Year 2019, Volume 44, Issue 2, Pages 202 - 215 2019-04-15

APPLICATIONS OF SOME NON-THERMAL TECHNOLOGIES FOR MICROBIAL DECONTAMINATION IN MEAT AND MEAT PRODUCTS
ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI

Damla Bilecen Şen [1] , Birol Kılıç [2] , Ebru Demir [3] , Gülden Başyiğit Kılıç [4]

131 219

Nowadays, the quality of nutrition level is regarded as one of the most important criteria showing social development level. Therefore, it is important to increase the safety and quality of meat and meat products in order to provide healthy and balanced nutrition. Thus, heat treatment applications have been commonly used for preservation of meat and meat products, and this process provides improved shelf life and microbial safety. However, this technology causes changes in physical and chemical structure, organoleptic characteristics, and natural components of meat and meat products. Therefore, many research about non-thermal technologies has been conducted on muscle foods. This review aims to describe the basic principles, applications and effects of non-thermal technologies including irradiation, ultraviolet light, pulsed electric fields, pulsed light, high hydrostatic pressure and ultrasound used for microbial decontamination of meat and meat products.

Günümüzde nüfusun beslenme düzeyi kalkınmanın önemli ölçütlerinden biri olarak sayılmakta ve bu nedenle nüfusun sağlıklı ve dengeli beslenebilmesi açısından et ve et ürünlerinin kalitesinin ve güvenliğinin iyileştirilmesi önem taşımaktadır. Bu nedenle et ve et ürünleri muhafazasında çeşitli ısıl işlem uygulamaları kullanılarak, gıdaların raf ömrü uzatılmakta ve mikrobiyal açıdan güvenlik sağlanmaktadır. Ancak bu teknolojinin uygulanması et ve et ürünlerinin fiziksel ve kimyasal yapılarında değişimlere, organoleptik özelliklerinin ve doğal bileşenlerinin bozulmasına neden olmaktadır. Bu nedenle et ve et ürünlerinin muhafazasında ısıl olmayan teknolojiler üzerine çeşitli araştırmalar yapılmıştır. Bu derleme ile et ve et ürünlerindeki mikroorganizmaların dekontaminasyonunda kullanılan ışınlama, ultraviyole ışınları, vurgulu elektrik alan, atımlı ışık, yüksek basınç ve ultrasonik ses dalgaları gibi ısıl olmayan teknolojilerin özellikleri, uygulamaları ve oluşturduğu etkiler hakkında bilgi verilmesi amaçlanmıştır.

  • Akkara, M., Kayaardı, S. (2014). İleri muhafaza tekniklerinin et kalitesi üzerine etkisi. Akademik Gıda, 12(4), 79-85.
  • Barba, F.J., Terefe, N.S., Buckow, R., Knorr, D., Orlien, V. (2015). New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. Food Res Int, 77, 725–742.
  • Barba, F.J., Koubaa, M., Prado-Silvac, L., Orlien, V., Sant’Ana, A.S. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends Food Sci Technol, 66, 20e35.
  • Banerjee, R., Jayathilakan, K., Chauhan, O.P., Naveena, B.M., Devatkal, S., Kulkarni, V.V. (2017). Vacuum packaged mutton patties: Comparative effects of high pressure processing and ırradiation. J Food Process Preserv, 41, e12880.
  • Botsaris, G., Taki, A. (2015). Effect of high-pressure processing on the microbial quality throughout the shelf life of vacuum-packed sliced ham and frankfurters. J Food Process Preserv, 39, 840–845.
  • Bottino, F.O., Rodrigues, B.L., Ribeiro, J.D.N., Lazaro, C.A.T., Conte-Junior, C.A. (2017). İnfluence of UV-C radıiation on shelf life of vacuum package tambacu (Colossoma macropomum X Piaractus mesopotamicus) fillets. J Food Process Preserv, 41, e13003.
  • De la Paz Xavier, M., Dauber, C., Mussio, P., Delgado, E., Maquieira, A., Soria, A. López, T. (2014). Use of mild irradiation doses to control pathogenic bacteria on meat trimmings for production of patties aiming at provoking minimal changes in quality attributes. Meat Sci, 98(3), 383-391.
  • Del Olmo, A., Calzada, J., Nunez, M. (2014). Effect of high-pressure-processing and modified-atmosphere-packaging on the volatile compounds and odour characteristics of sliced ready-to-eat “lacon”, a cured-cooked pork meat product. Innov Food Sci Emerg Technol, 26, 134–142.
  • Doğu, S. Ö., Sarıçoban, C. (2014). Et ve ürünlerinde dekontaminasyon yöntemleri. Eur J Lipid Sci Technol, 1(3), 92-99.
  • Dupuy, C., Morlot, C., Gilot-Fromont, E., Mas, M., Grandmontagne, C., Gilli-Dunoyer, P., Gaya, E., Callait-Cardinal , M.P. (2014). Prevalence of Taenia saginata cysticercosis in french cattle in 2010. Vet Parasitol (Amst), 203, 65–72.
  • Deepika, P., Zende, R.J., Kshirsagar, D.P., Lande, V.S., Vaidya, V.M., Waghamare, R.N., Todankar, R.P., Shirke, A.H. (2017). Effects of electron beam ırradiation on microbial quality of pork sausage stored at refrigeration temperature. Int J Curr Microbiol Appl Sci, 6(11), 3978-3987.
  • Ehlermann, D.A.E. (2016). Particular applications of food irradition: Meat, fish and others. Radiat Phys Chem, 129, 53-57.
  • El-Ghafour, S.A., Zakar, A.H. (2017). İmpact of gamma irradiation on the quality of tilapia fish (Oreochromis niloticus) fillets stored under refrigerated condition. Int J Chemtech Res, 10(2), 573-581.
  • Fregonesi, R.P., Portes, R.G., Aguiar, A.M.M., Figueira, L.C., Gonçalves, C.B., Arthur, V., Trindade, M.A. (2014). Irradiated vacuum-packed lamb meat stored under refrigeration: Microbiology, physicochemical stability and sensory acceptance. Meat Sci, 97(2), 151-155.
  • Ganan, M., Hierro, E., Hospital, X.F., Barrosa, E., Fernandez, M., (2013). Use of pulsed light to ıncrease the safety of ready-to-eat cured meat products. Food Control, 32, 512-517.
  • Garriga, M., Grèbol, N., Aymerich, M.T., Monfort, J.M., Hugas, M. (2004). Microbial ınactivation after high-pressure processing at 600 MPa in commercial meat products over its shelf life. Innov Food Sci Emerg Technol, 5, 451–457.
  • Güven, E., Yıldız, H. (2016). Isıl olmayan yeni gıda muhafaza tekniklerinin sanayi uygulamaları-2. Gıda, 41,4.
  • Ha, J-W., Kang, D-H. (2015). Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal actio. Appl Environ Microbiol, 81(1), 2-8.
  • Ham, Y-K., Kim, H-W., Hwang, K-E., Song, D-H., Kim, Y-J., Choi, Y-S., Song, B-S., Park, J-H., Kim, C-J. (2017). Effects of irradition source and dose level on quality characteristics of processed meat products. Radiat Phys Chem, 130, 259-264.
  • Hassanzadeha, P., Tajikb, H., Rohanib, S.M.R., Moradib, M., Hashemic, M., Aliakbarlub, J. (2017). Effect of functional chitosan coating and gamma irradiation on the shelf-life of chicken meat during refrigerated storage. Radiat Phys Chem, 141, 103-109.
  • Hajos, G., Polgar, M., Farkas, J. (2004). High-pressure effects on IgE immunoreactivity of proteins in a sausage batter. Innov Food Sci Emerg Technol, 5, 443–449.
  • Haquea, M.A., Hashema, M.A., Mujaffar, M.M., Rimaa, F.J., Hossainb, A. (2017). Effect of gamma irradiation on shelf life and quality of beef. J Meat Sci Technol, 5(2), 20-28.
  • Heinrich, V., Zunabovic, M., Bergmair, J., Kneifel, W., Jager, H. (2015). Post-packaging application of pulsed light for microbial decontamination of solid foods: A review. Innov Food Sci Emerg Technol, 30, 145-156.
  • Hierro, E., Barroso, E., de la Hoz, L., Ordonez, J. A., Manzano, S., Fernandez, M. (2011). Efficacy of pulsed light for shelf-life extension and inactivation of Listeria monocytogenes on ready-to-eat cooked meat products. Innov Food Sci Emerg Technol, 12, 275-281.
  • Horita, C.N., Baptista, R.C., Caturla, M.Y.R., Lorenzo, J.M., Barba, F.J., Sant’Ana, A.S. (2018). Combining reformulation, active packaging and non-thermal post-packaging decontamination technologies to increase the microbiological quality and safety of cooked ready-to-eat meat products. Trends Food Sci Technol, 72, 45-61.
  • Hugas, M., Garriga, M., Monfort, J.M., (2002). New mild technologies in meat processing: High pressure as a model technology. Meat Sci, 62, 359–371.
  • Hughes, B.H., Perkins, L.B., Yang, T.C., Skonberg, D.I. (2016). Impact of post-rigor high pressure processing on the physicochemical and microbial shelf-life of cultured red abalone (Haliotis rufescens). Food Chem, 194, 487–494.
  • Huq, T., Vu, K.D., Riedl, B., Bouchard, J., Lacroix, M. (2015). Synergistic effect of gamma (γ)-irradition and microencapsulated antimicrobials against Listeria monocytogenes on ready-to-eat (RTE) meat. Food Microbiol, 46, 507-514.
  • ICMSF (1986). International commission on microbiological specifications for foods. Microorganisms in foods 2: Sampling for microbiological analysis: Principles and specific applications, pp. 127–278.
  • Kardowska-Wiater, M., Stasiak, D.M. (2011). Effect of ultrasound on survival of gram-negative bacteria on chicken skin surface. Bull Vet Inst Pulawy, 55, 207-210.
  • Keklik, N.M., Demirci, A., Puri, V.M. (2010). Decontamination of unpackaged and vacuum-packaged boneless chicken breast with pulsed ultraviolet light. Poultry Sci, 89, 570e581.
  • Koluman, A., Dikici, A. (2016). Effect of nisin and gamma ırradiation treatments on Listeria monocytogenes on some high economic valued aquaculture products. Hacettepe J Bio Chem, 44(3), 245-257.
  • Kruk, Z.A., Yun, H., Rutley, D.L., Lee, E.J., Kim, Y.J. Jo, C. (2011). The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control, 22, 6-12.
  • Kundu, D., Gill, A., Lui, C., Goswami, N., Holley, R. (2014). Use of low dose e-beam irradiation to reduce E.coli O157:H7, non-O157 (VTEC) E.coli and Salmonella viability on meat surfaces. Meat Sci, 96, 413-418.
  • Lazaro, C.A., Conte-Junior, C.A., Monteiro, M.L.G., Canto, A.C.V.S., Costa-Lima, B.R.C., Mano, S.B., Franco, R.M. (2014). Effects of ultraviolet light on biogenic amines and other quality indicators of chicken meat during refrigerated storage. Poultry Sci, 93, 2304-2313.
  • Lee, E-S., Park, S.Y., Ha, S-D. (2015). Effect of UV-C light on the microbial and sensory quality of seasoned dried seafood. Food Sci Technol Int, 22(3), 213–220.
  • Lerasle, M., Federighi, M., Simonin, H., Anthoine, V., Reze, S., Cheret, R., Guillou, S. (2014). Combined use of modified atmosphere packaging and high pressure to extend the shelf-life of raw poultry sausage. Innov Food Sci Emerg Technol, 23, 54–60.
  • Li, S., Kundu, D., Holley, R.A. (2015). Use of lactic acid with electron beam ırradition for control of Escherichia coli O157:H7,non-0157 VTEC E.coli, and Salmonella serovars on fresh and frozen beef. Food Microbiol, 46, 34-39.
  • Li, X., Farid, M. (2016). A review on recent development in non-conventional food sterilization technologies. J Food Eng, 182, 33-45.
  • Lin, D., Yan, M., Lin, S., Chen, S. (2014). Increasing prevalence of hydrogen sulfide negative Salmonella in retail meats. Food Microbiol, 43, 1-4.
  • Lung, H-M., Cheng, Y-C., Huang, H-W., Yang, B.B., Wang, C-Y. (2015). Microbial decontamination of food by electron beam irradition. Trends Food Sci Technol, 44, 66-78.
  • McLeod, A., Liland, K.H., Haugen, J-E., Sorheim, O., Myhrer, K.S., Holck, A.L. (2017). Chicken fillets subjected to UV-C and pulsed UV light: Reduction of pathogenic and spoilage bacteria, and changes in sensory quality. J Food Saf, 38, e12421.
  • Medina-Meza, I.G., Barnaba, C., Barbosa-Cánovas, G.V. (2014). Effects of high pressure processing on lipid oxidation: A review. Innov Food Sci Emerg Technol, 22, 1-10.
  • Nagarajarao, R.C. (2016). Recent advances in processing and packaging of fishery products: A review. Aquatic Procedia, 7, 201-213.
  • Nicorescu, I., Nguyen, B., Chevalier, S., Orange, N. (2014). Effects of pulsed light on the organoleptic properties and shelf-life extension of pork and salmon. Food control, 44, 138-145.
  • Özer, N.P., Demirci, A. (2006). Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes inoculated on raw salmon fillets by pulsed UV-light treatment. Int J Food Sci Technol, 41, 354-360.
  • Park, S.Y., Ha, S-D. (2015). Ultraviolet-C radiation on the fresh chicken breast: Inactivation of major foodborne viruses and changes in physicochemical and sensory qualities of product. Food Bioproc Tech, 8, 895–906.Pan, Y., Sun, D-W., Han, Z. (2017). Applications of electromagnetic fields for nonthermal inactivation of microorganisms in foods: An overview. Trends Food Sci Technol, 64, 13-22.
  • Panwar, R., Grover, C.R., Kumar, N. (2015). Microbial decontamination by novel Technologies-Potential for food preservation. Indian Food Ind Mag, 34(6), 24-32.
  • Pillai, S., Shayanfar, S. (2017). Electron beam technology and other irradiation technology applications in the food ındustry. Top Curr Chem, 375(6).
  • Pingen, S., Sudhaus, N., Becker, A., Krischek, C., Klein, G. (2016). High pressure as an alternative processing step for ham production. Meat Sci,118, 22–27.
  • Pinon, M., Paniwnyk, L., Alarcon-Rojo, A., Renteria, A., Nevarez, V., Janacua-Vidales, H., Mason, T. (2012). Power ultrasound effect on poultry meat microbial flora. 13th Meeting of the European Society of Sonochemistry, 1 - 5 July 2012, Lviv, Ukraine, 182–183p.
  • Rajkovic, A., Smigic, N., Devlieghere, F. (2010). Contemporary strategies in combating microbial contamination in food chain. Int J Food Microbiol, 141, 29e42.
  • Rajkovic, A., Tomasevic, I., Smigic, N., Uyttendaele, M., Radovanovic, R., Devlieghere, F. (2012). Pulsed UV light as an intervention strategy against Listeria monocytogenes and Escherichia coli O157:H7 on the surface of a meat slicing knife. J Food Eng, 100, 446-451.
  • Rajkovic, A., Tomasevic, I., Meulenaer, B., Devlieghere, F. (2017). The effect of pulsed UV light on Escherichia coli O157:H7, Listeria monocytogenes, Salmonella typhimurium, Staphylococcus aureus and Staphylococcal enterotoxin A on sliced fermente salami and its chemical quality. Food Control, 73, 829-837.
  • Rodionova, K.O., Paliy, A.P. (2016). The effectiveness of application ultraviolet radiation for the sanitation of production premises of meat processing enterprises. J Vet Med, Biotechnology and Biosafety, 2(4), 20-24.
  • Saif, S.M.H., Lan, Y., Williams, L.L., Joshee, L., Wang, S. (2007). Reductions of Escherichia coli O157:H7 on goat meat surface with pulsed dc square wave signal. J Food Eng, 77, 281–288.
  • Silva, M.A., Costa, M.C.V.V., Solidonio, E.G., Junior, C.E.O.C., Sena, K.X.F.R., Colaço, W. (2015). Reduction of Staphylococcus spp. in jerked beef samples after irradiation with Co-60. International Nuclear Atlantic Conference (INAC), 4-9 October, Sao Paulo, Brazil.
  • Singh, P.K., Verma, A.K., Ranjan R., Singh, T.P., Kumar, D., Kumar, P. (2015). Non thermal preservation of meat by irradiation: A review. J Food Res Technol, 3(1), 07-13.
  • Sommers, C.H., Sheen, S. (2015). Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing. Food Microbiol, 50, 1-4.
  • Sommers, C.H., Scullen, O.J., Sheen, S. (2016). Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light. Frontiers in Microbiol, 7(413).
  • Sommers, C., Sheen, S., Scullen, O.J., Mackay, W. (2017). Inactivation of Staphylococcus saprophyticus in chicken meat and purge using thermal processing, high pressure processing, gamma radiation, and ultraviolet light (254 nm). Food Control, 75, 78e82.
  • Stachelska, M.A., Stankiewicz-Szymczak, W., Jakubczak, A., Swislocka, R., Lewandowski, W. (2012). Influence of pulsed electric field on the survival of Yersinia enterocolitica in minced beef meat. Aparatura Badawcza I Dydaktyczna, 17, 13-17.
  • Stoica, M., Mihalcea, L., Borda, D., Alexe, P. (2013). Non-thermal novel food processing technologies. An overview. J Agroaliment Proc Technol, 19(2), 212-217.
  • Stratakos, A.C., Koidis, A. (2015). Suitability, efficiency and microbiological safety of novel physical technologies for the processing of ready-to-eat meals, meats and pumpable products. Food Sci Technol, 50, 1283-1302.
  • Tarek, A.R., Rasco, B.A., Sablani, S.S. (2015). Ultraviolet-C light inactivation kinetics of E. coli on bologna beef packaged in plastic films. Food Bioproc Tech, 8, 1267-1280.
  • Troy, D.J., Ojha, K.S., Kerry, J.P., Tiwari, B.K. (2016). Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview. Meat Sci, 120, 2-9.
  • Valdramidis, V.P., Patterson, M.F., Linton, M. (2015). Modelling the recovery of Listeria monocytogenes in high pressure processed simulated cured meat. Food Control, 47, 353–358.
  • Wu, X., Narsimhan, G. (2017). Synergistic effect of low power ultrasonication on antimicrobial activity of melittin against Listeria monocytogenes. LWT - Food Sci Technol, 75, 578–581.
  • Yang, S., Sadekuzzaman, M., Ha, S-D. (2017). Reduction of Listeria monocytogenes on chicken breasts by combined treatment eith UV-C light and bacteriophage listsield. LWT - Food Sci Technol, 86, 193-200.
  • Yeh, Y., Moura, F.H., Van Den Broek, K., Mell, A.S. (2018). Effect of ultraviolet light, organic acids, and bacteriophage on Salmonella populations in ground beef. Meat Sci, 139, 44-48.
  • Zhou, G.H., Xu, X.L., Liu, Y. (2010). Preservation technologies for fresh meat-A review. Meat Sci, 86(1), 119-128.
  • Zinoviadou, K.G., Galanakis, C.M., Brncic, M., Grimi, N., Boussetta, N., Mota, M.J., Barba, F.J. (2015). Fruit juice sonication: Implications on food safety and physicochemical and nutritional properties. Food Res Int, 77, 743-752.
Primary Language tr
Subjects Science
Journal Section Articles
Authors

Author: Damla Bilecen Şen (Primary Author)
Institution: MEHMET AKIF ERSOY UNIVERSITY
Country: Turkey


Author: Birol Kılıç
Institution: Süleyman Demirel University

Author: Ebru Demir

Author: Gülden Başyiğit Kılıç
Institution: MEHMET AKIF ERSOY UNIVERSITY

Dates

Publication Date: April 15, 2019

Bibtex @review { gida457112, journal = {GIDA}, issn = {1300-3070}, eissn = {1309-6273}, address = {Gıda Teknolojisi Derneği}, year = {2019}, volume = {44}, pages = {202 - 215}, doi = {10.15237/gida.GD18099}, title = {ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI}, key = {cite}, author = {Bilecen Şen, Damla and Kılıç, Birol and Demir, Ebru and Başyiğit Kılıç, Gülden} }
APA Bilecen Şen, D , Kılıç, B , Demir, E , Başyiğit Kılıç, G . (2019). ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI. GIDA, 44 (2), 202-215. DOI: 10.15237/gida.GD18099
MLA Bilecen Şen, D , Kılıç, B , Demir, E , Başyiğit Kılıç, G . "ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI". GIDA 44 (2019): 202-215 <http://dergipark.org.tr/gida/issue/43567/457112>
Chicago Bilecen Şen, D , Kılıç, B , Demir, E , Başyiğit Kılıç, G . "ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI". GIDA 44 (2019): 202-215
RIS TY - JOUR T1 - ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI AU - Damla Bilecen Şen , Birol Kılıç , Ebru Demir , Gülden Başyiğit Kılıç Y1 - 2019 PY - 2019 N1 - doi: 10.15237/gida.GD18099 DO - 10.15237/gida.GD18099 T2 - GIDA JF - Journal JO - JOR SP - 202 EP - 215 VL - 44 IS - 2 SN - 1300-3070-1309-6273 M3 - doi: 10.15237/gida.GD18099 UR - https://doi.org/10.15237/gida.GD18099 Y2 - 2019 ER -
EndNote %0 THE JOURNAL OF FOOD ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI %A Damla Bilecen Şen , Birol Kılıç , Ebru Demir , Gülden Başyiğit Kılıç %T ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI %D 2019 %J GIDA %P 1300-3070-1309-6273 %V 44 %N 2 %R doi: 10.15237/gida.GD18099 %U 10.15237/gida.GD18099
ISNAD Bilecen Şen, Damla , Kılıç, Birol , Demir, Ebru , Başyiğit Kılıç, Gülden . "ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI". GIDA 44 / 2 (April 2019): 202-215. https://doi.org/10.15237/gida.GD18099
AMA Bilecen Şen D , Kılıç B , Demir E , Başyiğit Kılıç G . ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI. GIDA. 2019; 44(2): 202-215.
Vancouver Bilecen Şen D , Kılıç B , Demir E , Başyiğit Kılıç G . ET VE ET ÜRÜNLERİNDE MİKROBİYAL DEKONTAMİNASYON İÇİN BAZI ISIL OLMAYAN TEKNOLOJİLERİN KULLANIMI. GIDA. 2019; 44(2): 215-202.