Research Article
BibTex RIS Cite

Tailoring Carbon Dot Properties Through Phenolic-Enriched Agro-Waste

Year 2025, Volume: 9 Issue: 3, 954 - 965, 27.09.2025
https://doi.org/10.31015/2025.3.35

Abstract

The valorization of agro-waste through controlled carbonization presents a sustainable route to engineer functional carbon dots (CDs) with tailorable properties. In this study, the CDs were derived from biomass waste such as olive mill wastewater (OMW), olive leaves, hibiscus calyxes, and chokeberry pomace through hydrothermal method. Comprehensive characterization revealed size-dependent properties, with most CDs ranging between 4.2-7.6 nm (except OMW-derived CDs at 32.7 nm), and distinct surface chemistries correlated to their biomass precursors. Notably, CDs derived from olive leaves (OLCDs) and hibiscus calyxes (HCDs) exhibited higher carbonyl and carboxyl group densities, correlating with the elevated phenolic content of their biomass precursors. All CDs demonstrated exceptional antioxidant activity (>88% DPPH radical scavenging), attributable to the abundance and diversity of bioactive compounds in the source materials. These findings highlight the dual potential of agro-waste-derived CDs as sustainable nanomaterials and potent antioxidants, offering scalable solutions for both environmental waste management and food preservation technologies—particularly as active packaging components or edible coatings to extend shelf life.

References

  • Ali Salık, M., Çakmakçı, S., Üniversitesi, A., Fakültesi, Z., Mühendisliği Bölümü, G., & Geliş, T. (2021). Zeytin (olea europaea l.) yaprağının fonksiyonel özellikleri ve gıdalarda kullanım potansiyeli. Gıda, 46(6), 1481–1493. https://doi.org/10.15237/GIDA.GD21133
  • Alreyashi, M. ;, Al-Saad, A. ;, Al-Hashimi, K. ;, Al-Ghouti, N. ;, Shibl, M. A. ;, Alahzm, M. F. ;, El-Shafie, A. ;, Mandarin, A. S., Popa, M., Atanase, L. I., El-Azazy, M., Alreyashi, A., Al-Saad, K., Al-Hashimi, N., Al-Ghouti, M. A., Shibl, M. F., Alahzm, A., El-Shafie, A. S., & Qa, A. A. (2024). Mandarin Peels-Derived Carbon Dots: A Multifaceted Fluorescent Probe for Cu(II) Detection in Tap and Drinking Water Samples. Nanomaterials 2024, Vol. 14, Page 1666, 14(20), 1666. https://doi.org/10.3390/NANO14201666
  • Baigts-Allende, D. K., Pérez-Alva, A., Metri-Ojeda, J. C., Estrada-Beristain, C., Ramírez-Rodrigues, M. A., Arroyo-Silva, A., & Ramírez-Rodrigues, M. M. (2023). Use of Hibiscus sabdariffa by-Product to Enhance the Nutritional Quality of Pasta. Waste and Biomass Valorization, 14(4), 1267–1279. https://doi.org/10.1007/S12649-022-01938-Z/TABLES/6
  • Borrás-Linares, I., Fernández-Arroyo, S., Arráez-Roman, D., Palmeros-Suárez, P. A., Del Val-Díaz, R., Andrade-Gonzáles, I., Fernández-Gutiérrez, A., Gómez-Leyva, J. F., & Segura-Carretero, A. (2015). Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Industrial Crops and Products, 69, 385–394. https://doi.org/10.1016/J.INDCROP.2015.02.053
  • Bouhafa, K., Moughli, L., Bouabid, R., Douaik, A., & Taarabt, Y. (2018). Dynamics of macronutrients in olive leaves. Journal of Plant Nutrition, 41(8), 956–968. https://doi.org/10.1080/01904167.2018.1431664
  • Brighente, I. M. C., Dias, M., Verdi, L. G., & Pizzolatti, M. G. (2007). Antioxidant activity and total phenolic content of some Brazilian species. Pharmaceutical Biology, 45(2), 156–161. https://doi.org/10.1080/13880200601113131;WEBSITE:WEBSITE:TFOPB;PAGEGROUP:STRING:PUBLICATION
  • Cassol, L., Rodrigues, E., & Zapata Noreña, C. P. (2019). Extracting phenolic compounds from Hibiscus sabdariffa L. calyx using microwave assisted extraction. Industrial Crops and Products, 133, 168–177. https://doi.org/10.1016/J.INDCROP.2019.03.023
  • Das, M., Thakkar, H., Patel, D., & Thakore, S. (2021). Repurposing the domestic organic waste into green emissive carbon dots and carbonized adsorbent: A sustainable zero waste process for metal sensing and dye sequestration. Journal of Environmental Chemical Engineering, 9(5), 106312. https://doi.org/10.1016/J.JECE.2021.106312
  • Deng, W. W., Zang, C. R., Li, Q. C., Sun, B., Mei, X. P., Bai, L., Shang, X. M., Deng, Y., Xiao, Y. Q., Ghiladi, R. A., Lorimer, G. H., Zhang, X. J., & Wang, J. (2023). Hydrothermally Derived Green Carbon Dots from Broccoli Water Extracts: Decreased Toxicity, Enhanced Free-Radical Scavenging, and Anti-Inflammatory Performance. ACS Biomaterials Science & Engineering, 9(3), 1307–1319. https://doi.org/10.1021/ACSBIOMATERIALS.2C01537
  • Duarah, P., Debnath, B., & Purkait, M. K. (2024). Synthesis of antibacterial fluorescent carbon dots and green coal-like hydrochar from tea Industry byproducts via hydrothermal carbonization. Industrial Crops and Products, 221, 119364. https://doi.org/10.1016/J.INDCROP.2024.119364
  • Esparza-Merino, R. M., Macías-Rodríguez, M. E., Cabrera-Díaz, E., Valencia-Botín, A. J., & Estrada-Girón, Y. (2019). Utilization of by-products of Hibiscus sabdariffa L. as alternative sources for the extraction of high-quality pectin. Food Science and Biotechnology, 28(4), 1003–1011. https://doi.org/10.1007/S10068-019-00557-0/TABLES/3
  • Espeso, J., Isaza, A., Lee, J. Y., Sörensen, P. M., Jurado, P., Avena-Bustillos, R. de J., Olaizola, M., & Arboleya, J. C. (2021). Olive Leaf Waste Management. Frontiers in Sustainable Food Systems, 5, 660582. https://doi.org/10.3389/FSUFS.2021.660582/BIBTEX
  • Formagio, A. S. N., Ramos, D. D., Vieira, M. C., Ramalho, S. R., Silva, M. M., Zárate, N. A. H., Foglio, M. A., & Carvalho, J. E. (2015). Phenolic compounds of Hibiscus sabdariffa and influence of organic residues on its antioxidant and antitumoral properties. Brazilian Journal of Biology, 75(1), 69–76. https://doi.org/10.1590/1519-6984.07413
  • Gao, S., Wang, X., Xu, N., Lian, H., Xu, L., Zhang, W., & Xu, C. (2021). From coconut petiole residues to fluorescent carbon dots via a green hydrothermal method for Fe3+ detection. Cellulose, 28(3), 1647–1661. https://doi.org/10.1007/S10570-020-03637-1/METRICS
  • Hafidi, M., Amir, S., & Revel, J. C. (2005). Structural characterization of olive mill waster-water after aerobic digestion using elemental analysis, FTIR and 13C NMR. Process Biochemistry, 40(8), 2615–2622. https://doi.org/10.1016/J.PROCBIO.2004.06.062
  • Han, L., Guo, Y., Zhang, H., Wang, Z., Zhang, F., Wang, Y., Li, X., Wang, Y., & Ye, J. (2024). Preparation of carbon quantum dot fluorescent probe from waste fruit peel and its use for the detection of dopamine. RSC Advances, 14(3), 1813–1821. https://doi.org/10.1039/D3RA06799H
  • Hosseini Koupaie, E., Dahadha, S., Bazyar Lakeh, A. A., Azizi, A., & Elbeshbishy, E. (2019). Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. Journal of Environmental Management, 233, 774–784. https://doi.org/10.1016/J.JENVMAN.2018.09.106
  • Huang, K., He, Q., Sun, R., Fang, L., Song, H., Li, L., Li, Z., Tian, Y., Cui, H., & Zhang, J. (2019). Preparation and application of carbon dots derived from cherry blossom flowers. Chemical Physics Letters, 731, 136586. https://doi.org/10.1016/J.CPLETT.2019.07.014
  • Illoussamen, B., Le Brech, Y., Khay, I., Bakhouya, M., Paris, C., Canabady-Rochelle, L., & Mutelet, F. (2025). Hydrophobic deep eutectic solvents as green solvents for phenolic compounds extraction from olive mill wastewater. Journal of Environmental Chemical Engineering, 13(3), 116336. https://doi.org/10.1016/J.JECE.2025.116336
  • Jayakumar, A., Radoor, S., Shin, G. H., & Kim, J. T. (2024). Lemon peel-based fluorescent carbon quantum dots as a functional filler in polyvinyl alcohol-based films for active packaging applications. Industrial Crops and Products, 209, 117968. https://doi.org/10.1016/J.INDCROP.2023.117968
  • Kaloudi, T., Tsimogiannis, D., & Oreopoulou, V. (2022). Aronia Melanocarpa: Identification and Exploitation of Its Phenolic Components. Molecules 2022, Vol. 27, Page 4375, 27(14), 4375. https://doi.org/10.3390/MOLECULES27144375
  • Kasinathan, K., Samayanan, S., Marimuthu, K., & Yim, J. H. (2022). Green synthesis of multicolour fluorescence carbon quantum dots from sugarcane waste: Investigation of mercury (II) ion sensing, and bio-imaging applications. Applied Surface Science, 601, 154266. https://doi.org/10.1016/J.APSUSC.2022.154266
  • Khairol Anuar, N. K., Tan, H. L., Lim, Y. P., So’aib, M. S., & Abu Bakar, N. F. (2021). A Review on Multifunctional Carbon-Dots Synthesized From Biomass Waste: Design/ Fabrication, Characterization and Applications. Frontiers in Energy Research, 9, 626549. https://doi.org/10.3389/FENRG.2021.626549/XML
  • Khan, A., Ezati, P., & Rhim, J. W. (2023). Chitosan/Starch-Based Active Packaging Film with N, P-Doped Carbon Dots for Meat Packaging. ACS Applied Bio Materials, 6(3), 1294–1305. https://doi.org/10.1021/ACSABM.3C00039/ASSET/IMAGES/LARGE/MT3C00039_0008.JPEG
  • Kitrytė, V., Kraujalienė, V., Šulniūtė, V., Pukalskas, A., & Venskutonis, P. R. (2017). Chokeberry pomace valorization into food ingredients by enzyme-assisted extraction: Process optimization and product characterization. Food and Bioproducts Processing, 105, 36–50. https://doi.org/10.1016/J.FBP.2017.06.001
  • Li, W., Liu, Y., Pang, X., Huang, Y., Dong, Z., Niu, Q., Xiong, Y., Li, S., Li, S., Wang, L., Guo, H., Cui, S., Hu, S., Li, Y., Cha, T., & Wang, L. (2025). Fluorescence Quenching of Graphene Quantum Dots from Orange Peel for Methyl Orange Detection. Nanomaterials, 15(5), 376. https://doi.org/10.3390/NANO15050376/S1
  • Ludmerczki, R., Mura, S., Carbonaro, C. M., Mandity, I. M., Carraro, M., Senes, N., Garroni, S., Granozzi, G., Calvillo, L., Marras, S., Malfatti, L., & Innocenzi, P. (2019). Carbon Dots from Citric Acid and its Intermediates Formed by Thermal Decomposition. Chemistry - A European Journal, 25(51), 11963–11974. https://doi.org/10.1002/CHEM.201902497;PAGE:STRING:ARTICLE/CHAPTER
  • Pedisić, S., Zorić, Z., Repajić, M., Levaj, B., Dobrinčić, A., Balbino, S., Čošić, Z., Dragović-Uzelac, V., & Elez Garofulić, I. (2025). Valorization of Berry Fruit By-Products: Bioactive Compounds, Extraction, Health Benefits, Encapsulation and Food Applications. Foods 2025, Vol. 14, Page 1354, 14(8), 1354. https://doi.org/10.3390/FOODS14081354
  • Poerschmann, J., Baskyr, I., Weiner, B., Koehler, R., Wedwitschka, H., & Kopinke, F. D. (2013). Hydrothermal carbonization of olive mill wastewater. Bioresource Technology, 133, 581–588. https://doi.org/10.1016/J.BIORTECH.2013.01.154
  • Ponnusamy, A., Buatong, J., Prodpran, T., Kim, J. T., Rhim, J. W., & Benjakul, S. (2025). Natural polysaccharide-derived carbon dots from ginger, galangal, and turmeric rhizome peels: Spectral and functional properties, and cytotoxicity assessment. International Journal of Biological Macromolecules, 321, 146132. https://doi.org/10.1016/J.IJBIOMAC.2025.146132
  • Priyadarshi, R., Uzun, S., & Rhim, J. W. (2024). Edible coating using carbon quantum dots for fresh produce preservation: A review of safety perspectives. Advances in Colloid and Interface Science, 331, 103211. https://doi.org/10.1016/J.CIS.2024.103211
  • Qazanfarzadeh, Z., Baptista, H., Nunes, C., & Kumaravel, V. (2025). Development of smart food packaging from bread waste-derived starch and carbon quantum dots. Industrial Crops and Products, 233, 121426. https://doi.org/10.1016/J.INDCROP.2025.121426
  • Rahmanian, N., Jafari, S. M., & Galanakis, C. M. (2014). Recovery and removal of phenolic compounds from olive mill wastewater. JAOCS, Journal of the American Oil Chemists’ Society, 91(1), 1–18. https://doi.org/10.1007/S11746-013-2350-9/METRICS
  • Şahin, S., & Bilgin, M. (2018). Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review. Journal of the Science of Food and Agriculture, 98(4), 1271–1279. https://doi.org/10.1002/JSFA.8619;WGROUP:STRING:PUBLICATION
  • Sahoo, N. K., Jana, G. C., Aktara, M. N., Das, S., Nayim, S., Patra, A., Bhattacharjee, P., Bhadra, K., & Hossain, M. (2020a). Carbon dots derived from lychee waste: Application for Fe3+ ions sensing in real water and multicolor cell imaging of skin melanoma cells. Materials Science and Engineering: C, 108, 110429. https://doi.org/10.1016/J.MSEC.2019.110429
  • Sahoo, N. K., Jana, G. C., Aktara, M. N., Das, S., Nayim, S., Patra, A., Bhattacharjee, P., Bhadra, K., & Hossain, M. (2020b). Carbon dots derived from lychee waste: Application for Fe3+ ions sensing in real water and multicolor cell imaging of skin melanoma cells. Materials Science and Engineering: C, 108, 110429. https://doi.org/10.1016/J.MSEC.2019.110429
  • Sangjan, A., Boonsith, S., Sansanaphongpricha, K., Thinbanmai, T., Ratchahat, S., Laosiripojana, N., Wu, K. C. W., Shin, H. S., & Sakdaronnarong, C. (2022). Facile preparation of aqueous-soluble fluorescent polyethylene glycol functionalized carbon dots from palm waste by one-pot hydrothermal carbonization for colon cancer nanotheranostics. Scientific Reports 2022 12:1, 12(1), 1–18. https://doi.org/10.1038/s41598-022-14704-x
  • Saracila, M., Untea, A. E., Oancea, A. G., Varzaru, I., & Vlaicu, P. A. (2024). Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods 2024, Vol. 13, Page 1856, 13(12), 1856. https://doi.org/10.3390/FOODS13121856
  • Sari Gencag, B., Kahraman, K., & Ekici, L. (2025). Green synthesis of silver nanoparticles from pomegranate peel and their application in PVA-based nanofibers for coating minced meat. Scientific Reports 2025 15:1, 15(1), 1–17. https://doi.org/10.1038/s41598-025-95349-4
  • Singh, A. K., Itkor, P., Hanani, Z. A. N., Lee, M., Gaikwad, K. K., & Lee, Y. S. (2025). Facile and green synthesis of multifunctional nitrogen-doped carbon quantum dots from Ginkgo biloba leaves for antibacterial, antioxidant, and bioactive coating applications. Food Packaging and Shelf Life, 51, 101581. https://doi.org/10.1016/J.FPSL.2025.101581
  • Solomakou, N., & Goula, A. M. (2021). Treatment of olive mill wastewater by adsorption of phenolic compounds. Reviews in Environmental Science and Bio/Technology 2021 20:3, 20(3), 839–863. https://doi.org/10.1007/S11157-021-09585-X
  • Souza, M. C. G., Batista, A. C. F., Cuevas, R. F., da Silva Filho, W. J. F., Balanta, M. A. G., Champi, A., & de Assunção, R. M. N. (2022). Simultaneous carbonization and sulfonation of microcrystalline cellulose to obtain solid acid catalyst and carbon quantum dots. Bioresource Technology Reports, 19, 101193. https://doi.org/10.1016/J.BITEB.2022.101193
  • Sun, X., & Lei, Y. (2017). Fluorescent carbon dots and their sensing applications. TrAC Trends in Analytical Chemistry, 89, 163–180. https://doi.org/10.1016/J.TRAC.2017.02.001
  • Talhaoui, N., Gómez-Caravaca, A. M., Roldán, C., León, L., De La Rosa, R., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2015). Chemometric analysis for the evaluation of phenolic patterns in olive leaves from six cultivars at different growth stages. Journal of Agricultural and Food Chemistry, 63(6), 1722–1729. https://doi.org/10.1021/JF5058205/SUPPL_FILE/JF5058205_SI_001.PDF
  • Talhaoui, N., Taamalli, A., Gómez-Caravaca, A. M., Fernández-Gutiérrez, A., & Segura-Carretero, A. (2015). Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Research International, 77, 92–108. https://doi.org/10.1016/J.FOODRES.2015.09.011
  • Thanawutthiphong, P., Kaewpetch, T., Wanmolee, W., Ko, S., & Bumbudsanpharoke, N. (2025). Influence of synthesis temperature on the active performance of doped carbon dots embedded in polyvinyl alcohol and their potential for active food packaging. Food Research International, 205, 115999. https://doi.org/10.1016/J.FOODRES.2025.115999
  • Vandarkuzhali, S. A. A., Natarajan, S., Jeyabalan, S., Sivaraman, G., Singaravadivel, S., Muthusubramanian, S., & Viswanathan, B. (2018). Pineapple Peel-Derived Carbon Dots: Applications as Sensor, Molecular Keypad Lock, and Memory Device. ACS Omega, 3(10), 12584–12592. https://doi.org/10.1021/ACSOMEGA.8B01146/ASSET/IMAGES/LARGE/AO-2018-01146E_0010.JPEG
  • Wang, D., Hou, Y., Ren, L., Jiang, Y., Meng, Y., Ma, R., Wang, S., Liu, Z., Li, X., Cui, F., Li, T., & Li, J. (2025). Na/N doped carbon dot nanozymes with enhanced peroxidase activity for antimicrobial food preservation. Food Chemistry, 491, 145191. https://doi.org/10.1016/J.FOODCHEM.2025.145191
  • Wang, Y., Kalytchuk, S., Zhang, Y., Shi, H., Kershaw, S. V., & Rogach, A. L. (2014). Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. Journal of Physical Chemistry Letters, 5(8), 1412–1420. https://doi.org/10.1021/JZ5005335/SUPPL_FILE/JZ5005335_SI_001.PDF
  • Wijayanti, N. P. A. D., Permatasari, F. A., Damayanti, S., Anggadiredja, K., Iskandar, F., Wibowo, I., & Rachmawati, H. (2024). Toxicity assessment and bioimaging potential of carbon dots synthesized from banana peel in zebrafish model. Narra J, 4(3), e1228. https://doi.org/10.52225/NARRA.V4I3.1228
  • Xu, H., Zhan, W. H., Wan, M. J., Bao, X. De, Tang, L., & Guan, X. (2025). Research on green synthesis and performance analysis of biomass-derived carbon quantum dots. Industrial Crops and Products, 227, 120775. https://doi.org/10.1016/J.INDCROP.2025.120775
  • Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737. https://doi.org/10.1021/JA040082H/SUPPL_FILE/JA040082H_S.PDF
  • Zaini, M. S., Jian, L. Y., Liew, J. Y. C., & Kamarudin, M. A. (2024). Impact of carbon concentration on optical and zeta potential properties of carbon quantum dots. Fullerenes Nanotubes and Carbon Nanostructures, 32(11), 1039–1049. https://doi.org/10.1080/1536383X.2024.2367577;JOURNAL:JOURNAL:LFNN19;WGROUP:STRING:PUBLICATION
  • Zaini, M. S., Liew, J. Y. C., Paiman, S., Tee, T. S., & Kamarudin, M. A. (2025). Solvent-Dependent Photoluminescence Emission and Colloidal Stability of Carbon Quantum dots from Watermelon Peels. Journal of Fluorescence, 35(1), 245–256. https://doi.org/10.1007/S10895-023-03528-1/FIGURES/9
  • Zhou, J., Sheng, Z., Han, H., Zou, M., & Li, C. (2012). Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Materials Letters, 66(1), 222–224. https://doi.org/10.1016/J.MATLET.2011.08.081
There are 55 citations in total.

Details

Primary Language English
Subjects Food Packaging, Preservation and Processing, Food Sustainability, Fruit-Vegetables Technology
Journal Section Research Articles
Authors

Suzan Uzun 0000-0001-5554-6906

Publication Date September 27, 2025
Submission Date August 14, 2025
Acceptance Date September 21, 2025
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Uzun, S. (2025). Tailoring Carbon Dot Properties Through Phenolic-Enriched Agro-Waste. International Journal of Agriculture Environment and Food Sciences, 9(3), 954-965. https://doi.org/10.31015/2025.3.35

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27