Review Article
BibTex RIS Cite

Biostimulants as a Sustainable Strategy for Enhancing Vegetable Production: A Literature Review

Year 2025, Volume: 9 Issue: Special, 15 - 16
https://doi.org/10.31015/2025.si.8

Abstract

Plant biostimulants have emerged as promising tools to enhance plant resilience against a wide range of abiotic and biotic stresses while simultaneously improving growth, yield, and product quality. This review critically evaluates the effects of various types of biostimulants including humic substances, protein hydrolysates, seaweed extracts, microbial inoculants, and silicon compounds on leafy vegetables cultivated under temperate and subtropical conditions. Amino acid–based biostimulants have demonstrated significant physiological and biochemical benefits, particularly in radish. Application of aspartic acid notably enhanced phenolic contents in the shoot (by 1.01%) and root (by 12.23%) compared with chemical fertilizer treatments. Total protein content increased in the shoot with glycine (by 251.81%) and in the root with aspartic acid (by 57.06%). Shoot ascorbic acid levels were markedly improved by aspartic acid (179.90%), vitamin B complex (159.91%), and lysine (139.92%). Similarly, plant fresh and dry weights increased substantially with vitamin B complex (478.31%) and aspartic acid (364.73%). Nitrogen and phosphorus concentrations in radish roots were higher with vitamin B complex (25.93%) and lysine (100%) treatments. Moreover, soil organic matter content improved with aspartic acid (61.51%), followed by vitamin B complex (60.13%). Emphasis is placed on the mechanisms of action, optimal timing of application, and crop-specific responses of biostimulants under stress conditions such as salinity, drought, heat, cold, and nutrient deficiency. Comparative insights are also provided regarding their roles in enhancing photosynthesis, nutrient uptake, biomass accumulation, and postharvest quality. Furthermore, this review highlights commercially available biostimulant formulations currently used in horticulture and summarizes recent findings through tabulated data. Overall, evidence suggests that biostimulants, when properly integrated with crop type and climatic conditions, represent a sustainable and effective strategy to mitigate environmental stresses and enhance the productivity, nutritional value, and overall quality of leafy vegetable production systems.

References

  • Anjum, K., Ahmed, M., Baber, J. K., Alizai, M. A., Ahmed, N., & Tareen, M. H. (2014). Response of garlic bulb yield to bio-stimulant (Bio-Cozyme) under calcareous soil. Life Science International Journal, 8, 3058–3062.
  • Arshad, M., Shaharoona, B., & Mahmood, T. (2008). Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield and ripening of pea (Pisum sativum L.). Pedosphere, 18(5), 611–620. https://doi.org/10.1016/S1002-0160(08)60055-7
  • Ashraf, M. A., Akbar, A., Askari, S. H., Iqbal, M., Rasheed, R., & Hussain, I. (2018). Recent advances in abiotic stress tolerance of plants through chemical priming: An overview. In A. Rakshit & H. B. Singh (Eds.), Advances in seed priming (pp. 51–79). Springer. https://doi.org/10.1007/978-981-13-0032-5
  • Bákonyi, N., Kisvarga, S., Barna, D., Tóth, I. O., El-Ramady, H., Abdalla, N., Kovács, S., Rozbach, M., Fehér, C., & Elhawat, N. (2020). Chemical traits of fermented alfalfa brown juice: Its implications on physiological, biochemical, anatomical, and growth parameters of Celosia. Agronomy, 10(2), 247. https://doi.org/10.3390/agronomy10020247
  • Baltazar, M., Correia, S., Guinan, K. J., Sujeeth, N., Bragança, R., & Gonçalves, B. (2021). Recent advances in the molecular effects of biostimulants in plants: An overview. Biomolecules, 11(8), 1096. https://doi.org/10.3390/biom11081096
  • Bhattacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012
  • Ben Mrid, R., Benmrid, B., Hafsa, J., Boukcim, H., Sobeh, M., & Yasri, A. (2021). Secondary metabolites as biostimulant and bioprotectant agents: A review. Science of the Total Environment, 777, 146204. https://doi.org/10.1016/j.scitotenv.2021.146204
  • Bhise, K. K., & Dandge, P. B. (2019). Mitigation of salinity stress in plants using plant growth promoting bacteria. Symbiosis, 79(3), 191–204.
  • Błaszczyk, L., Siwulski, M., Sobieralski, K., Lisiecka, J., & Jędryczka, M. (2014). Trichoderma spp.—Application and prospects for use in organic farming and industry. Journal of Plant Protection Research, 54(4), 309–317. https://doi.org/10.2478/jppr-2014-0047
  • Blaylock, A. D. (1994). Soil salinity, salt tolerance and growth potential of horticultural and landscape plants (Bulletin B-988). University of Wyoming Cooperative Extension Service.
  • Botta, A. (2012, November). Enhancing plant tolerance to temperature stress with amino acids: An approach to their mode of action. In I World Congress on the Use of Biostimulants in Agriculture (Vol. 1009, pp. 29–35). https://doi.org/10.17660/ActaHortic.2013.1009.1
  • Boukhari, M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract-based biostimulants: Manufacturing process and beneficial effects on soil-plant systems. Plants, 9(3), 359. https://doi.org/10.3390/plants9030359
  • Bradáčová, K., Weber, N. F., Morad-Talab, N., Asim, M., Imran, M., & Weinmann, M. (2016). Micronutrients (Zn/Mn), seaweed extracts, and plant growth-promoting bacteria as cold-stress protectants in maize. Chemical and Biological Technologies in Agriculture, 3(1), 19.
  • Brock, A. K., Berger, B., Mewis, I., & Ruppel, S. (2013). Impact of the PGPB Enterobacter radicincitans DSM 16656 on growth, glucosinolate profile and immune responses of Arabidopsis thaliana. Microbial Ecology, 65(3), 661–670.
  • Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2015). Biostimulants and crop responses: A review. Biological Agriculture & Horticulture, 31(1), 1–17. https://doi.org/10.1080/01448765.2014.964649
  • Calvo, P., Nelson L. and Kloepper J. (2014). Agricultural uses of plant bio stimulants. Plant Soil, 12(383), 341.
  • Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281–289. https://doi.org/10.1016/j.jplph.2004.07.014
  • Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27. https://doi.org/10.1016/j.scienta.2015.09.013
  • Canellas, L. P., Olivares, F. L., Okorokova-Facanha, A. L., & Facanha, A. R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiology, 130, 1951–1957.
  • Cao, K., Yu, J., Xu, D., Ai, K., Bao, E., & Zou, Z. (2018). Exposure to lower red to far-red light ratios improves tomato tolerance to salt stress. BMC Plant Biology, 18, 10–15.
  • Colla, G., Rouphael, Y., Leonardi, C., & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127, 147–155. https://doi.org/10.1016/j.scienta.2010.08.004
  • Colla, G., Rouphael, Y., Canaguier, R., Svecova, E., & Cardarelli, M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Frontiers in Plant Science, 5, 448. https://doi.org/10.3389/fpls.2014.00448
  • Colla, G., Nardi, S., Cardarelli, M., Ertani, A., Lucini, L., Canaguier, R., & Rouphael, Y. (2015). Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 196, 28–38. https://doi.org/10.1016/j.scienta.2015.08.037
  • Colla, G., Hoagland, L., Ruzzi, M., Cardarelli, M., Bonini, P., Canaguier, R., & Rouphael, Y. (2017). Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Frontiers in Plant Science, 8, 2202. https://doi.org/10.3389/fpls.2017.02202
  • De Saeger, J., Van Praet, S., Vereecke, D., Park, J., Jacques, S., Han, T., & Depuydt, S. (2019). Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. Journal of Applied Phycology, 32, 573–597.
  • De Vasconcelos, A. C. F., & Chaves, L. H. G. (2019). Biostimulants and their role in improving plant growth under abiotic stresses. In Biostimulants in Plant Science. IntechOpen.
  • Del Buono, D. (2021). Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Science of the Total Environment, 751, 141763. https://doi.org/10.1016/j.scitotenv.2020.141763
  • Cordovilla, M. D. P., Ligero, F., & Lluch, C. (1999). Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L.). Applied Soil Ecology, 11(1), 1–7.
  • Dębska, B., Długosz, J., & Piotrowska-Długosz, A. (2016). The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—Results from a field-scale study. Journal of Soils and Sediments, 16, 2335–2343. https://doi.org/10.1007/s11368-016-1430-5
  • Del Pilar, C. M., Berrido, S. I., Ligero, F., & Lluch, C. (1999). Rhizobium strain effects on the growth and nitrogen assimilation in Pisum sativum and Vicia faba under salt stress. Journal of Plant Physiology, 154(1), 127–131.
  • Di Vaio, C., Testa, A., Cirillo, A., & Conti, S. (2021). Slow-release fertilization and Trichoderma harzianum-based biostimulant for the nursery production of young olive trees (Olea europaea L.). Agronomy, 19(3), 3. https://doi.org/10.15159/ar.21.143
  • Dubey, R., & Misra, S. (2025). Biostimulants: An eco-friendly regulator of plant stress tolerance and sustainable solution to future agriculture. Proceedings of the Indian National Science Academy, 91(1), 60–67.
  • Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
  • Ebert, A. W. (2020). The role of vegetable genetic resources in nutrition security and vegetable breeding. Plants, 9(6), 736. https://doi.org/10.3390/plants9060736
  • Efthimiadou, A., Katsenios, N., Chanioti, S., Giannoglou, M., Djordjevic, N., & Katsaros, G. (2020). Effect of foliar and soil application of plant growth-promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Scientific Reports, 10, 21060
  • Egamberdiyeva, D. (2009). Alleviation of salt stress by plant growth regulators and IAA-producing bacteria in wheat. Acta Physiologiae Plantarum, 31(4), 861–864.
  • ElBoukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract-based biostimulants: Manufacturing process and beneficial effects on soil–plant systems. Plants, 9, 359. https://doi.org/10.3390/plants9030359
  • Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., & Best, N. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111(9), 3239–3244. https://doi.org/10.1073/pnas.1222474110
  • Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., & Nardi, S. (2009). Biostimulant activity of two protein hydrolysates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 172(2), 237–244. https://doi.org/10.1002/jpln.200800174
  • Ertani, A., Pizzeghello, D., Francioso, O., Sambo, P., Sánchez-Cortés, S., & Nardi, S. (2014). Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Frontiers in Plant Science, 5, 502.
  • Florijančić, T., & Lužaić, R. (2009). Poljoprivredni Fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku. In Proceedings of the 44th Croatian and the 4th International Symposium of Agronomists, Opatija, Croatia, 16–20 February 2009.
  • Francesca, S., Arena, C., Mele, B. H., Schettini, C., Ambrosino, P., Barone, A., & Rigano, M. (2020). The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy, 3(10), 363. https://doi.org/10.3390/agronomy10030363
  • Franzoni, G., Bulgari, R., & Ferrante, A. (2021). Maceration time affects the efficacy of borage extracts as potential biostimulant on rocket salad. Agronomy, 11(11), 2182. https://doi.org/10.3390/agronomy11112182
  • García, A. C., Santos, L. A., Izquierdo, F. G., Sperandio, M. V. L., Castro, R. N., & Berbara, R. L. L. (2012). Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering, 47, 203–208. https://doi.org/10.1016/j.ecoleng.2012.06.011
  • Colla, G., & Rouphael, Y. (2015). Biostimulants in horticulture. Scientia Horticulturae, 196, 1–2. https://doi.org/10.1016/j.scienta.2015.10.044
  • Godlewska, K., Pacyga, P., Michalak, I., Biesiada, A., Szumny, A., Pachura, N., & Piszcz, U. (2021). Effect of botanical extracts on the growth and nutritional quality of field-grown white head cabbage (Brassica oleracea var. capitata). Molecules, 26(7), 1992.
  • Goñi, O., Quille, P., & O’Connell, S. (2018). Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiology and Biochemistry, 126, 63–73. https://doi.org/10.1016/j.plaphy.2018.02.024
  • Gonzálezgonzález, M. F., Ocampoalvarez, H., Santacruzruvalcaba, F., Sánchezhernández, C. V., Casarrubiascastillo, K., Becerrilespinosa, A., Castañeda Nava, J. J., & Hernándezherrera, R. M. (2020). Physiological, ecological and biochemical implications in tomato plants of two plant biostimulants: Arbuscular mycorrhizal fungi and seaweed extract. Frontiers in Plant Science, 11, 1–17. https://doi.org/10.3389/fpls.2020.00999
  • Gopalakrishnan, S., Sathya, A., Vijayabharathi, R., Varshney, R. K., Gowda, C. L. L., & Krishnamurthy, L. (2015). Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech, 5(4), 355–377. https://doi.org/10.1007/s13205-015-0310-1
  • Halpern M., et al. (2019). The use of biostimulants for enhancing nutrient uptake, abiotic stress tolerance and crop quality. Plant and Soil, 434(1-2), 1–19.
  • Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). Chapter two—The use of biostimulants for enhancing nutrient uptake. In D. L. Sparks (Ed.), Advances in Agronomy (pp. 141–174). Academic Press. https://doi.org/10.1016/bs.agron.2014.10.001
  • Harman, G. E. (2000). Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84(4), 377–393. https://doi.org/10.1094/PDIS.2000.84.4.377
  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense in plants. In Abiotic Stress—Plant Responses and Applications in Agriculture (pp. 169–205). InTechOpen. https://dx.doi.org/10.5772/54833
  • Heidari, M., & Golpayegani, A. (2012). Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). Journal of the Saudi Society of Agricultural Sciences, 11(1), 57–61. https://doi.org/10.1016/j.jssas.2011.09.001
  • Imran, M., Mahmood, A., Römheld, V., & Neumann, G. (2013). Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. European Journal of Agronomy, 49, 141–148. https://doi.org/10.1016/j.eja.2013.04.001
  • Jelačić, S., Beatović, D., & Lakić, N. (2007). Effect of natural biostimulators and slow-disintegrating fertilizers on the quality of sage nursery stock under different growing conditions. In Proceedings of the XXIst Conference of Agronomist, Veterinarians and Technologists (pp. 145–156). Ministry of Science and Environmental Protection, Novi Sad, Serbia. Available online: https://agris.fao.org/agris-search/search.do?recordID=RS2010001902
  • Kałuzewicz, A., Krzesiński, W., Spizewski, T., & Zaworska, A. (2017). Effect of biostimulants on several physiological characteristics and chlorophyll content in broccoli under drought stress and re-watering. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 197–202. https://doi.org/10.15835/nbha45110529
  • Khalid, M. F., Huda, S., Yong, M., Li, L., Li, L., Chen, Z. H., & Ahmed, T. (2023). Alleviation of drought and salt stress in vegetables: crop responses and mitigation strategies. Plant Growth Regulation, 99(2), 177-194.
  • Kocira, A., Lamorska, J., Kornas, R., Nowosad, N., Tomaszewska, M., Leszczynska, D., Koztowicz, K., & Tabor, S. (2020). Changes in biochemistry and yield in response to biostimulants applied in bean (Phaseolus vulgaris L.). Agronomy, 10(2), 189. https://doi.org/10.3390/agronomy10020189
  • Kołodziejczyk, I., Dzitko, K., Szewczyk, R., & Posmyk, M. M. (2016). Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. Journal of Plant Physiology, 193, 47–56. https://doi.org/10.1016/j.jplph.2016.01.012
  • Kołodziejczyk, I., Kaźmierczak, A., & Posmyk, M. M. (2021). Melatonin application modifies antioxidant defense and induces endoreplication in maize seeds exposed to chilling stress. International Journal of Molecular Sciences, 22(16), 8628. https://doi.org/10.3390/ijms22168628
  • Kunicki, E., Grabowska, A., Sękara, A., & Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Horticulturae, 22(1), 9–13. https://doi.org/ 10.2478/fhort-2013-0153
  • Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T., Garcia-Sanchez, F., Rubio, F., Nortes, P., Mittler, R., & Rivero, R. (2018). Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules, 23(3), 535. https://doi.org/10.3390/molecules23030535
  • Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160–176. https://doi.org/10.1002/elsc.201400191
  • Muhie, S., Memiş, N., Özdamar, C., Gökdaş, Z., & Demir, I. (2021). Biostimulant priming for germination and seedling quality of carrot seeds under drought, salt and high temperature stress conditions. International Journal of Agriculture Environment and Food Sciences, 5(3), 352-359. https://doi.org/10.31015/jaefs.2021.3.13
  • Nahar, K., Hasanuzzaman, M., Alam, M. M., & Fujita, M. (2015). Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany, 112, 44–54.
  • Nardi, S., Pizzeghello, D., Schiavon, M., & Ertani, A. (2016). Plant biostimulants: Physiological responses induced by protein hydrolysate-based products. Scientia Agricola, 73(1), 18–23. https://doi.org/10.1590/0103-9016-2015-0006
  • Norrie, J., & Keathley, J. P. (2006). Benefits of Ascophyllum nodosum marine-plant extract applications to ‘Thompson Seedless’ grape production. Acta Horticulturae, 709, 243–248. https://doi.org/10.17660/ActaHortic.2006.727.27
  • Papenfus, H. B., Kulkarni, M. G., Stirk, W. A., Finnie, J. F., & Van Staden, J. (2013). Effect of a commercial seaweed extract (Kelpak®) and polyamines on nutrient-deprived (N, P and K) okra seedlings. Scientia Horticulturae (Amst.), 151, 142–146. https://doi.org/10.1016/j.scienta.2012.12.022
  • Paradiković, N., Zeljković, S., Tkalec, M., Vinković, T., Maksimović, I., & Haramija, J. (2017). Influence of biostimulant application on growth, nutrient status and proline concentration of begonia transplants. Biological Agriculture & Horticulture, 33(2), 89–96.
  • Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2019). Biostimulants research in some horticultural plant species: A review. Food and Energy Security, 8(2), e00162. https://doi.org/10.1002/fes3.162
  • Park, H. G., Lee, Y. S., Kim, K. Y., Park, Y. S., Park, K. H., Han, T. H., & Ahn, Y. S. (2017). Inoculation with Bacillus licheniformis MH48 promotes nutrient uptake in seedlings of the ornamental plant Camellia japonica grown in Korean reclaimed coastal lands. Horticultural Science & Technology, 35(1), 11–20. https://doi.org/10.7235/hort.20170002
  • Paul, K., Sorrentino, M., Lucini, L., Rouphael, Y., Cardarelli, M., Bonini, P., Reynaud, H., Canaguier, R., Trtílek, M., Panzarová, K., et al. (2019). Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping. Frontiers in Plant Science, 10, 47. https://doi.org/10.3389/fpls.2019.00047
  • Petropoulos, S. A. (2020). Practical applications of plant biostimulants in greenhouse vegetable crop production. Agronomy, 10(10), 1569. https://doi.org/10.3390/agronomy10101569
  • Pokluda, R., Sękara, A., Jezdinský, A., Kalisz, A., Neugebauerová, J., & Grabowska, A. (2016). The physiological status and stress biomarker concentration of Coriandrum sativum L. plants subjected to chilling are modified by biostimulant application. Biological Agriculture & Horticulture, 32(3), 258–268. https://doi.org/10.1080/01448765.2016.1172344
  • Posmyk, M. M., Bałabusta, M., Wieczorek, M., Sliwinska, E., & Janas, K. M. (2009). Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. Journal of Pineal Research, 46(2), 214–223. https://doi.org/10.1111/j.1600-079X.2008.00647.x
  • Posmyk, M. M., & Szafrańska, K. (2016). Biostimulators: A new trend towards solving an old problem. Frontiers in Plant Science, 7, 48. https://doi.org/10.3389/fpls.2016.00748
  • Prisa, D., & Benati, A. (2021). Improving the quality of ornamental bulbous with plant growth-promoting rhizobacteria (PGPR). EPRA International Journal of Multidisciplinary Research (IJMR), 7(7), 2455–3662.
  • Rayirath, P., Benkel, B., Hodges, D. M., Allan-Wojtas, P., MacKinnon, S., Critchley, A. T., et al. (2009). Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta, 230(1), 135–147.
  • Ren, X.-M., Guo, S.-J., Tian, W., Chen, Y., Han, H., Chen, E., Li, B.-L., Li, Y.-Y., & Chen, Z.-J. (2019). Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil. Frontiers in Microbiology, 10, 1455. https://doi.org/10.3389/fmicb.2019.01455
  • Romero, A. M., Vega, D., & Correa, O. S. (2014). Azospirillum brasilense mitigates water stress imposed by a vascular disease by increasing xylem vessel area and stem hydraulic conductivity in tomato. Applied Soil Ecology, 82, 38–43. https://doi.org/10.1016/j.apsoil.2014.05.010
  • Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Frontiers in Plant Science, 11, 40. https://doi.org/10.3389/fpls.2020.00040
  • Rouphael, Y., & Colla, G. (2018). Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Frontiers in Plant Science, 9, 1655. https://doi.org/10.3389/fpls.2018.01655
  • Rukaitė, J., Juknevičius, D., Kriaučiūnienė, Z., & Šarauskis, E. (2024). Determination of soil organic carbon by conventional and spectral methods, including assessment of the use of biostimulants, N-fertilisers, and economic benefits. Journal of Agriculture and Food Research, 18, 101434. https://doi.org/10.1016/j.jafr.2024.101434
  • Semida, W. M., Abd El-Mageed, T. A., Hemida, K., & Rady, M. M. (2019). Natural bee-honey based biostimulants confer salt tolerance in onion via modulation of the antioxidant defence system. Journal of Horticultural Science and Biotechnology, 94(1), 1–11.
  • Sesan, T. E., Oancea, A. O., Ștefan, L. M., Mãnoiu, V. S., Ghiurea, M., Rãut, I., Constantinescu-Aruxandei, D., Toma, Á., Savin, S., Bira, A. F., et al. (2020). Effects of foliar treatment with a Trichoderma plant biostimulant consortium on Passiflora caerulea L. yield and quality. Microorganisms, 8(1), 123. https://doi.org/10.3390/microorganisms8010123
  • Sezen, I., Kaymak, H. Ç., Aytatlý, B., Dönmez, M. F., & Ercişli, S. (2014). Inoculations with plant growth promoting rhizobacteria (PGPR) stimulate adventitious root formation on semi-hardwood stem cuttings of Ficus benjamina L. Propagating Ornamental Plants, 14(3), 152–157.
  • Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R., & Martin, T. (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(2), 465–490.
  • Solankey, S. S., Kumari, M., Akhtar, S., Singh, H. K., & Ray, P. K. (2021). Challenges and opportunities in vegetable production in changing climate: Mitigation and adaptation strategies. In Advances in Research on Vegetable Production Under a Changing Climate (Vol. 1, pp. 13–59).
  • Subramanian, P., Kim, K., Krishnamoorthy, R., Mageswari, A., Selvakumar, G., & Sa, T. (2016). Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum Mill.) under low temperatures. PLoS ONE, 11(9), e0161592. https://doi.org/10.1371/journal.pone.0161592
  • Subramanian, P., Mageswari, A., Kim, K., Lee, Y., & Sa, T. (2015). Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum Mill.) by activation of their antioxidant capacity. Molecular Plant-Microbe Interactions, 28(10), 1073–1081. https://doi.org/10.1094/MPMI-03-15-0061-R
  • Tan, U., & Gören, H. K. (2024). Effects of harvest time and plant part on essential oils, phenolics, and antioxidant activity in Lippia citriodora. International Journal of Agriculture Environment and Food Sciences, 8(4), 986-993. https://doi.org/10.31015/jaefs.2024.4.28
  • Trevisan, S., Francioso, O., Quaggiotti, S., & Nardi, S. (2010). Humic substances biological activity at the plant-soil interface: From environmental aspects to molecular factors. Plant Signaling & Behavior, 5(6), 635–643.
  • Verkleij, F. N. (1992). Seaweed extracts in agriculture and horticulture: A review. Biological Agriculture & Horticulture, 8(4), 309–324. https://doi.org/10.1080/01448765.1992.9754608
  • Vernieri, P., Borghesi, E., & Ferrante, A. (2005). Application of biostimulants in floating system for improving rocket quality. Journal of Food, Agriculture & Environment, 3(2), 86–90.
  • Vernieri, P., Borghesi, E., Tognoni, F., Serra, G., Ferrante, A., & Piaggesi, A. (2006). Use of biostimulants for reducing nutrient solution concentration in floating system. Acta Horticulturae, 718, 477–484. https://doi.org/10.17660/ActaHortic.2006.718.55
  • Viégas, R. A., da Silveira, J. A. G., Lima, A. R. D. Jr., Queiroz, J. E., & Fausto, M. J. M. (2006). Effects of NaCl-salinity on growth and inorganic solute accumulation in young cashew plants. Revista Brasileira de Engenharia Agrícola e Ambiental, 5(2), 216–222. https://doi.org/10.1590/S1415-43662006000200010
  • Vujošević, A., Lakić, N., Beatović, D., & Jelačić, S. (2007). Effect of applying different rates of slow-disintegrating fertilizer on the quality of marigold (Tagetes patula L.) and scarlet sage (Salvia splendens L.) seedlings. Journal of Agricultural Sciences (Belgrade), 52(2), 105–113. https://doi.org/10.2298/JAS0702105V
  • Xu, C., & Leskovar, D. I. (2015). Effects of Ascophyllum nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Scientia Horticulturae (Amst.), 183, 39–47. https://doi.org/10.1016/j.scienta.2014.12.004
  • Xu, L., & Geelen, D. (2018). Developing biostimulants from agro-food and industrial by-products. Frontiers in Plant Science, 9, 1567. https://doi.org/10.3389/fpls.2018.01567
  • Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049
  • Yaronskaya, E., Vershilovskaya, I., Poers, Y., Alawady, A. E., Averina, N., & Grimm, B. (2006). Cytokinin effects on tetrapyrrole biosynthesis and photosynthetic activity in barley seedlings. Planta, 224(4), 700–709. https://doi.org/10.1007/s00425-006-0249-5
  • Zhang, W., Xia, K., Feng, Z., Qin, Y., Zhou, Y., Feng, G., Zhu, H., & Yao, Q. (2024). Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. Plant Physiology and Biochemistry, 208, 108478. https://doi.org/10.1016/j.plaphy.2024.108478
There are 103 citations in total.

Details

Primary Language English
Subjects Fruit-Vegetables Technology
Journal Section Review Article
Authors

Ceren Ayşe Bayram 0000-0002-1570-273X

Kanu Murmu 0000-0003-1257-2252

Early Pub Date December 1, 2025
Publication Date December 15, 2025
Submission Date July 27, 2025
Acceptance Date October 24, 2025
Published in Issue Year 2025 Volume: 9 Issue: Special

Cite

APA Bayram, C. A., & Murmu, K. (2025). Biostimulants as a Sustainable Strategy for Enhancing Vegetable Production: A Literature Review. International Journal of Agriculture Environment and Food Sciences, 9(Special), 15-16. https://doi.org/10.31015/2025.si.8

Abstracting & Indexing Services


© International Journal of Agriculture, Environment and Food Sciences

All content published by the journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license allows others to share and adapt the material for non-commercial purposes, provided proper attribution is given to the original work.
Authors retain the copyright of their articles and grant the journal the right of first publication under an open-access model

Web:  dergipark.org.tr/jaefs  E-mail:  editorialoffice@jaefs.com Phone: +90 850 309 59 27