Derleme
BibTex RIS Kaynak Göster

Lipid-Polimer Hibrit Nanopartiküller: Özellikleri, Hazırlama Yöntemleri ve Karakterizasyonlarına Güncel Bir Bakış

Yıl 2025, Cilt: 4 Sayı: 3, 94 - 111, 30.09.2025
https://doi.org/10.59518/farabimedj.1735159

Öz

Nano boyutlu ilaç taşıyıcı sistemler, başta kanser olmak üzere birçok hastalıkta tedavi etkinliğini artırmaktadır. Bu sistemler arasında lipid ve polimer nanopartiküllerin avantajlarının bir araya gelmesiyle oluşan lipid-polimer hibrit nanopartiküllere (LPHNP) yoğun bir ilgi vardır. Bu çalışmada, Google Scholar, YÖK Tez Merkezi, ScienceDirect, PubMed, ResearchGate, ACS Publication, Taylor & Francis Online kaynak olarak kullanılarak LPHNP’lerin özellikleri, hazırlama yöntemleri ve karakterizasyonlarının araştırılması amaçlanmıştır. Literatürler, çekirdek-kabuk yapısına sahip LPHNP’lerin yüksek stabilite, biyouyumluluk, biyoyararlanım ve ilaç yükleme kapasitesi, hem hidrofilik hem de hidrofobik ilaç yükleme, kontrollü ve sürekli salım, yüzey modifikasyonu ve hedefleme gibi birçok avantaja sahip olduğunu göstermiştir. Öte yandan, çekirdek-kabuk yapısının elde edilememesi, ölçek büyütme zorluğu ve teknik sorunlar LPHNP’lerin dezavantajlarıdır. Boyut, boyut dağılımı ve morfoloji gibi birçok özelliği etkileyen LPHNP’leri hazırlama yöntemleri iki ana bölüme ayrılmıştır: 'iki adımlı yöntem' ve 'tek adımlı yöntem'. Ancak, bu iki yöntemin dezavantajlarının üstesinden gelmek için 'mikroakışkan nanopresipitasyon yöntemi', 'çok girişli vorteks mikroreaktör yöntemi' ve 'tek adımlı sonikasyon yöntemi' gibi yeni teknikler geliştirilmiştir. Etkinliklerini ve stabilitelerini değerlendirmek için kolloidal özellikleri, ilaç yükleme kapasiteleri, morfolojileri, lipit kabuk kalınlıkları, salım hızları, etkinlikleri ve toksisiteleri çeşitli in vitro ve in vivo deneylerle belirlenmiştir. Lipozom veya nanopartikül formunda sağlık otoriteleri tarafından onaylanmış ürünler bulunmasına rağmen, nispeten yeni bir sistem olan LPHNP’ler için henüz faz çalışmasında olan veya onaylanmış bir ürün bulunmamaktadır. Ancak LPHNP’ler üzerine yapılan çeşitli çalışmalardan elde edilen olumlu sonuçların yakın gelecekte bu durumu tersine çevirmesi beklenmektedir.

Etik Beyan

Bu çalışma için ek Kurul onayı gerekmemektedir.

Kaynakça

  • Sevinç-Özakar R. Daidzein yüklü nanopartiküler sistemlerin hazırlanması ve in vitro olarak değerlendirilmesi [Doktora tezi]. Erzurum, Türkiye: Atatürk Üniversitesi Sağlık Bilimleri Enstitüsü; 2015.
  • Yalçın TE. Lipit polimer hibrit nanopartiküler ilaç taşıyıcı sistemlerin geliştirilmesi ve değerlendirilmesi [Doktora tezi]. Ankara, Türkiye: Gazi Üniversitesi Sağlık Bilimleri Enstitüsü; 2017.
  • Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci. 2017;8(1):63-77.
  • Sengel-Turk CT, Gumustas M, Uslu B, Ozkan SA. A novel approach for drug targeting: core-shell type lipid-polymer hybrid nanocarriers. In: Mozafari MR, ed. Design of Nanostructures for Theranostics Applications. Amsterdam, Netherlands: Elsevier; 2018:69-107.
  • Lee MK. Liposomes for enhanced bioavailability of water-insoluble drugs: in vivo evidence and recent approaches. Pharmaceutics. 2020;12(3):264.
  • Müderrisoğlu AE, Çomoğlu T. İlaç taşıyıcı polimerik partiküler sistem formülasyonlarına genel bakış. Ankara Üniv Eczac Fak Derg. 2010;39(4):343-368.
  • Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85:427-443.
  • Tahir N, Haseeb MT, Madni A, et al. Lipid polymer hybrid nanoparticles: a novel approach for drug delivery. In: Role of novel drug delivery vehicles in nanobiomedicine [Internet]. London: IntechOpen; 2020. Available from: https://www.intechopen.com/chapters/72574
  • Wong HL, Bendayan R, Rauth AM, Wu XY. Development of solid lipid nanoparticles containing ionically-complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci. 2004;93:1993-2004.
  • Mohanty A, Uthaman S, Park IK. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules. 2020;25(19):4377.
  • Ghitman J, Biru EI, Stan R, Iovu H. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. Mater Des. 2020;193:108805.
  • Garg NK, Tandel N, Jadon RS, Tyagi RK, Katare OP. Lipid–polymer hybrid nanocarrier-mediated cancer therapeutics: current status and future directions. Drug Discov Today. 2018;23(9):1610-1621.
  • Dave V, Tak K, Sohgaura H, Gupta A, Sadhu V, Reddy KR. Lipid polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J Microbiol Methods. 2019;160:130-142.
  • Chaudhary Z, Ahmed N, Rehman A, Khan GM. Lipid polymer hybrid carrier systems for cancer targeting: a review. Int J Polym Mater Polym Biomater. 2017;67(2):86-100.
  • Zhao X, Li F, Li Y, et al. Co-delivery of HIF-1α si-RNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials. 2015;46:13-25.
  • Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale. 2017;9(4):1334-1355.
  • Aoki I, Yoneyama M, Hirose J, et al. Thermo-activatable polymer-grafted liposomes for low-invasive image-guided chemotherapy. Transl Res. 2015;166(6):660-673.
  • Date T, Nimbalker V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release. 2018;271:60-73.
  • Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl. 2011;50:7027-7031.
  • Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108:10980-10985.
  • Cai J, Huang H, Song W, et al. Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro. Int J Pharm. 2015;495:728-737.
  • Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine. 2019;14:1937-1952.
  • Troutier AL, Delair T, Pichot C, Ladavière C. Physicochemical and interfacial investigation of lipid/polymer particle assemblies. Langmuir. 2005;21:1305-1313.
  • Singh AP, Rathour NK, Mishra S. A comprehensive review on polymer-lipid hybrid nanoparticles. Int J Pharm Sci. 2025;3(3):1388-1403.
  • Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf B Biointerfaces. 2011;85:214-220.
  • Hasan W, Chu K, Gullapalli A, et al. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 2012;12(1):287-292.
  • Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine. 2013;9:474-491.
  • Li Q, Cai T, Huang Y, Xia X, Cole SPC, Cai Y. A Review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials (Basel). 2017;7(6):122.
  • Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2:1696-1702.
  • Zhao P, Wang H, Yu M, et al. Paclitaxel-loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2012;81:248-256.
  • Garg NK, Singh B, Sharma G, et al. Development and characterization of single step self-assembled lipid polymer hybrid nanoparticles for effective delivery of methotrexate. RSC Adv. 2015;5:62989-62999.
  • Liu Y, Li K, Pan J, Liu B, Feng SS. Folic acid-conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of docetaxel. Biomaterials. 2010;31:330-338.
  • Zhao Y, Lin D, Wu F, et al. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery. Int J Mol Sci. 2014;15:17565-17576.
  • Yousaf R, Khan MI, Akhtar MF, et al. Development and in-vitro evaluation of chitosan and glyceryl monostearate-based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole. Heliyon. 2023;9(3):e14817.
  • Jadon RS, Sharma G, Garg NK, et al. Efficient in vitro and in vivo docetaxel delivery mediated by pH-sensitive LPHNPs for effective breast cancer therapy. Colloids Surf B Biointerfaces. 2021;203:111760.
  • Rajana N, Chary PS, Bhavana V, et al. Targeted delivery and apoptosis induction of CDK-4/6 inhibitor loaded folic acid decorated lipid-polymer hybrid nanoparticles in breast cancer cells. Int J Pharm. 2024;651:123787.
  • Patel M, Karampuri S, Kansara V, Vyas B. Inhalable dry powder containing lipid polymer hybrid nanoparticles of nintedanib esylate: in vitro and in vivo evaluations. J Drug Deliv Sci Technol. 2023;86:104716.
  • Carvalho IPS, Silva LB, do Amaral RLF, et al. Evaluation of in vivo and in vitro efficacy of solasonine/solamargine-loaded lipid-polymer hybrid nanoparticles against bladder cancer. Int J Pharm. 2024;661:124411.
  • Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int J Nanomedicine. 2021;16:185-199.
  • González-García D, Tapia O, Évora C, García-García P, Delgado A. Conventional and microfluidic methods: design and optimization of lipid-polymeric hybrid nanoparticles for gene therapy. Drug Deliv Transl Res. 2025;15:908-924.
  • Jangde R, Elhassan GO, Khute S, et al. Hesperidin-Loaded Lipid Polymer Hybrid Nanoparticles for Topical Delivery of Bioactive Drugs. Pharmaceuticals (Basel). 2022;15(2):211.
  • Gurny R, Peppas N, Harrington D, Banker G. Development of biodegradable and injectable latices for controlled release of potent drugs. Drug Dev Ind Pharm. 1981;7:1-25.
  • Bochicchio S, Lamberti G, Barba AA. Polymer–Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies. Pharmaceutics. 2021; 13(2):198.
  • Valencia PM, Basto PA, Zhang L, et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 2010;4(3):1671-1679.
  • Wan F, Kłodzinska SN, Jumaa H, et al. Ultrasmall TPGS–PLGA hybrid nanoparticles for site-specific delivery of antibiotics into Pseudomonas aeruginosa biofilms in lungs. ACS Appl Mater Interfaces. 2020;12:380-389.
  • Kim Y, Lee Chung B, Ma M, et al. Mass Production and Size Control of Lipid–Polymer Hybrid Nanoparticles through Controlled Microvortices. Nano Letters. 2012;12:3587-3591.
  • Fang RH, Chen KNH, Aryal S, Hu CMJ, Zhang K, Zhang L. Large scale synthesis of lipid–polymer hybrid nanoparticles using a multi-inlet vortex reactor. Langmuir. 2012;28:13824-13829.
  • Bokare A, Takami A, Kim JH, et al. Herringbone-patterned 3D-printed devices as alternatives to microfluidics for reproducible production of lipid polymer hybrid nanoparticles. ACS Omega. 2019;4(3):4650-4657.
  • Fang RH, Aryal S, Hu CMJ, Zhang L. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir. 2010;26(22):16958-16962.
  • Jain A, Gautam L, Vishwakarma N, et al. Emergence of polymer-lipid hybrid systems in healthcare scenario. In: Tekade RK, ed. Multifunctional Nanocarriers for Contemporary Healthcare Applications. Amsterdam, Netherlands: Elsevier; 2020:448-470.
  • Zhang LI, Zhang L. Lipid-polymer hybrid nanoparticles: synthesis, characterization and applications. Nano Life. 2010;1:163-173.
  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909-1915.
  • Raval N, Maheshwari R, Kalyane D, et al. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In: Tekade RK, ed. Basic Fundamentals of Drug Delivery. Amsterdam, Netherlands: Elsevier; 2019:369-400.
  • Özkahraman B, Acar I, Gök MK, Güçlü G. Poli(N-Vinilkaprolaktam) mikrojellerinin sentez şartlarının optimizasyonu. Afyon Kocatepe Univ Fen Bilim Derg. 2014;14:13-21.
  • Men W, Zhu P, Dong S, et al. Fabrication of dual pH/redox-responsive lipid-polymer hybrid nanoparticles for anticancer drug delivery and controlled release. Int J Nanomedicine. 2019;14:8001-8011.
  • Elkateb H, Tatham LM, Cauldbeck H, Niezabitowska E, Owen A, Rannard S, McDonald T. Optimization of the synthetic parameters of lipid polymer hybrid nanoparticles dual loaded with darunavir and ritonavir for the treatment of HIV. Int J Pharm. 2020;588:119794.
  • Khan MM, Madni A, Filipczak N, et al. Folate-targeted lipid chitosan hybrid nanoparticles for enhanced anti-tumor efficacy. Nanomedicine. 2020;28:102228.
  • Jaglal Y, Osman N, Omolo CA, Mocktar C, Devnarain N, Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol. 2021;64:102607.
  • Tahir N, Madni A, Li W, et al. Microfluidic fabrication and characterization of sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. Int J Pharm. 2020;581:119275.
  • Sengel-Turk CT, Alcigir ME, Ekim O, Bakar-Ates F, Hascicek C. Clinicopathological and immunohistochemical evaluation of lonidamine-entrapped lipid–polymer hybrid nanoparticles in treatment of benign prostatic hyperplasia: an experimental rat model. Eur J Pharm Biopharm. 2020;157:211-220.
  • Sengel-Turk CT, Hascicek C. Design of lipid-polymer hybrid nanoparticles for therapy of BPH: Part I. Formulation optimization using a design of experiment approach. J Drug Deliv Sci Technol. 2017;39:16-27.
  • Ramasamy T, Tran TH, Choi JY, et al. Layer-by-layer coated lipid–polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr Polym. 2014;102:653-661.
  • Yalcin TE, Ilbasmis-Tamer S, Takka S. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int J Pharm. 2018;548(1):255-262.
  • Wang J. Combination Treatment of Cervical Cancer Using Folate-Decorated, pH-Sensitive, Carboplatin and Paclitaxel Co-Loaded Lipid-Polymer Hybrid Nanoparticles. Drug Des Devel Ther. 2020;14:823-832.
  • Varenne F, Botton J, Merlet C, et al. Standardization and validation of a protocol of zeta potential measurements by electrophoretic light scattering for nanomaterial characterization. Colloids Surf A Physicochem Eng Asp. 2015;486:218-231.
  • Salminen H, Helgason T, Kristinsson B, Kristbergsson K, Weiss J. Tuning of shell thickness of solid lipid particles impacts the chemical stability of encapsulated omega-3 fish oil. J Colloid Interface Sci. 2017;490:207-216.
  • Chen Y, Deng Y, Zhu C, Xian GC. Anti prostate cancer therapy: aptamer functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother. 2020;127:110181.
  • Tahir N, Madni N, Balasubramanian V, Rehman M, Correia A, Kashif PM. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm. 2017;533:156-168.
  • Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093-2110.
  • Meyer RA, Hussmann GP, Peterson NC, Santos JL, Tuesca AD. A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery. Int J Pharm. 2022;611:121314.
  • Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117-134.
  • Farah FH. Nanocarriers as delivery systems for therapeutics agents. Int J Pharm Sci Res. 2019;10(8):1000-1022.
  • Bharali DJ, Siddiqui IA, Adhami VM, et al. Nanoparticle delivery of natural products in the prevention and treatment of cancers: current status and future prospects. Cancers (Basel). 2011;3:4024-4045.
  • Scopel R, Falcão MA, Cappellari AR, et al. Lipid-polymer hybrid nanoparticles as a targeted drug delivery system for melanoma treatment. Int J Polym Mater Polym Biomater. 2020;71:127-138.
  • Guo P, Buttaro BA, Xue HY, Tran NT, Wong HL. Lipid-polymer hybrid nanoparticles carrying linezolid improve treatment of methicillin-resistant Staphylococcus aureus (MRSA) harbored inside bone cells and biofilms. Eur J Pharm Biopharm. 2020;151:189-198.
  • Ottonelli I, Baraldi C, Ruozi B, Vandelli MA, Tosi G, Duskey JT. Advantages and challenges of polymer-lipid hybrid nanoparticles for the delivery of biotech drugs. Nanomedicine. 2025;20(7):641-643.
  • Rahat I, Yadav P, Singhal A, et al. Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. Beilstein J Nanotechnol. 2024;15:1473-1497.
  • Zhang L, Chen Q, Ma Y, Sun J. Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Appl Bio Mater. 2020;3(1):107-120.
  • Yalcin TE, Ilbasmis-Tamer S, Takka S. Antitumor activity of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs): In vitro and in vivo. Int J Pharm. 2020;580:119246.
  • Thevenot J, Troutier A, David L, Delair T, Ladavière C. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules. 2007;8(11):3651-3660.

Lipid-Polymer Hybrid Nanoparticles: Current Insight into Their Properties, Preparation Methods and Characterization

Yıl 2025, Cilt: 4 Sayı: 3, 94 - 111, 30.09.2025
https://doi.org/10.59518/farabimedj.1735159

Öz

Nano-sized drug delivery systems enhance treatment efficacy in many diseases, particularly cancer. Among these systems, there is intense interest in lipid-polymer hybrid nanoparticles (LPHNPs), which combine the advantages of lipid and polymer nanoparticles. This study aims to investigate the properties, preparation methods, and characterization of LPHNPs using Google Scholar, YÖK Thesis Center, ScienceDirect, PubMed, ResearchGate, ACS Publication, and Taylor & Francis Online as sources. The literature shows that LPHNPs with a core-shell structure have many advantages, including high stability, biocompatibility, bioavailability, and drug loading capacity, loading of both hydrophilic and hydrophobic drugs, controlled and sustained release, surface modification, and targeting. On the other hand, the inability to obtain a core-shell structure, scaling difficulties, and technical issues are disadvantages of LPHNPs. Preparation methods for LPHNPs, which affect many properties such as size, size distribution, and morphology, are divided into two main categories: the ‘two-step method’ and the ‘one-step method’. However, to overcome the disadvantages of these two methods, new techniques such as the ‘microfluidic nanoprecipitation method’, ‘multi-inlet vortex microreactor method’, and ‘one-step sonication method’ have been developed. Their efficacy and stability have been evaluated by determining their colloidal properties, drug loading capacities, morphologies, lipid shell thicknesses, release rates, efficacies, and toxicities through various in vitro and in vivo experiments. Although products in the form of liposomes or nanoparticles have been approved by health authorities, there are currently no products in phase trials or approved for LPHNPs, which are a relatively new system. However, the positive results obtained from various studies on LPHNPs are expected to reverse this situation in the near future.

Kaynakça

  • Sevinç-Özakar R. Daidzein yüklü nanopartiküler sistemlerin hazırlanması ve in vitro olarak değerlendirilmesi [Doktora tezi]. Erzurum, Türkiye: Atatürk Üniversitesi Sağlık Bilimleri Enstitüsü; 2015.
  • Yalçın TE. Lipit polimer hibrit nanopartiküler ilaç taşıyıcı sistemlerin geliştirilmesi ve değerlendirilmesi [Doktora tezi]. Ankara, Türkiye: Gazi Üniversitesi Sağlık Bilimleri Enstitüsü; 2017.
  • Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci. 2017;8(1):63-77.
  • Sengel-Turk CT, Gumustas M, Uslu B, Ozkan SA. A novel approach for drug targeting: core-shell type lipid-polymer hybrid nanocarriers. In: Mozafari MR, ed. Design of Nanostructures for Theranostics Applications. Amsterdam, Netherlands: Elsevier; 2018:69-107.
  • Lee MK. Liposomes for enhanced bioavailability of water-insoluble drugs: in vivo evidence and recent approaches. Pharmaceutics. 2020;12(3):264.
  • Müderrisoğlu AE, Çomoğlu T. İlaç taşıyıcı polimerik partiküler sistem formülasyonlarına genel bakış. Ankara Üniv Eczac Fak Derg. 2010;39(4):343-368.
  • Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85:427-443.
  • Tahir N, Haseeb MT, Madni A, et al. Lipid polymer hybrid nanoparticles: a novel approach for drug delivery. In: Role of novel drug delivery vehicles in nanobiomedicine [Internet]. London: IntechOpen; 2020. Available from: https://www.intechopen.com/chapters/72574
  • Wong HL, Bendayan R, Rauth AM, Wu XY. Development of solid lipid nanoparticles containing ionically-complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci. 2004;93:1993-2004.
  • Mohanty A, Uthaman S, Park IK. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules. 2020;25(19):4377.
  • Ghitman J, Biru EI, Stan R, Iovu H. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine. Mater Des. 2020;193:108805.
  • Garg NK, Tandel N, Jadon RS, Tyagi RK, Katare OP. Lipid–polymer hybrid nanocarrier-mediated cancer therapeutics: current status and future directions. Drug Discov Today. 2018;23(9):1610-1621.
  • Dave V, Tak K, Sohgaura H, Gupta A, Sadhu V, Reddy KR. Lipid polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J Microbiol Methods. 2019;160:130-142.
  • Chaudhary Z, Ahmed N, Rehman A, Khan GM. Lipid polymer hybrid carrier systems for cancer targeting: a review. Int J Polym Mater Polym Biomater. 2017;67(2):86-100.
  • Zhao X, Li F, Li Y, et al. Co-delivery of HIF-1α si-RNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials. 2015;46:13-25.
  • Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale. 2017;9(4):1334-1355.
  • Aoki I, Yoneyama M, Hirose J, et al. Thermo-activatable polymer-grafted liposomes for low-invasive image-guided chemotherapy. Transl Res. 2015;166(6):660-673.
  • Date T, Nimbalker V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. J Control Release. 2018;271:60-73.
  • Shi J, Xiao Z, Votruba AR, Vilos C, Farokhzad OC. Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angew Chem Int Ed Engl. 2011;50:7027-7031.
  • Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108:10980-10985.
  • Cai J, Huang H, Song W, et al. Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro. Int J Pharm. 2015;495:728-737.
  • Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid-polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine. 2019;14:1937-1952.
  • Troutier AL, Delair T, Pichot C, Ladavière C. Physicochemical and interfacial investigation of lipid/polymer particle assemblies. Langmuir. 2005;21:1305-1313.
  • Singh AP, Rathour NK, Mishra S. A comprehensive review on polymer-lipid hybrid nanoparticles. Int J Pharm Sci. 2025;3(3):1388-1403.
  • Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf B Biointerfaces. 2011;85:214-220.
  • Hasan W, Chu K, Gullapalli A, et al. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer. Nano Lett. 2012;12(1):287-292.
  • Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine. 2013;9:474-491.
  • Li Q, Cai T, Huang Y, Xia X, Cole SPC, Cai Y. A Review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials (Basel). 2017;7(6):122.
  • Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2:1696-1702.
  • Zhao P, Wang H, Yu M, et al. Paclitaxel-loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2012;81:248-256.
  • Garg NK, Singh B, Sharma G, et al. Development and characterization of single step self-assembled lipid polymer hybrid nanoparticles for effective delivery of methotrexate. RSC Adv. 2015;5:62989-62999.
  • Liu Y, Li K, Pan J, Liu B, Feng SS. Folic acid-conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of docetaxel. Biomaterials. 2010;31:330-338.
  • Zhao Y, Lin D, Wu F, et al. Discovery and in vivo evaluation of novel RGD-modified lipid-polymer hybrid nanoparticles for targeted drug delivery. Int J Mol Sci. 2014;15:17565-17576.
  • Yousaf R, Khan MI, Akhtar MF, et al. Development and in-vitro evaluation of chitosan and glyceryl monostearate-based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole. Heliyon. 2023;9(3):e14817.
  • Jadon RS, Sharma G, Garg NK, et al. Efficient in vitro and in vivo docetaxel delivery mediated by pH-sensitive LPHNPs for effective breast cancer therapy. Colloids Surf B Biointerfaces. 2021;203:111760.
  • Rajana N, Chary PS, Bhavana V, et al. Targeted delivery and apoptosis induction of CDK-4/6 inhibitor loaded folic acid decorated lipid-polymer hybrid nanoparticles in breast cancer cells. Int J Pharm. 2024;651:123787.
  • Patel M, Karampuri S, Kansara V, Vyas B. Inhalable dry powder containing lipid polymer hybrid nanoparticles of nintedanib esylate: in vitro and in vivo evaluations. J Drug Deliv Sci Technol. 2023;86:104716.
  • Carvalho IPS, Silva LB, do Amaral RLF, et al. Evaluation of in vivo and in vitro efficacy of solasonine/solamargine-loaded lipid-polymer hybrid nanoparticles against bladder cancer. Int J Pharm. 2024;661:124411.
  • Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int J Nanomedicine. 2021;16:185-199.
  • González-García D, Tapia O, Évora C, García-García P, Delgado A. Conventional and microfluidic methods: design and optimization of lipid-polymeric hybrid nanoparticles for gene therapy. Drug Deliv Transl Res. 2025;15:908-924.
  • Jangde R, Elhassan GO, Khute S, et al. Hesperidin-Loaded Lipid Polymer Hybrid Nanoparticles for Topical Delivery of Bioactive Drugs. Pharmaceuticals (Basel). 2022;15(2):211.
  • Gurny R, Peppas N, Harrington D, Banker G. Development of biodegradable and injectable latices for controlled release of potent drugs. Drug Dev Ind Pharm. 1981;7:1-25.
  • Bochicchio S, Lamberti G, Barba AA. Polymer–Lipid Pharmaceutical Nanocarriers: Innovations by New Formulations and Production Technologies. Pharmaceutics. 2021; 13(2):198.
  • Valencia PM, Basto PA, Zhang L, et al. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 2010;4(3):1671-1679.
  • Wan F, Kłodzinska SN, Jumaa H, et al. Ultrasmall TPGS–PLGA hybrid nanoparticles for site-specific delivery of antibiotics into Pseudomonas aeruginosa biofilms in lungs. ACS Appl Mater Interfaces. 2020;12:380-389.
  • Kim Y, Lee Chung B, Ma M, et al. Mass Production and Size Control of Lipid–Polymer Hybrid Nanoparticles through Controlled Microvortices. Nano Letters. 2012;12:3587-3591.
  • Fang RH, Chen KNH, Aryal S, Hu CMJ, Zhang K, Zhang L. Large scale synthesis of lipid–polymer hybrid nanoparticles using a multi-inlet vortex reactor. Langmuir. 2012;28:13824-13829.
  • Bokare A, Takami A, Kim JH, et al. Herringbone-patterned 3D-printed devices as alternatives to microfluidics for reproducible production of lipid polymer hybrid nanoparticles. ACS Omega. 2019;4(3):4650-4657.
  • Fang RH, Aryal S, Hu CMJ, Zhang L. Quick synthesis of lipid-polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir. 2010;26(22):16958-16962.
  • Jain A, Gautam L, Vishwakarma N, et al. Emergence of polymer-lipid hybrid systems in healthcare scenario. In: Tekade RK, ed. Multifunctional Nanocarriers for Contemporary Healthcare Applications. Amsterdam, Netherlands: Elsevier; 2020:448-470.
  • Zhang LI, Zhang L. Lipid-polymer hybrid nanoparticles: synthesis, characterization and applications. Nano Life. 2010;1:163-173.
  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9:1909-1915.
  • Raval N, Maheshwari R, Kalyane D, et al. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In: Tekade RK, ed. Basic Fundamentals of Drug Delivery. Amsterdam, Netherlands: Elsevier; 2019:369-400.
  • Özkahraman B, Acar I, Gök MK, Güçlü G. Poli(N-Vinilkaprolaktam) mikrojellerinin sentez şartlarının optimizasyonu. Afyon Kocatepe Univ Fen Bilim Derg. 2014;14:13-21.
  • Men W, Zhu P, Dong S, et al. Fabrication of dual pH/redox-responsive lipid-polymer hybrid nanoparticles for anticancer drug delivery and controlled release. Int J Nanomedicine. 2019;14:8001-8011.
  • Elkateb H, Tatham LM, Cauldbeck H, Niezabitowska E, Owen A, Rannard S, McDonald T. Optimization of the synthetic parameters of lipid polymer hybrid nanoparticles dual loaded with darunavir and ritonavir for the treatment of HIV. Int J Pharm. 2020;588:119794.
  • Khan MM, Madni A, Filipczak N, et al. Folate-targeted lipid chitosan hybrid nanoparticles for enhanced anti-tumor efficacy. Nanomedicine. 2020;28:102228.
  • Jaglal Y, Osman N, Omolo CA, Mocktar C, Devnarain N, Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol. 2021;64:102607.
  • Tahir N, Madni A, Li W, et al. Microfluidic fabrication and characterization of sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. Int J Pharm. 2020;581:119275.
  • Sengel-Turk CT, Alcigir ME, Ekim O, Bakar-Ates F, Hascicek C. Clinicopathological and immunohistochemical evaluation of lonidamine-entrapped lipid–polymer hybrid nanoparticles in treatment of benign prostatic hyperplasia: an experimental rat model. Eur J Pharm Biopharm. 2020;157:211-220.
  • Sengel-Turk CT, Hascicek C. Design of lipid-polymer hybrid nanoparticles for therapy of BPH: Part I. Formulation optimization using a design of experiment approach. J Drug Deliv Sci Technol. 2017;39:16-27.
  • Ramasamy T, Tran TH, Choi JY, et al. Layer-by-layer coated lipid–polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr Polym. 2014;102:653-661.
  • Yalcin TE, Ilbasmis-Tamer S, Takka S. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int J Pharm. 2018;548(1):255-262.
  • Wang J. Combination Treatment of Cervical Cancer Using Folate-Decorated, pH-Sensitive, Carboplatin and Paclitaxel Co-Loaded Lipid-Polymer Hybrid Nanoparticles. Drug Des Devel Ther. 2020;14:823-832.
  • Varenne F, Botton J, Merlet C, et al. Standardization and validation of a protocol of zeta potential measurements by electrophoretic light scattering for nanomaterial characterization. Colloids Surf A Physicochem Eng Asp. 2015;486:218-231.
  • Salminen H, Helgason T, Kristinsson B, Kristbergsson K, Weiss J. Tuning of shell thickness of solid lipid particles impacts the chemical stability of encapsulated omega-3 fish oil. J Colloid Interface Sci. 2017;490:207-216.
  • Chen Y, Deng Y, Zhu C, Xian GC. Anti prostate cancer therapy: aptamer functionalized, curcumin and cabazitaxel co-delivered, tumor targeted lipid-polymer hybrid nanoparticles. Biomed Pharmacother. 2020;127:110181.
  • Tahir N, Madni N, Balasubramanian V, Rehman M, Correia A, Kashif PM. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int J Pharm. 2017;533:156-168.
  • Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093-2110.
  • Meyer RA, Hussmann GP, Peterson NC, Santos JL, Tuesca AD. A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery. Int J Pharm. 2022;611:121314.
  • Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160:117-134.
  • Farah FH. Nanocarriers as delivery systems for therapeutics agents. Int J Pharm Sci Res. 2019;10(8):1000-1022.
  • Bharali DJ, Siddiqui IA, Adhami VM, et al. Nanoparticle delivery of natural products in the prevention and treatment of cancers: current status and future prospects. Cancers (Basel). 2011;3:4024-4045.
  • Scopel R, Falcão MA, Cappellari AR, et al. Lipid-polymer hybrid nanoparticles as a targeted drug delivery system for melanoma treatment. Int J Polym Mater Polym Biomater. 2020;71:127-138.
  • Guo P, Buttaro BA, Xue HY, Tran NT, Wong HL. Lipid-polymer hybrid nanoparticles carrying linezolid improve treatment of methicillin-resistant Staphylococcus aureus (MRSA) harbored inside bone cells and biofilms. Eur J Pharm Biopharm. 2020;151:189-198.
  • Ottonelli I, Baraldi C, Ruozi B, Vandelli MA, Tosi G, Duskey JT. Advantages and challenges of polymer-lipid hybrid nanoparticles for the delivery of biotech drugs. Nanomedicine. 2025;20(7):641-643.
  • Rahat I, Yadav P, Singhal A, et al. Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. Beilstein J Nanotechnol. 2024;15:1473-1497.
  • Zhang L, Chen Q, Ma Y, Sun J. Microfluidic methods for fabrication and engineering of nanoparticle drug delivery systems. ACS Appl Bio Mater. 2020;3(1):107-120.
  • Yalcin TE, Ilbasmis-Tamer S, Takka S. Antitumor activity of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs): In vitro and in vivo. Int J Pharm. 2020;580:119246.
  • Thevenot J, Troutier A, David L, Delair T, Ladavière C. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules. 2007;8(11):3651-3660.
Toplam 80 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Eczacılık Bilimleri, İlaç Dağıtım Teknolojileri
Bölüm Derlemeler
Yazarlar

Nurseli Saylam 0009-0000-5080-2747

Elife Nur Köse 0009-0006-0607-1688

Özlem Çoban 0000-0003-1154-7602

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 5 Temmuz 2025
Kabul Tarihi 9 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 3

Kaynak Göster

AMA Saylam N, Köse EN, Çoban Ö. Lipid-Polimer Hibrit Nanopartiküller: Özellikleri, Hazırlama Yöntemleri ve Karakterizasyonlarına Güncel Bir Bakış. Farabi Med J. Eylül 2025;4(3):94-111. doi:10.59518/farabimedj.1735159

*Dergiye gönderilecek yazılar aşağıda verilen örnek dosyalara göre hazırlanmalıdır. Dergi formatına uygun hazırlanmayan yazılar Yazar(lar)a iade edilecektir.

1. ÖZGÜN MAKALE ŞABLONU/ORIGINAL ARTICLE TEMPLATE

2. OLGU SUNUMU ŞABLONU/CASE REPORT TEMPLATE

3. DERLEME ŞABLONU/REVIEW TEMPLATE

4. BAŞLIK SAYFASI/TITLE PAGE

5. TELİF HAKKI TRANSFER FORMU/COPYRIGHT TRANSFER FORM

6. KAPAK YAZISI /COVER LETTER

**Uluslararası Tıp Dergileri Editörler Kurulu (ICMJE) yönergesi