Geniş Ölçekteki Bitki ve Hayvan Kökenli Doğal İkincil Metabolitlerin FOXM1 ile Etkileşiminin Hesaplamalı Olarak Araştırılması
Yıl 2025,
Cilt: 4 Sayı: 3, 63 - 72, 30.09.2025
Zekeriya Düzgün
,
Funda Demırtaş Korkmaz
,
Ebru Alp
Öz
FOXM1, Forkhead box ailesinden bir transkripsiyon faktörü olup, çeşitli insan malignitelerde kanserin ilerlemesi, uzak bölgelere yayılması ve kemoterapiye karşı direnç gelişmesinde rol oynayan kritik bir proto-onkogendir. Seçici ve terapötik olarak etkili FOXM1 inhibitörlerinin geliştirilmesi bu alanda önemli bir zorluk olmaya devam etmektedir. Bu çalışma, FOXM1’in DNA-bağlama alanını (DBD) hedefleyen yeni küçük molekül bileşiklerini belirlemek için çok aşamalı bir hesaplamalı yaklaşım kullanmıştır. FOXM1’in DNA-bağlama alanının kristalografik yapısına (PDB ID: 3G73) karşı geniş bir kimyasal bileşik veritabanı kullanılarak yapı-güdümlü sanal tarama işlemi gerçekleştirilmiştir. En yüksek sıralamaya sahip bileşikler, öncelikle 10-nanosaniye değerlendirmelerinden geçirilmiş, ardından kapsamlı 100-nanosaniye moleküler dinamik (MD) simülasyonları ile takip edilmiştir. Termodinamik olarak en kararlı protein-ligand komplekslerinin bağlanma afiniteleri MM/GBSA hesaplamaları ile belirlemiştir. Ön hesaplamalı tarama, -9.1 kcal/mol'den daha iyi docking skorları gösteren 21 bileşik ortaya çıkarmıştır. 10 ns MD simülasyonları sonrasında beş bileşik seçilmiş ve 100 ns MD simülasyonları bu iki bileşiğin (comp_105546, comp_112458) kararlı bağlanmasını doğrulamıştır. MM/GBSA hesaplamaları comp_112458’i en güçlü bağlayıcı (-36.25±3.5 kcal/mol) olarak belirlemiştir. Bu çalışma, FOXM1’e karşı yüksek öngörülen afinite ve kararlı bağlanma modları olan yeni kimyasal iskeletleri başarıyla tanımlamış ve hedefli antikanser ajanlarının geliştirilmesi için güçlü bir temel sağlamıştır. Bu umut verici hesaplamalı sonuçların in vitro ve in vivo çalışmalarla doğrulanması gerekmektedir.
Proje Numarası
SAĞ-BAP-A-250221-45
Kaynakça
-
Raghuwanshi S, Gartel AL. Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments. Biochim Biophys Acta Rev Cancer. 2023;1878(6):189015.
-
Raghuwanshi S, Zhang X, Arbieva Z, et al. Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies. Cell Death Discov. 2024;10(1):211.
-
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The promise of combination therapies with FOXM1 inhibitors for cancer treatment. Cancers (Basel). 2024;16(4):756.
-
Noor F, Junaid M, Almalki AH, Almaghrabi M, Ghazanfar S, Tahir ul Qamar M. Deep learning pipeline for accelerating virtual screening in drug discovery. Sci Rep. 2024;14(1):28321.
-
Zhou G, Rusnac DV, Park H, et al. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat Commun. 2024;15(1):7761.
-
Naithani U, Guleria V. Integrative computational approaches for discovery and evaluation of lead compound for drug design. Front Drug Discov. 2024;4:1362456.
-
busharkh KAN, Comert Onder F, Çınar V, Hamurcu Z, Ozpolat B, Ay M. A drug repurposing study identifies novel FOXM1 inhibitors with in vitro activity against breast cancer cells. Med Oncol. 2024;41(8):188.
-
Littler DR, Alvarez-Fernández M, Stein A, et al. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res. 2010;38(13):4527-4538.
-
Lasham J, Djurabekova A, Zickermann V, Vonck J, Sharma V. Role of protonation states in the stability of molecular dynamics simulations of high-resolution membrane protein structures. J Phys Chem B. 2024;128(10):2304-2316.
-
Wishart DS, Guo AC, Oler E, et al. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022;50(D1):D622-D631.
-
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: An open chemical toolbox. J Cheminform. 2011;3:33.
-
Bayly CI, Merz KM, Ferguson DM, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117(19):5179-5197.
-
Alhossary A, Handoko SD, Mu Y, Kwoh CK. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics. 2015;31(13):2214-2216.
-
Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25.
-
Lindorff-Larsen K, Piana S, Palmo K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinforma. 2010;78(8):1950-1958.
-
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926-935.
-
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput. 2021;17(10):6281-6291.
-
Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331.
-
Gomes AMM, Costa PJ, Machuqueiro M. Recent advances on molecular dynamics-based techniques to address drug membrane permeability with atomistic detail. BBA Adv. 2023;4:100099.
-
Pavan M, Menin S, Bassani D, Sturlese M, Moro S. Qualitative estimation of protein-ligand complex stability through thermal titration molecular dynamics simulations. J Chem Inf Model. 2022;62(22):5715-5728.
-
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449.
-
Wang E, Sun H, Wang J, et al. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem Rev. 2019;119(16):9478-9508.
-
Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-13421.
-
Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53(7):2719-2740.
-
Amaro RE, Baudry J, Chodera J, et al. Ensemble docking in drug discovery. Biophys J. 2018;114(10):2271-2278.
-
Zhang H, Dai S, Liang X, Li J, Chen Y. Mechanistic insights into the preference for tandem binding sites in DNA recognition by FOXM1. J Mol Biol. 2022;434(5):167426.
-
Swanson K, Walther P, Leitz J, et al. ADMET-AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries. Bioinformatics. 2024;40(7):btae416.
Computational Investigation of the Interaction of Large-scale Plant and Animal-Derived Natural Secondary Metabolites with FOXM1
Yıl 2025,
Cilt: 4 Sayı: 3, 63 - 72, 30.09.2025
Zekeriya Düzgün
,
Funda Demırtaş Korkmaz
,
Ebru Alp
Öz
FOXM1, a transcription factor from the Forkhead box family, serves as a crucial proto-oncogene that plays a role in cancer advancement, spread to distant sites, and resistance to chemotherapy across various human malignancies. The development of selective and therapeutically efficient FOXM1 inhibitors remains a significant challenge in the field. This study employed a multi-step computational approach to identify novel small-molecule compounds that target the DNA-binding domain (DBD) of FOXM1. A structure-guided virtual screening process was conducted using an extensive chemical compound database, evaluated against the crystallographic structure of FOXM1’s DNA-binding domain (PDB ID: 3G73). The top-ranking compounds underwent preliminary 10-nanosecond evaluations, subsequently followed by comprehensive 100-nanosecond molecular dynamics (MD) simulations. The binding affinities of the most thermodynamically stable protein-ligand complexes were determined through MM/GBSA calculations. The preliminary computational screening revealed 21 compounds that exhibited docking scores superior to -9.1 kcal/mol. Following 10 ns MD simulations, five compounds were selected, and 100 ns MD simulations confirmed the stable binding of these two compounds (comp_105546, comp_112458). MM/GBSA calculations identified comp_112458 as the most potent binder (-36.25±3.5 kcal/mol). This study successfully identified novel chemical scaffolds with high predicted affinity and stable binding modes against FOXM1, providing a strong foundation for the development of targeted anticancer agents. These promising computational results require validation through in vitro and in vivo studies.
Etik Beyan
This study does not require ethical approval as it is a computational study.
Destekleyen Kurum
This research was supported by Giresun University Scientific Research Projects Commission (Project No: SAĞ-BAP-A-250221-45).
Proje Numarası
SAĞ-BAP-A-250221-45
Teşekkür
All numerical calculations in this research were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).
Kaynakça
-
Raghuwanshi S, Gartel AL. Small-molecule inhibitors targeting FOXM1: Current challenges and future perspectives in cancer treatments. Biochim Biophys Acta Rev Cancer. 2023;1878(6):189015.
-
Raghuwanshi S, Zhang X, Arbieva Z, et al. Novel FOXM1 inhibitor STL001 sensitizes human cancers to a broad-spectrum of cancer therapies. Cell Death Discov. 2024;10(1):211.
-
Merjaneh N, Hajjar M, Lan YW, Kalinichenko VV, Kalin TV. The promise of combination therapies with FOXM1 inhibitors for cancer treatment. Cancers (Basel). 2024;16(4):756.
-
Noor F, Junaid M, Almalki AH, Almaghrabi M, Ghazanfar S, Tahir ul Qamar M. Deep learning pipeline for accelerating virtual screening in drug discovery. Sci Rep. 2024;14(1):28321.
-
Zhou G, Rusnac DV, Park H, et al. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat Commun. 2024;15(1):7761.
-
Naithani U, Guleria V. Integrative computational approaches for discovery and evaluation of lead compound for drug design. Front Drug Discov. 2024;4:1362456.
-
busharkh KAN, Comert Onder F, Çınar V, Hamurcu Z, Ozpolat B, Ay M. A drug repurposing study identifies novel FOXM1 inhibitors with in vitro activity against breast cancer cells. Med Oncol. 2024;41(8):188.
-
Littler DR, Alvarez-Fernández M, Stein A, et al. Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res. 2010;38(13):4527-4538.
-
Lasham J, Djurabekova A, Zickermann V, Vonck J, Sharma V. Role of protonation states in the stability of molecular dynamics simulations of high-resolution membrane protein structures. J Phys Chem B. 2024;128(10):2304-2316.
-
Wishart DS, Guo AC, Oler E, et al. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022;50(D1):D622-D631.
-
O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: An open chemical toolbox. J Cheminform. 2011;3:33.
-
Bayly CI, Merz KM, Ferguson DM, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117(19):5179-5197.
-
Alhossary A, Handoko SD, Mu Y, Kwoh CK. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics. 2015;31(13):2214-2216.
-
Abraham MJ, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19-25.
-
Lindorff-Larsen K, Piana S, Palmo K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinforma. 2010;78(8):1950-1958.
-
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926-935.
-
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E. Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput. 2021;17(10):6281-6291.
-
Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):4331.
-
Gomes AMM, Costa PJ, Machuqueiro M. Recent advances on molecular dynamics-based techniques to address drug membrane permeability with atomistic detail. BBA Adv. 2023;4:100099.
-
Pavan M, Menin S, Bassani D, Sturlese M, Moro S. Qualitative estimation of protein-ligand complex stability through thermal titration molecular dynamics simulations. J Chem Inf Model. 2022;62(22):5715-5728.
-
Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449.
-
Wang E, Sun H, Wang J, et al. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem Rev. 2019;119(16):9478-9508.
-
Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384-13421.
-
Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53(7):2719-2740.
-
Amaro RE, Baudry J, Chodera J, et al. Ensemble docking in drug discovery. Biophys J. 2018;114(10):2271-2278.
-
Zhang H, Dai S, Liang X, Li J, Chen Y. Mechanistic insights into the preference for tandem binding sites in DNA recognition by FOXM1. J Mol Biol. 2022;434(5):167426.
-
Swanson K, Walther P, Leitz J, et al. ADMET-AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries. Bioinformatics. 2024;40(7):btae416.