engine approach for soil erosion assessment in the Satluj Watershed. Water, 16(8), 1073. https://doi.org/10.3390/w16081073
  • Sun, M., Guo, M., Guo, S., Li, Y., Dong, S., Song, X., Shi, X., & Yuan, X. (2022). Effects of mesotrione on the control efficiency and chlorophyll fluorescence parameters of Chenopodium album under simulated rainfall conditions. PLOS ONE, 17(6), e0267649. https://doi.org/10.1371/journal.pone.0267649
  • Sun, W., Tang, W., Wu, Y., He, S., & Wu, X. (2023). The Influences of Rainfall Intensity and Timing on the Assemblage of Dung Beetles and the Rate of Dung Removal in an Alpine Meadow. Biology, 12(12), 1496. https://doi.org/10.3390/biology12121496
  • Tarigan, R. A. (2022). Impact of Climate Change on Soil Erosion. Agrotekma: Jurnal Agroteknologi Dan Ilmu Pertanian, 7(1), 28–35. https://doi.org/10.31289/agr.v7i1.9427
  • Thrasher, B., Wang, W., Michaelis, A., Melton, F., Lee, T., & Nemani, R. (2022). NASA Global Daily Downscaled Projections, CMIP6. Scientific Data, 9(1), 262. https://doi.org/10.1038/s41597-022-01393-4
  • Tian, P., Zhu, Z., Yue, Q., He, Y., Zhang, Z., Hao, F., Guo, W., Chen, L., & Liu, M. (2021). Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. International Soil and Water Conservation Research, 9(3), 433–444. https://doi.org/10.1016/j.iswcr.2021.04.007
  • Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). The Changing Character of Precipitation. Bulletin of the American Meteorological Society, 84(9), 1205–1218. https://doi.org/10.1175/BAMS-84-9-1205
  • Uber, M., Haller, M., Brendel, C., Hillebrand, G., & Hoffmann, T. (2024). Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations. Hydrology and Earth System Sciences, 28(1), 87–102. https://doi.org/10.5194/hess-28-87-2024
  • USDA. (2013). Revised Universal Soil Loss Equation Version 2 (for the model with release date of May 20, 2008) (Vol. 2, Issue August).
  • Wang, H., & Zhao, H. (2020). Dynamic changes of soil erosion in the Taohe River Basin using the RUSLE model and Google Earth Engine. Water, 12(5), 1293. https://doi.org/10.3390/w12051293
  • Wang, L., Li, Y., Wu, J., An, Z., Suo, L., Ding, J., Li, S., Wei, D., & Jin, L. (2023). Effects of the Rainfall Intensity and Slope Gradient on Soil Erosion and Nitrogen Loss on the Sloping Fields of Miyun Reservoir. Plants, 12(3), 423. https://doi.org/10.3390/plants12030423
  • Weng, X., Zhang, B., Zhu, J., Wang, D., & Qiu, J. (2023). Assessing Land Use and Climate Change Impacts on Soil Erosion Caused by Water in China. Sustainability (Switzerland), 15(10). https://doi.org/10.3390/su15107865
  • Williams J., Shaffer J, Renard, K., Foster, G., Laflen, J., Lyles, L., Onstad, C., Sharpley A, Nicks, A., Jones, C., Richardson, C., Dyke, P., Cooley, K., & Smith. S. (1990). EPIC-Erosion/Productivity Impact Calculator 1. Model Documentation.
  • Wilson, C. G., Abercrombie, K. W., Schwartz, J., & Hathaway, J. (2023). Quantifying Support Practice Sub-Factor Values for Erosion-Control and Sediment Retention Devices.
  • Wischmeier, W. H., & Smith, D. D. (1987). Predicting Rainfall Erosion Losses—A Guide to Conservation Planning. Agriculture Handbook No. 537. 1–168.
  • Wischmeier, W. H., Johnson, C. B., & Cross, B. V. (1971). Soil erodibility nomograph for farmland and construction sites. Journal of Soil and Water Conservation, 26(5), 189–193.
  • Yavaşlı, D. D., & Erlat, E. (2023 ). Climate model projections of aridity patterns in Türkiye: A comprehensive analysis using CMIP6 models and three aridity indices. International Journal of Climatology, 43(13), 6207–6224. https://doi.org/10.1002/joc.8201
  • Yin, C., Bai, C., Zhu, Y., Shao, M., Han, X., & Qiao, J. (2025). Future Soil Erosion Risk in China: Differences in Erosion Driven by General and Extreme Precipitation Under Climate Change. Earth’s Future, 13(3). https://doi.org/10.1029/2024EF005390
  • Yüce, M. İ., & Eşit, M. (2020). Ceyhan Havzasının kuraklık risk haritasının SPI ve SPEI metotları ile belirlenmesi. Su Kaynakları, 5(2), 1–8. https://dergipark.org.tr/en/download/article-file/1077339
  • Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., Fnais, M., Francis, D., Hadjinicolaou, P., Howari, F., Jrrar, A., Kaskaoutis, D. G., Kulmala, M., Lazoglou, G., Mihalopoulos, N., Lin, X., Rudich, Y., Sciare, J., Stenchikov, G., … Lelieveld, J. (2022). Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Reviews of Geophysics, 60(3). https://doi.org/10.1029/2021RG000762
There are 77 citations in total.

Details

Primary Language English
Subjects Conservation and Improvement of Soil and Water Resources
Journal Section Research Articles
Authors

Miraç Kiliç 0000-0001-8026-5540

Publication Date September 27, 2025
Submission Date July 17, 2025
Acceptance Date September 18, 2025
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Kiliç, M. (2025). Climate Change Impacts on Soil Erosion in the Ceyhan Basin Using the RUSLE Model under the SSP5-8.5 Scenario. International Journal of Agriculture Environment and Food Sciences, 9(3), 939-953. https://doi.org/10.31015/2025.3.34

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27