Araştırma Makalesi
BibTex RIS Kaynak Göster

FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU

Yıl 2021, , 1002 - 1015, 17.05.2021
https://doi.org/10.15237/gida.GD21018

Öz

Bu çalışmada, alıç meyvesinden mikrodalga (MDE) ve ultrases destekli ekstraksiyon (UDE) yöntemleri kullanılarak, fenolik maddeler ekstrakte edilmiştir. MDE yöntemi, farklı katı oranları, farklı ekstraksiyon süreleri ve farklı mikrodalga güçlerinde, UDE yöntemi ise, farklı katı oranları ve sonikasyon sürelerinde uygulanmıştır. Maserasyon yöntemi kontrol grubu olarak kullanılmıştır. Maserasyon, MDE ve UDE yöntemleriyle elde edilen ekstraktların toplam fenolik madde (TFM) miktarları ve renk değerleri belirlenmiştir. En yüksek TFM miktarları MDE, UDE ve maserasyon yöntemlerinde sırasıyla 9.31, 5.34 ve 3.00 mg GAE/g kuru madde olarak bulunmuştur. Bu sonuçlara göre MDE yöntemi ile elde edilen miktar, UDE ve maserasyona kıyasla sırasıyla 1.7 ve 3.1 kat daha fazladır. Bunun yanında MDE ile elde edilen L* değerlerinin daha düşük olduğu görülmüştür. Sonuç olarak, MDE yönteminin, alıç meyvesinden fenolik madde ekstraksiyonu için en uygun yöntem olduğu tespit edilmiştir.

Teşekkür

Çalışma sırasındaki desteklerinden dolayı Büşra ERDEM, Bilge DEVECİ, Ayşe BIYIKLI, Seda TAŞKIN, Birgül ERBAY, Gülce KABASAKALOĞLU, Kübra KAYIHAN ve Sanam MUSTAFAEVA’ya teşekkür ederiz.

Kaynakça

  • Akbulut, M., Çoklar, H. (2008).Physicochemical and rheological properties of sesame pastes (Tahin) processed from hulled and unhulled roasted sesame seeds and their blends at various levels. J Food Process Eng, 31: 488-502.
  • Alifakı, Y.Ö., Şakıyan Demirkol, Ö., İsci Yakan, A. (2018). Gilaburu (Vibirium Opulus K.) Meyvesinden Fenolik Bileşiklerin Ultrason Destekli Ekstraksiyonu. Gıda, 43(5): 846-855.
  • Awad, T.S., Moharram, H.A., Shaltout, O.E., Asker, D., Youssef, M.M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res Int, 48: 410–427.
  • Baltacıoğlu, H., Şahin, E. M., Karadağ, E.D. (2019). Şeftali Posasından Ultrason ve Mikrodalga Destekli Ekstraksiyon Yöntemleriyle Fenolik Bileşiklerin Eldesi. ÖHÜ Müh. Bilim. Derg, 8(2): 875-881.
  • Baysal, T., İçier, F. (2012). Gıda Mühendisliğinde Isıl Olmayan Teknolojiler. Nobel Yayıncılık, Ankara.
  • Both, S., Chemat, F., Strube, J. (2014). Extraction of polyphenols from black tea - Conventional and ultrasound assisted extraction. Ultrason Sonochem, 21(3): 1030–1034.
  • Chang, Q, Zuo, Z., Harrison, F., Chow, M.S.S. (2002). Hawthorn. J Clin Pharmacol, 42(6): 605-612.
  • Chemat, F., Zill-E-Huma, Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem, 18(4): 813–835.
  • Çoklar, H. Akbulut, M. Kılınç. S, Yıldırım, A.,Alhassan, I. (2018). Effect of Freeze, Oven and Microwave Pretreated Oven Drying on Color, Browning Index, Phenolic Compounds and Antioxidant Activity of Hawthorn (Crataegus orientalis) Fruit. Not Bot Horti Agrobo, 46(2): 449-456
  • Çoklar, H., Akbulut, M. (2016). Olgunlaşma ile Alıç Meyvesinin (Crataegus orientalis) Antioksidan Aktivite, Toplam Fenolik Madde ve Fenolik Profilindeki Değişim. Meyve Bilimi, 3: 30-37.
  • Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., Madani, K. (2014). Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind Crop Prod, 61: 31–40.
  • Fanari, F., Muntoni, G., Dachena, C., Carta, R., Desogus, F. (2020). Microwave Heating Improvement: Permittivity Characterization of Water–Ethanol and Water–NaCl Binary Mixtures. Energies, doi:10.3390/en13184861
  • Ghasempour, N., Elhami Rad, A.H., Javanmard, M., Azarpazhouh, E., Amin, M. (2019). Optimization of conditions of ultrasoundassisted extraction of phenolic compounds from orange pomace (Citrus sinensis). Int J Biol Chem, 12(2): 10–19.
  • Ghitescu, R.E., Volf, I., Carausu, C., Bühlmann, A.M., Gilca, I.A., Popa, V.I. (2015). Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason Sonochem 22: 535–541.
  • Goula, A. M., Thymiatis, K., Kaderides, K. (2016). Valorization of grape pomace: Drying behavior and ultrasound extraction of phenolics. Food Bioprod Process, 100: 132–144.
  • Ignat, I., Volf, I., Popa, V.I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126: 1821–1835.
  • Kaderides, K., Papaoikonomou, L., Serafim, M., Goula, A.M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem Eng Process, 137: 1–11.
  • Khan, M.K., Abert- Vian, M., Fabiano-Tixier, A, Dangles, O., Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem, 119(2): 851-858.
  • Knorr, D., Zenker, M., Heinz, V., Lee, D.U. (2004). Applications and potential of ultrasonics in food processing. Trends Food Sci Tech, 15: 261-266.
  • Kumari, B., Tiwari, B.K., Hossain, M.B., Rai, D. K., Brunton, N.P. (2017). Ultrasound-assisted extraction of polyphenols from potato peels: profiling and kinetic modelling. Int J Food Sci Technol, 52(6): 1432–1439.
  • Kusuma, H. S., Altway, A., Mahfud, M. (2018). Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. J Ind Eng Chem, 58: 343–348.
  • Lapornik, B., Prosek, M., Wondra, A.G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng, 71: 214-222.
  • Lopez-Avila, V. (1999). Sample preparation for environmental analysis. Crit Rev Anal Chem, 29(3): 195-230.
  • Lovrić, V., Putnik, P., Kovačević, D.B., Jukić, M., Dragović-uzelac, V. (2017). Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers. Food Technol Biotech, 55(2): 243–250.
  • Meda, V., Orsat, V., Raghavan, V. (2017). Microwave heating and the dielectric properties of foods. In The Microwave Processing of Foods (Second Edition), Woodhead:Cambridge, ISBN; 978-0-08-100528-6.
  • Nitthiyah, J., Nour, A.K.R., Akindoyo, J. (2017). Microwave Assisted Hydrodistillation - An Overview of Mechanism and Heating Properties. Aust J Basic&Appl Sci, 11(3): 22–29.
  • Özbek H.N., Koçak Yanık, D., Fadıloğlu, S., Keskin Çavdar, H., Göğüş., F. (2018). Microwave-assisted extraction of non-polar compounds from pistachio hull and characterization of extracts. Grasas Y Aceites, https://doi.org/10.3989/gya.0102181.
  • Özcan, M., Hacıseferogulları, H., Marakoglu, T., Arslan, D. (2005). Hawthorn (Crataegus spp.) fruit: some physical and chemical properties. J Food Eng, 69: 409- 415.
  • Pan, X., Niu, G., Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process. 42: 129-133.
  • Pettinato, M., Casazza, A.A., Ferrari, P. F., Palombo, D., Perego, P. (2019). Eco-sustainable recovery of antioxidants from spent coffee grounds by microwave-assisted extraction: Process optimization, kinetic modeling and biological validation. Food Bioprod Process, 114: 31–42.
  • Pico, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. Trends Anal Chem, Vol. 43: 84-99.
  • Pingret, D., Fabiano-Tixier, A.S., Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. Food Control, 31(2): 593–606.
  • Piyasena, P., Mohareb, E., McKellar, R.C. (2003). Inactivation of microbes using ultrasound: A review, Int J Food Microbiol, 87(3): 207–216.
  • Popa, V.I., Dumitru, M., Volf, I., Anghel, N. (2008). Lignin and polyphenols as allelochemicals. Industrial Crops and Products, 27: 144–149.
  • Quiroz-Reyes, C.N., Aguilar-Mendez, M., Ramirez-Ortis, M., Ronquillo-De Jesus, E. (2013). Comparative Study of Ultrasound and Maceration Techniques fort he extraction of Polyphenols from Cocoa Beans (Theobroma cacao L.). Revista Mexicana de Ingenier´ıa Qu´ımica, 12(1): 11–18.
  • Radojković, M., Moreira, M.M., Soares, C., Fátima Barroso, M., Cvetanović, A., Švarc-Gajić, J., Morals, S. Delerue-Matos, C. (2018). Microwave-assisted extraction of phenolic compounds from Morus nigra leaves: optimization and characterization of the antioxidant activity and phenolic composition. J ChemTechnol Biotechnol, 93: 1684–1693.
  • Seçmen, Ö., Gemici, Y., Leblebici, Y., Görk, G., Bekat, L. (1989). Tohumlu Bitkiler Sistematiği, E.Ü. Fen Fak. İzmir. No: 116, 2. Baskı, 396.
  • Swamy, G. J., Muthukumarappan, K. (2017). Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chem, 220: 108–114.
  • Wei, Z.F., Zhao, R.N., Dong, L.J., Zhao, X.Y., Su, J.X., Zhao, M., Li, L., Bian, Y. J., Zhang, L. J. (2018). Dual-cooled solvent-free microwave extraction of Salvia officinalis L. essential oil and evaluation of its antimicrobial activity. Ind Crops Prod, 120: 71–76.
  • Xia, T., Zhang, C., Oyler, N.A., Chen, X. (2013). Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater, 25(47): 6905-6910.
  • Xu, D. P., Zheng, J., Zhou, Y., Li, Y., Li, S. and Li, H.B. 2017. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem, 217: 552-559.
  • Zhu, Z., Guan, Q., Guo, Y., He, J., Liu, G., Li, S., Barba, F.J., Jaffrin M.Y. (2016). Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology. Int Agrophys, 30: 113-122.

EXTRACTION OF PHENOLIC COMPOUNDS FROM HAWTHORN FRUIT (Creategus monogyna) USING MICROWAVE AND ULTRASOUND ASSISTED METHODS

Yıl 2021, , 1002 - 1015, 17.05.2021
https://doi.org/10.15237/gida.GD21018

Öz

In this study, phenolic compounds were extracted from hawthorn fruit using microwave (MAE) and ultrasound assisted extraction (UAE) methods. The MAE was applied at different solids ratios, different extraction times and different microwave powers. UAE was applied at different solids ratios and sonication times. The maceration method was used as the control group. Total phenolic content (TPC) and color values of the extracts were examined. The highest values of TPC were determined as 9.31, 5.34, and 3.00 mg GAE/g dry matter in MAE, UAE, and maceration methods, respectively. Based on these results, it was found that the TPC value of the MAE method was 1.7 and 3.1-fold more than those of UAE and maceration, respectively. In addition, it was observed that L* values of MAE samples were lowest among others. It was concluded that the MAE is the most suitable method for the extraction of phenolic compounds from hawthorn fruit.

Kaynakça

  • Akbulut, M., Çoklar, H. (2008).Physicochemical and rheological properties of sesame pastes (Tahin) processed from hulled and unhulled roasted sesame seeds and their blends at various levels. J Food Process Eng, 31: 488-502.
  • Alifakı, Y.Ö., Şakıyan Demirkol, Ö., İsci Yakan, A. (2018). Gilaburu (Vibirium Opulus K.) Meyvesinden Fenolik Bileşiklerin Ultrason Destekli Ekstraksiyonu. Gıda, 43(5): 846-855.
  • Awad, T.S., Moharram, H.A., Shaltout, O.E., Asker, D., Youssef, M.M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res Int, 48: 410–427.
  • Baltacıoğlu, H., Şahin, E. M., Karadağ, E.D. (2019). Şeftali Posasından Ultrason ve Mikrodalga Destekli Ekstraksiyon Yöntemleriyle Fenolik Bileşiklerin Eldesi. ÖHÜ Müh. Bilim. Derg, 8(2): 875-881.
  • Baysal, T., İçier, F. (2012). Gıda Mühendisliğinde Isıl Olmayan Teknolojiler. Nobel Yayıncılık, Ankara.
  • Both, S., Chemat, F., Strube, J. (2014). Extraction of polyphenols from black tea - Conventional and ultrasound assisted extraction. Ultrason Sonochem, 21(3): 1030–1034.
  • Chang, Q, Zuo, Z., Harrison, F., Chow, M.S.S. (2002). Hawthorn. J Clin Pharmacol, 42(6): 605-612.
  • Chemat, F., Zill-E-Huma, Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason Sonochem, 18(4): 813–835.
  • Çoklar, H. Akbulut, M. Kılınç. S, Yıldırım, A.,Alhassan, I. (2018). Effect of Freeze, Oven and Microwave Pretreated Oven Drying on Color, Browning Index, Phenolic Compounds and Antioxidant Activity of Hawthorn (Crataegus orientalis) Fruit. Not Bot Horti Agrobo, 46(2): 449-456
  • Çoklar, H., Akbulut, M. (2016). Olgunlaşma ile Alıç Meyvesinin (Crataegus orientalis) Antioksidan Aktivite, Toplam Fenolik Madde ve Fenolik Profilindeki Değişim. Meyve Bilimi, 3: 30-37.
  • Dahmoune, F., Spigno, G., Moussi, K., Remini, H., Cherbal, A., Madani, K. (2014). Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind Crop Prod, 61: 31–40.
  • Fanari, F., Muntoni, G., Dachena, C., Carta, R., Desogus, F. (2020). Microwave Heating Improvement: Permittivity Characterization of Water–Ethanol and Water–NaCl Binary Mixtures. Energies, doi:10.3390/en13184861
  • Ghasempour, N., Elhami Rad, A.H., Javanmard, M., Azarpazhouh, E., Amin, M. (2019). Optimization of conditions of ultrasoundassisted extraction of phenolic compounds from orange pomace (Citrus sinensis). Int J Biol Chem, 12(2): 10–19.
  • Ghitescu, R.E., Volf, I., Carausu, C., Bühlmann, A.M., Gilca, I.A., Popa, V.I. (2015). Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason Sonochem 22: 535–541.
  • Goula, A. M., Thymiatis, K., Kaderides, K. (2016). Valorization of grape pomace: Drying behavior and ultrasound extraction of phenolics. Food Bioprod Process, 100: 132–144.
  • Ignat, I., Volf, I., Popa, V.I. (2011). A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126: 1821–1835.
  • Kaderides, K., Papaoikonomou, L., Serafim, M., Goula, A.M. (2019). Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem Eng Process, 137: 1–11.
  • Khan, M.K., Abert- Vian, M., Fabiano-Tixier, A, Dangles, O., Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem, 119(2): 851-858.
  • Knorr, D., Zenker, M., Heinz, V., Lee, D.U. (2004). Applications and potential of ultrasonics in food processing. Trends Food Sci Tech, 15: 261-266.
  • Kumari, B., Tiwari, B.K., Hossain, M.B., Rai, D. K., Brunton, N.P. (2017). Ultrasound-assisted extraction of polyphenols from potato peels: profiling and kinetic modelling. Int J Food Sci Technol, 52(6): 1432–1439.
  • Kusuma, H. S., Altway, A., Mahfud, M. (2018). Solvent-free microwave extraction of essential oil from dried patchouli (Pogostemon cablin Benth) leaves. J Ind Eng Chem, 58: 343–348.
  • Lapornik, B., Prosek, M., Wondra, A.G. (2005). Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng, 71: 214-222.
  • Lopez-Avila, V. (1999). Sample preparation for environmental analysis. Crit Rev Anal Chem, 29(3): 195-230.
  • Lovrić, V., Putnik, P., Kovačević, D.B., Jukić, M., Dragović-uzelac, V. (2017). Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers. Food Technol Biotech, 55(2): 243–250.
  • Meda, V., Orsat, V., Raghavan, V. (2017). Microwave heating and the dielectric properties of foods. In The Microwave Processing of Foods (Second Edition), Woodhead:Cambridge, ISBN; 978-0-08-100528-6.
  • Nitthiyah, J., Nour, A.K.R., Akindoyo, J. (2017). Microwave Assisted Hydrodistillation - An Overview of Mechanism and Heating Properties. Aust J Basic&Appl Sci, 11(3): 22–29.
  • Özbek H.N., Koçak Yanık, D., Fadıloğlu, S., Keskin Çavdar, H., Göğüş., F. (2018). Microwave-assisted extraction of non-polar compounds from pistachio hull and characterization of extracts. Grasas Y Aceites, https://doi.org/10.3989/gya.0102181.
  • Özcan, M., Hacıseferogulları, H., Marakoglu, T., Arslan, D. (2005). Hawthorn (Crataegus spp.) fruit: some physical and chemical properties. J Food Eng, 69: 409- 415.
  • Pan, X., Niu, G., Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process. 42: 129-133.
  • Pettinato, M., Casazza, A.A., Ferrari, P. F., Palombo, D., Perego, P. (2019). Eco-sustainable recovery of antioxidants from spent coffee grounds by microwave-assisted extraction: Process optimization, kinetic modeling and biological validation. Food Bioprod Process, 114: 31–42.
  • Pico, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. Trends Anal Chem, Vol. 43: 84-99.
  • Pingret, D., Fabiano-Tixier, A.S., Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. Food Control, 31(2): 593–606.
  • Piyasena, P., Mohareb, E., McKellar, R.C. (2003). Inactivation of microbes using ultrasound: A review, Int J Food Microbiol, 87(3): 207–216.
  • Popa, V.I., Dumitru, M., Volf, I., Anghel, N. (2008). Lignin and polyphenols as allelochemicals. Industrial Crops and Products, 27: 144–149.
  • Quiroz-Reyes, C.N., Aguilar-Mendez, M., Ramirez-Ortis, M., Ronquillo-De Jesus, E. (2013). Comparative Study of Ultrasound and Maceration Techniques fort he extraction of Polyphenols from Cocoa Beans (Theobroma cacao L.). Revista Mexicana de Ingenier´ıa Qu´ımica, 12(1): 11–18.
  • Radojković, M., Moreira, M.M., Soares, C., Fátima Barroso, M., Cvetanović, A., Švarc-Gajić, J., Morals, S. Delerue-Matos, C. (2018). Microwave-assisted extraction of phenolic compounds from Morus nigra leaves: optimization and characterization of the antioxidant activity and phenolic composition. J ChemTechnol Biotechnol, 93: 1684–1693.
  • Seçmen, Ö., Gemici, Y., Leblebici, Y., Görk, G., Bekat, L. (1989). Tohumlu Bitkiler Sistematiği, E.Ü. Fen Fak. İzmir. No: 116, 2. Baskı, 396.
  • Swamy, G. J., Muthukumarappan, K. (2017). Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chem, 220: 108–114.
  • Wei, Z.F., Zhao, R.N., Dong, L.J., Zhao, X.Y., Su, J.X., Zhao, M., Li, L., Bian, Y. J., Zhang, L. J. (2018). Dual-cooled solvent-free microwave extraction of Salvia officinalis L. essential oil and evaluation of its antimicrobial activity. Ind Crops Prod, 120: 71–76.
  • Xia, T., Zhang, C., Oyler, N.A., Chen, X. (2013). Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater, 25(47): 6905-6910.
  • Xu, D. P., Zheng, J., Zhou, Y., Li, Y., Li, S. and Li, H.B. 2017. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem, 217: 552-559.
  • Zhu, Z., Guan, Q., Guo, Y., He, J., Liu, G., Li, S., Barba, F.J., Jaffrin M.Y. (2016). Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology. Int Agrophys, 30: 113-122.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Merve Sılanur Yılmaz 0000-0002-3184-1780

Naciye Kutlu Kantar 0000-0002-4075-8823

Gizem Erdem 0000-0002-7855-9096

Özge Şakıyan Demirkol 0000-0002-0778-8211

Asli İşci Yakan 0000-0002-8319-0414

Yayımlanma Tarihi 17 Mayıs 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yılmaz, M. S., Kutlu Kantar, N., Erdem, G., Şakıyan Demirkol, Ö., vd. (2021). FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU. Gıda, 46(4), 1002-1015. https://doi.org/10.15237/gida.GD21018
AMA Yılmaz MS, Kutlu Kantar N, Erdem G, Şakıyan Demirkol Ö, İşci Yakan A. FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU. GIDA. Mayıs 2021;46(4):1002-1015. doi:10.15237/gida.GD21018
Chicago Yılmaz, Merve Sılanur, Naciye Kutlu Kantar, Gizem Erdem, Özge Şakıyan Demirkol, ve Asli İşci Yakan. “FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus Monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU”. Gıda 46, sy. 4 (Mayıs 2021): 1002-15. https://doi.org/10.15237/gida.GD21018.
EndNote Yılmaz MS, Kutlu Kantar N, Erdem G, Şakıyan Demirkol Ö, İşci Yakan A (01 Mayıs 2021) FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU. Gıda 46 4 1002–1015.
IEEE M. S. Yılmaz, N. Kutlu Kantar, G. Erdem, Ö. Şakıyan Demirkol, ve A. İşci Yakan, “FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU”, GIDA, c. 46, sy. 4, ss. 1002–1015, 2021, doi: 10.15237/gida.GD21018.
ISNAD Yılmaz, Merve Sılanur vd. “FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus Monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU”. Gıda 46/4 (Mayıs 2021), 1002-1015. https://doi.org/10.15237/gida.GD21018.
JAMA Yılmaz MS, Kutlu Kantar N, Erdem G, Şakıyan Demirkol Ö, İşci Yakan A. FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU. GIDA. 2021;46:1002–1015.
MLA Yılmaz, Merve Sılanur vd. “FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus Monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU”. Gıda, c. 46, sy. 4, 2021, ss. 1002-15, doi:10.15237/gida.GD21018.
Vancouver Yılmaz MS, Kutlu Kantar N, Erdem G, Şakıyan Demirkol Ö, İşci Yakan A. FENOLİK BİLEŞİKLERİN ALIÇ MEYVESİNDEN (Creategus monogyna) MİKRODALGA VE ULTRASES DESTEKLİ YÖNTEMLER İLE EKSTRAKSİYONU. GIDA. 2021;46(4):1002-15.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/