Research Article
BibTex RIS Cite

FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ

Year 2023, Volume: 31 Issue: 3, 834 - 847, 16.12.2023
https://doi.org/10.31796/ogummf.1264457

Abstract

Çalışmamız kapsamında, eklemleri fırçasız doğru akım (DA) motorları kullanılarak sürülen ve hem dinamik hem de kinematik modelinde parametrik belirsizlikler içeren robot kolları için, eyleyici dinamikleri denetleyici tasarımına dahil edilerek uyarlamalı görev uzayı takip denetleyicisi tasarımı gerçekleştirilmiştir. Denetleyici tasarımının doğrudan görev uzayında gerçekleştirilmesi sayesinde pozisyon seviyesinde ters kinematiğin hesaplanmasına ihtiyaç duyulmamaktadır. Geliştirilen tam durum geri beslemeli ve ivme ölçümlerine ihtiyaç duymayan denetleyici yapısı için Lyapunov tabanlı kararlılık analizi gerçekleştirilmiştir. Kararlılık analizinin sonucuna göre robot kolunun hem dinamik hem de kinematik modelindeki parametrik belirsizliklere rağmen görev uzayı takip hatasının asimptotik kararlılığı ve denetleyici girişleri de dahil olmak üzere sistemde kullanılan tüm işaretlerin sınırlılığı garanti edilmiştir. Ek olarak önerilen yöntemin performansını ve uygulanabilirliğini göstermek amacıyla düzlemde çalışan, iki serbestlik dereceli ve eklemleri fırçasız DA motorları ile sürülen robot kolunun dinamik modeli kullanılarak benzetim çalışması gerçekleştirilmiştir.

Supporting Institution

TUBUTAK-1001

Project Number

121E383

Thanks

Bu çalışmada sunulan araştırmaya verdiği destekten ötürü Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (TÜBİTAK) teşekkür ederiz (proje numarası: 121E383). Ayrıca Yazar 1, 2211-C programı kapsamında desteklendiği için TÜBİTAK’a ve YÖK 100/2000 projesi kapsamında desteklendiği için Yükseköğretim Kurulu’na teşekkür eder.

References

  • Albostan, A ve Gökbulut, M. (1998). Fırçasız Doğru Akım Motorlarının Yapay Sinir Ağları ile Öz-Uyarlamalı Denetimi. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 11(1). Erişim adresi: https://dergipark.org.tr/en/pub/ogummf/issue/30463/329417
  • Bayrak, A. (2017). Sliding Mode Based Self-Tuning PID Controller for Second Order Systems. Süleyman Demirel University Journal of Natural and Applied Sciences, 21(3), 876-872. doi: https://doi.org/10.19113/sdufbed.07565
  • Braganza, D., Dixon, W, E., Dawson, D.M. ve Xian, B. (2008). Tracking Control for Robot Manipulators with Kinematic and Dynamic Uncertainty. International Journal of Robotics and Automation, 23(2). doi: 10.2316/Journal.206.2008.2.206-3102
  • Braganza, D., Dixon, W, E., Dawson, D.M. ve Xian, B. (2005). Tracking Control for Robot Manipulators with Kinematic and Dynamic Uncertainty. IEEE Conference on Decision and Control, 5293-5297. doi: 10.1109/CDC.2005.1583003
  • Bridges, M.M., Dawson, D.M. ve Gao, X. (1993). Adaptive control of rigid-link electrically-driven robots. IEEE Conference on Decision and Control, 159-165. doi: 10.1109/CDC.1993.325171
  • Bridges, M.M. ve Dawson, D.M. (1994). Adaptive control of rigid-link electrically-driven robots actuated with brushless DC motors. IEEE Conference on Decision and Control, 1284-1289. doi: 10.1109/CDC.1994.411145
  • Carrillo-Serrano, R.V., Hernández-Guzmán, V.M. ve Santibáñez, V. (2011). PD control with feedforward compensation for rigid robots actuated by brushless DC motors. Robotica, 29(4), 507–514. doi: https://doi.org/10.1017/S0263574710000329
  • Cheah, C.C. (2003). Task-space regulation of robots with approximate actuator model. Robotica, 21(1), 95–104. doi: https://doi.org/10.1017/S026357470200440X
  • Chen, Z., Yang, X. Ve Liu, X. (2019). RBFNN-based nonsingular fast terminal sliding mode control for robotic manipulator including actuator dynamics. Neurocomputing, 362, 72-82. doi: https://doi.org/10.1016/j.neucom.2019.06.083
  • Chwa, D. ve Kwon, H. (2022). Nonlinear Robust Control of Unknown Robot Manipulator Systems with Actuators and Disturbances Using System Identification and Integral Sliding Mode Disturbance Observer. IEEE Access, 10, 35410-35421. doi: 10.1109/ACCESS.2022.3163306
  • Çetin, K. (2016). Artık eklemli robot kollarının kontrolü ve telerobotik uygulamaları. (Doktora tezi), İzmir Yüksek Teknoloji Enstitüsü, İzmir, Türkiye.
  • Dawson, D.M., Bridges, M.M. ve Qu, Z. (1995). Nonlinear control of robotic systems for environmental waste and restoration. Prentice-Hall Inc.
  • Deng, W., Zhou, H., Zhou, J ve Yao, J. (2023). Neural network-based adaptive asymptotic prescribed performance tracking control of hydraulic manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 53(1), 285-295. doi: 10.1109/TSMC.2022.3178626
  • Dixon, W. E. (2007). Adaptive Regulation of Amplitude Limited Robot Manipulators with Uncertain Kinematics and Dynamics. IEEE Transactions on Automatic Control, 52(3), 488-493. doi: 10.1109/TAC.2006.890321
  • Doğan, K.M. (2016). Telerobotik uygulamalarda robot kollarının öğrenmeli denetimi. (Yüksek lisans tezi), İzmir Yüksek Teknoloji Enstitüsü, İzmir, Türkiye.
  • Good, M.C., Sweet, L.M. ve Strobel, K.L. (1985). Dynamic Models for Control System Design of Integrated Robot and Drive Systems. Journal of Dynamic Systems, Measurement, and Control, 107(1), 53-59. doi: https://doi.org/10.1115/1.3140707
  • Izadbakhsh, A. ve Khorashadizadeh, S. (2017). Robust Task-Space Control of Robot Manipulator Using Differential Equations for Uncertainty Estimation. Robotica, 35(1), 1923-1938. doi: https://doi.org/10.1017/S0263574716000588
  • Jhan, Z.Y. ve Lee, C.H. (2017). Adaptive Impedance Force Controller Design for Robot Manipulator including Actuator Dynamics. International Journal of Fuzzy Systems, 19(1), 1739-1749. doi: https://doi.org/10.1007/s40815-017-0358-2
  • Karamancıoğlu, A. ve Özdemir, C. (1996). A Tutorial On The Singular Value Decomposition. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 9(1). Erişim adresi: https://dergipark.org.tr/tr/pub/ogummf/issue/30406/328445
  • Keighobadi, J., Xu, B., Alfi A., Arabkoohsar A. ve Nazmara, G. (2022). Compound FAT-based prespecified performance learning control of robotic manipulators with actuator dynamics. ISA Transactions. doi: https://doi.org/10.1016/j.isatra.2022.04.027Get rights and content
  • Khalil, HK. (1996). Nonlinear Systems. Prentice-Hall Inc.
  • Kokotovic, P.V. (1992). The joy of feedback: nonlinear and adaptive. IEEE Control Systems Magazine, 12(3), 7–17. doi: 10.1109/37.165507
  • Lewis, F.L., Dawson, D.M. ve Abdallah, C.T. (2003). Robot manipulator control: theory and practice. CRC Press.
  • Liu, C. ve Cheah, C.C. (2005). Task-space adaptive setpoint control for robots with uncertain kinematics and actuator model. IEEE Transactions on Automatic Control, 50(11),1854-1860. doi: 10.1109/TAC.2005.858664
  • Liu, C., Cheah, C.C. ve Slotine, J.J. (2006). Adaptive Jacobian PID Regulation for Robots with Uncertain Kinematics and Actuator Model. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3044-3049. doi: 10.1109/IROS.2006.282242
  • Marquez, H.J. (2003). Nonlinear control systems: analysis and design. John Wiley & Sons Inc.
  • Nakanishi, J., Cory, R., Mistry, M., Peters, J. ve Schaal, S. (2008). Operational space control: A theoretical and empirical comparison. The International Journal of Robotics Research, 27(6), 737–757. doi: https://doi.org/10.1177/0278364908091
  • Parlaktuna, O. ve Eroğlu, E. (2007). Gezgin Robotlarda Ultrasonik Mesafe Algılayıcılarla Robot Davranışlarının Kontrolü ve Çevre Haritalama. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 20(2). Erişim adresi: https://dergipark.org.tr/tr/pub/ogummf/issue/30184/325706
  • Patil, O.S., Sun, R., Bhasin, S. ve Dixon, W,E. (2022). Adaptive Control of Time-Varying Parameter Systems with Asymptotic Tracking. IEEE Transactions on Automatic Control, 67(9), 4809-4815. doi: https://doi.org/10.1109/TAC.2022.3161388
  • Peng, J., Ding, S ve Dubay, R. (2020). Adaptive Impedance Control Based on Neural Network for Electrically-Driven Robotic Systems. IEEE International Systems Conference, 1-6, doi: https://doi.org/10.1109/SysCon47679.2020.9275847
  • Saleki, A. ve Fateh, M.M. (2020). Model-free control of electrically driven robot manipulators using an extended state observer. Computers and Electrical Engineering, 87. Erişim adresi: https://doi.org/10.1016/j.compeleceng.2020.106768Get rights and content
  • Shojaei, K., Kazemy, A. ve Chatraei, A. (2021). An Observer-Based Neural Adaptive PID^2 Controller for Robot Manipulators Including Motor Dynamics with a Prescribed Performance. IEEE/ASME Transactions on Mechatronics, 26(3), 1689-1699. doi: 10.1109/TMECH.2020.3028968
  • Si, W., Zhao, L., Wei, J. ve Guan, Z. (2021). Task-space regulation of rigid-link electrically-driven robots with uncertain kinematics using neural networks. Measurement and Control, 54(1-2), 102-115. doi: https://doi.org/10.1177/0020294020983383
  • Siciliano, B., Khatib, O. ve Kröger, T. (2008). Springer handbook of robotics, Springer.
  • Soltanpour, M.R., Khalilpour, J. ve Soltani, M. (2012). Robust nonlinear control of robot manipulator with uncertainties in kinematics, dynamics and actuator models. International Journal of Innovative Computing, Information and Control, 8(8), 5487–5498. Erişim adresi: http://www.ijicic.org/ijicic-11-04101.pdf
  • Şahan, G. (2021). Relaxations of Conditions of Lyapunov Functions. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 238 - 244. doi: https://doi.org/10.19113/sdufenbed.808371
  • Tarn, T.J., Bejczy, A.K., Yun, X. ve Li, Z. (1991). Effect of motor dynamics on nonlinear feedback robot arm control. IEEE Transactions on Robotics and Automation, 7(1), 114-122. doi: 10.1109/70.68075
  • Tatlıcıoğlu, E., McIntyre, M., Dawson, D.M. ve Walker, I. (2005). Adaptive Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators with Sub-Task Extensions. IEEE Conference on Decision and Control, 4373-4378. doi: 10.1109/CDC.2005.1582850
  • Wai, R.J. ve Muthusamy, R. (2014). Design of Fuzzy-Neural-Network-Inherited Backstepping Control for Robot Manipulator Including Actuator Dynamics. IEEE Transactions on Fuzzy Systems, 22(4), 709-722. doi: 10.1109/TFUZZ.2013.2270010
  • Xiao, B., Yin, S. ve Kaynak, O. (2016). Tracking Control of Robotic Manipulators with Uncertain Kinematics and Dynamics. IEEE Transactions on Industrial Electronics, 63(10), 6439-6449. doi: 10.1109/TIE.2016.2569068
  • Yayan, U. ve Erdoğmuş, A.K. (2022). Development of a fault injectıon tool & dataset for verification of camera based perception in robotic systems. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 30(3), 328-339. Erişim adresi: https://dergipark.org.tr/tr/pub/ogummf/issue/74024/1054761
  • Yazıcı, A. Ve Karamancıoğlu, A. (2008). A Nonlinear Programming Approach For The Swing-Up Control Problem. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 21(2), 109 - 124. Erişim adresi: https://dergipark.org.tr/en/pub/ogummf/issue/30163/325536
  • Yılmaz, B.M., Tatlıcıoğlu, E., Savran, A. ve Alcı, M. (2022). Self-Adjusting Fuzzy Logic Based Control of Robot Manipulators in Task Space. IEEE Transactions on Industrial Electronics, 69(2), 1620-1629. doi: 10.1109/TIE.2021.3063970
  • Zergeroğlu, E., Kandemir, I., Seker, M. Ve Eroğlu, E. (2006). Dealing with uncertainty in dynamical systems: Lyapunov-based approaches. Journal of the Faculty of Engineering and Architecture of Gazi University, 21(3), 587-602. Erişim adresi: https://dergipark.org.tr/en/pub/gazimmfd/issue/6669/88847
  • Zhou, B., Yang, L., Wang, C., Chen, Y. ve Chen, K. (2020). Inverse Jacobian adaptive tracking control of robot manipulators with kinematik, dynamic and actuator uncertainities. Complexity. doi: https://doi.org/10.1155/2020/5070354
  • Xu, L., Hu, Q. ve Zhang, Y. (2017). L_2 performance control of robot manipulators with kinematics, dynamics and actuator uncertainties. International Journal of Robust and Nonlinear Control, 27(2), 875–893. doi: https://doi.org/10.1002/rnc.3604

ADAPTIVE CONTROL OF ROBOT MANIPULATORS DRIVEN BY BRUSHLESS DC MOTORS WITH PARAMETRIC UNCERTAINTIES IN BOTH KINEMATIC AND DYNAMIC MODEL

Year 2023, Volume: 31 Issue: 3, 834 - 847, 16.12.2023
https://doi.org/10.31796/ogummf.1264457

Abstract

In this study, an adaptive task-space tracking controller design was proposed for robot arms driven by BLDC motors with parametric uncertainties in their dynamic and kinematic models. The proposed controller design incorporates actuator dynamics for the robot arm and does not require inverse kinematics calculations at the position level due to its direct implementation in task space. Lyapunov-based stability analysis was conducted for the developed full-state feedback controller structure, which does not require acceleration measurements. The stability analysis results demonstrate that, despite the parametric uncertainties in both the dynamic and kinematic models of the robot arm, the proposed controller guarantees the asymptotic stability of the task-space tracking error, as well as the boundedness of all signals used in the system, including the controller inputs. To demonstrate the performance and applicability of the proposed method, a simulation study was conducted using the dynamic model of a two degree-of-freedom robot arm driven by brushless DC motors, working in a plane.

Project Number

121E383

References

  • Albostan, A ve Gökbulut, M. (1998). Fırçasız Doğru Akım Motorlarının Yapay Sinir Ağları ile Öz-Uyarlamalı Denetimi. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 11(1). Erişim adresi: https://dergipark.org.tr/en/pub/ogummf/issue/30463/329417
  • Bayrak, A. (2017). Sliding Mode Based Self-Tuning PID Controller for Second Order Systems. Süleyman Demirel University Journal of Natural and Applied Sciences, 21(3), 876-872. doi: https://doi.org/10.19113/sdufbed.07565
  • Braganza, D., Dixon, W, E., Dawson, D.M. ve Xian, B. (2008). Tracking Control for Robot Manipulators with Kinematic and Dynamic Uncertainty. International Journal of Robotics and Automation, 23(2). doi: 10.2316/Journal.206.2008.2.206-3102
  • Braganza, D., Dixon, W, E., Dawson, D.M. ve Xian, B. (2005). Tracking Control for Robot Manipulators with Kinematic and Dynamic Uncertainty. IEEE Conference on Decision and Control, 5293-5297. doi: 10.1109/CDC.2005.1583003
  • Bridges, M.M., Dawson, D.M. ve Gao, X. (1993). Adaptive control of rigid-link electrically-driven robots. IEEE Conference on Decision and Control, 159-165. doi: 10.1109/CDC.1993.325171
  • Bridges, M.M. ve Dawson, D.M. (1994). Adaptive control of rigid-link electrically-driven robots actuated with brushless DC motors. IEEE Conference on Decision and Control, 1284-1289. doi: 10.1109/CDC.1994.411145
  • Carrillo-Serrano, R.V., Hernández-Guzmán, V.M. ve Santibáñez, V. (2011). PD control with feedforward compensation for rigid robots actuated by brushless DC motors. Robotica, 29(4), 507–514. doi: https://doi.org/10.1017/S0263574710000329
  • Cheah, C.C. (2003). Task-space regulation of robots with approximate actuator model. Robotica, 21(1), 95–104. doi: https://doi.org/10.1017/S026357470200440X
  • Chen, Z., Yang, X. Ve Liu, X. (2019). RBFNN-based nonsingular fast terminal sliding mode control for robotic manipulator including actuator dynamics. Neurocomputing, 362, 72-82. doi: https://doi.org/10.1016/j.neucom.2019.06.083
  • Chwa, D. ve Kwon, H. (2022). Nonlinear Robust Control of Unknown Robot Manipulator Systems with Actuators and Disturbances Using System Identification and Integral Sliding Mode Disturbance Observer. IEEE Access, 10, 35410-35421. doi: 10.1109/ACCESS.2022.3163306
  • Çetin, K. (2016). Artık eklemli robot kollarının kontrolü ve telerobotik uygulamaları. (Doktora tezi), İzmir Yüksek Teknoloji Enstitüsü, İzmir, Türkiye.
  • Dawson, D.M., Bridges, M.M. ve Qu, Z. (1995). Nonlinear control of robotic systems for environmental waste and restoration. Prentice-Hall Inc.
  • Deng, W., Zhou, H., Zhou, J ve Yao, J. (2023). Neural network-based adaptive asymptotic prescribed performance tracking control of hydraulic manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 53(1), 285-295. doi: 10.1109/TSMC.2022.3178626
  • Dixon, W. E. (2007). Adaptive Regulation of Amplitude Limited Robot Manipulators with Uncertain Kinematics and Dynamics. IEEE Transactions on Automatic Control, 52(3), 488-493. doi: 10.1109/TAC.2006.890321
  • Doğan, K.M. (2016). Telerobotik uygulamalarda robot kollarının öğrenmeli denetimi. (Yüksek lisans tezi), İzmir Yüksek Teknoloji Enstitüsü, İzmir, Türkiye.
  • Good, M.C., Sweet, L.M. ve Strobel, K.L. (1985). Dynamic Models for Control System Design of Integrated Robot and Drive Systems. Journal of Dynamic Systems, Measurement, and Control, 107(1), 53-59. doi: https://doi.org/10.1115/1.3140707
  • Izadbakhsh, A. ve Khorashadizadeh, S. (2017). Robust Task-Space Control of Robot Manipulator Using Differential Equations for Uncertainty Estimation. Robotica, 35(1), 1923-1938. doi: https://doi.org/10.1017/S0263574716000588
  • Jhan, Z.Y. ve Lee, C.H. (2017). Adaptive Impedance Force Controller Design for Robot Manipulator including Actuator Dynamics. International Journal of Fuzzy Systems, 19(1), 1739-1749. doi: https://doi.org/10.1007/s40815-017-0358-2
  • Karamancıoğlu, A. ve Özdemir, C. (1996). A Tutorial On The Singular Value Decomposition. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 9(1). Erişim adresi: https://dergipark.org.tr/tr/pub/ogummf/issue/30406/328445
  • Keighobadi, J., Xu, B., Alfi A., Arabkoohsar A. ve Nazmara, G. (2022). Compound FAT-based prespecified performance learning control of robotic manipulators with actuator dynamics. ISA Transactions. doi: https://doi.org/10.1016/j.isatra.2022.04.027Get rights and content
  • Khalil, HK. (1996). Nonlinear Systems. Prentice-Hall Inc.
  • Kokotovic, P.V. (1992). The joy of feedback: nonlinear and adaptive. IEEE Control Systems Magazine, 12(3), 7–17. doi: 10.1109/37.165507
  • Lewis, F.L., Dawson, D.M. ve Abdallah, C.T. (2003). Robot manipulator control: theory and practice. CRC Press.
  • Liu, C. ve Cheah, C.C. (2005). Task-space adaptive setpoint control for robots with uncertain kinematics and actuator model. IEEE Transactions on Automatic Control, 50(11),1854-1860. doi: 10.1109/TAC.2005.858664
  • Liu, C., Cheah, C.C. ve Slotine, J.J. (2006). Adaptive Jacobian PID Regulation for Robots with Uncertain Kinematics and Actuator Model. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3044-3049. doi: 10.1109/IROS.2006.282242
  • Marquez, H.J. (2003). Nonlinear control systems: analysis and design. John Wiley & Sons Inc.
  • Nakanishi, J., Cory, R., Mistry, M., Peters, J. ve Schaal, S. (2008). Operational space control: A theoretical and empirical comparison. The International Journal of Robotics Research, 27(6), 737–757. doi: https://doi.org/10.1177/0278364908091
  • Parlaktuna, O. ve Eroğlu, E. (2007). Gezgin Robotlarda Ultrasonik Mesafe Algılayıcılarla Robot Davranışlarının Kontrolü ve Çevre Haritalama. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 20(2). Erişim adresi: https://dergipark.org.tr/tr/pub/ogummf/issue/30184/325706
  • Patil, O.S., Sun, R., Bhasin, S. ve Dixon, W,E. (2022). Adaptive Control of Time-Varying Parameter Systems with Asymptotic Tracking. IEEE Transactions on Automatic Control, 67(9), 4809-4815. doi: https://doi.org/10.1109/TAC.2022.3161388
  • Peng, J., Ding, S ve Dubay, R. (2020). Adaptive Impedance Control Based on Neural Network for Electrically-Driven Robotic Systems. IEEE International Systems Conference, 1-6, doi: https://doi.org/10.1109/SysCon47679.2020.9275847
  • Saleki, A. ve Fateh, M.M. (2020). Model-free control of electrically driven robot manipulators using an extended state observer. Computers and Electrical Engineering, 87. Erişim adresi: https://doi.org/10.1016/j.compeleceng.2020.106768Get rights and content
  • Shojaei, K., Kazemy, A. ve Chatraei, A. (2021). An Observer-Based Neural Adaptive PID^2 Controller for Robot Manipulators Including Motor Dynamics with a Prescribed Performance. IEEE/ASME Transactions on Mechatronics, 26(3), 1689-1699. doi: 10.1109/TMECH.2020.3028968
  • Si, W., Zhao, L., Wei, J. ve Guan, Z. (2021). Task-space regulation of rigid-link electrically-driven robots with uncertain kinematics using neural networks. Measurement and Control, 54(1-2), 102-115. doi: https://doi.org/10.1177/0020294020983383
  • Siciliano, B., Khatib, O. ve Kröger, T. (2008). Springer handbook of robotics, Springer.
  • Soltanpour, M.R., Khalilpour, J. ve Soltani, M. (2012). Robust nonlinear control of robot manipulator with uncertainties in kinematics, dynamics and actuator models. International Journal of Innovative Computing, Information and Control, 8(8), 5487–5498. Erişim adresi: http://www.ijicic.org/ijicic-11-04101.pdf
  • Şahan, G. (2021). Relaxations of Conditions of Lyapunov Functions. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 238 - 244. doi: https://doi.org/10.19113/sdufenbed.808371
  • Tarn, T.J., Bejczy, A.K., Yun, X. ve Li, Z. (1991). Effect of motor dynamics on nonlinear feedback robot arm control. IEEE Transactions on Robotics and Automation, 7(1), 114-122. doi: 10.1109/70.68075
  • Tatlıcıoğlu, E., McIntyre, M., Dawson, D.M. ve Walker, I. (2005). Adaptive Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators with Sub-Task Extensions. IEEE Conference on Decision and Control, 4373-4378. doi: 10.1109/CDC.2005.1582850
  • Wai, R.J. ve Muthusamy, R. (2014). Design of Fuzzy-Neural-Network-Inherited Backstepping Control for Robot Manipulator Including Actuator Dynamics. IEEE Transactions on Fuzzy Systems, 22(4), 709-722. doi: 10.1109/TFUZZ.2013.2270010
  • Xiao, B., Yin, S. ve Kaynak, O. (2016). Tracking Control of Robotic Manipulators with Uncertain Kinematics and Dynamics. IEEE Transactions on Industrial Electronics, 63(10), 6439-6449. doi: 10.1109/TIE.2016.2569068
  • Yayan, U. ve Erdoğmuş, A.K. (2022). Development of a fault injectıon tool & dataset for verification of camera based perception in robotic systems. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 30(3), 328-339. Erişim adresi: https://dergipark.org.tr/tr/pub/ogummf/issue/74024/1054761
  • Yazıcı, A. Ve Karamancıoğlu, A. (2008). A Nonlinear Programming Approach For The Swing-Up Control Problem. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 21(2), 109 - 124. Erişim adresi: https://dergipark.org.tr/en/pub/ogummf/issue/30163/325536
  • Yılmaz, B.M., Tatlıcıoğlu, E., Savran, A. ve Alcı, M. (2022). Self-Adjusting Fuzzy Logic Based Control of Robot Manipulators in Task Space. IEEE Transactions on Industrial Electronics, 69(2), 1620-1629. doi: 10.1109/TIE.2021.3063970
  • Zergeroğlu, E., Kandemir, I., Seker, M. Ve Eroğlu, E. (2006). Dealing with uncertainty in dynamical systems: Lyapunov-based approaches. Journal of the Faculty of Engineering and Architecture of Gazi University, 21(3), 587-602. Erişim adresi: https://dergipark.org.tr/en/pub/gazimmfd/issue/6669/88847
  • Zhou, B., Yang, L., Wang, C., Chen, Y. ve Chen, K. (2020). Inverse Jacobian adaptive tracking control of robot manipulators with kinematik, dynamic and actuator uncertainities. Complexity. doi: https://doi.org/10.1155/2020/5070354
  • Xu, L., Hu, Q. ve Zhang, Y. (2017). L_2 performance control of robot manipulators with kinematics, dynamics and actuator uncertainties. International Journal of Robust and Nonlinear Control, 27(2), 875–893. doi: https://doi.org/10.1002/rnc.3604
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Şükrü Ünver 0000-0002-0836-9799

Erman Selim 0000-0003-4479-0406

Enver Tatlıcıoğlu 0000-0001-5623-9975

Erkan Zergeroğlu 0000-0002-1211-0448

Musa Alcı 0000-0002-5382-3460

Project Number 121E383
Early Pub Date December 16, 2023
Publication Date December 16, 2023
Acceptance Date September 14, 2023
Published in Issue Year 2023 Volume: 31 Issue: 3

Cite

APA Ünver, Ş., Selim, E., Tatlıcıoğlu, E., Zergeroğlu, E., et al. (2023). FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, 31(3), 834-847. https://doi.org/10.31796/ogummf.1264457
AMA Ünver Ş, Selim E, Tatlıcıoğlu E, Zergeroğlu E, Alcı M. FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ. ESOGÜ Müh Mim Fak Derg. December 2023;31(3):834-847. doi:10.31796/ogummf.1264457
Chicago Ünver, Şükrü, Erman Selim, Enver Tatlıcıoğlu, Erkan Zergeroğlu, and Musa Alcı. “FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi 31, no. 3 (December 2023): 834-47. https://doi.org/10.31796/ogummf.1264457.
EndNote Ünver Ş, Selim E, Tatlıcıoğlu E, Zergeroğlu E, Alcı M (December 1, 2023) FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31 3 834–847.
IEEE Ş. Ünver, E. Selim, E. Tatlıcıoğlu, E. Zergeroğlu, and M. Alcı, “FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ”, ESOGÜ Müh Mim Fak Derg, vol. 31, no. 3, pp. 834–847, 2023, doi: 10.31796/ogummf.1264457.
ISNAD Ünver, Şükrü et al. “FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ”. Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi 31/3 (December 2023), 834-847. https://doi.org/10.31796/ogummf.1264457.
JAMA Ünver Ş, Selim E, Tatlıcıoğlu E, Zergeroğlu E, Alcı M. FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ. ESOGÜ Müh Mim Fak Derg. 2023;31:834–847.
MLA Ünver, Şükrü et al. “FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ”. Eskişehir Osmangazi Üniversitesi Mühendislik Ve Mimarlık Fakültesi Dergisi, vol. 31, no. 3, 2023, pp. 834-47, doi:10.31796/ogummf.1264457.
Vancouver Ünver Ş, Selim E, Tatlıcıoğlu E, Zergeroğlu E, Alcı M. FIRÇASIZ DA MOTORLARI İLE SÜRÜLEN VE HEM DİNAMİK HEM DE KİNEMATİK MODEL BELİRSİZLİKLERİ İÇEREN ROBOT KOLLARININ UYARLAMALI DENETİMİ. ESOGÜ Müh Mim Fak Derg. 2023;31(3):834-47.

20873  13565  13566 15461  13568    14913