Araştırma Makalesi
BibTex RIS Kaynak Göster

APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY

Yıl 2018, Cilt: 43 Sayı: 2, 264 - 272, 27.02.2018
https://doi.org/10.15237/gida.GD17087

Öz

Microwave-assisted extraction
(MAE) is commonly used in recent years as an innovative approach to enhancing
the quality of extracts while decreasing the extraction time and the solvent
consumption in comparison to conventional techniques. In this study, the
influence of microwave power, solid concentration and extraction time on total
phenolic content (TPC), colour values and dielectric properties of Caucasian
whortleberry were investigated. The process variables were optimized using
response surface methodology. The highest TPC from Caucasian whortleberry was
obtained at an extraction time of 3.5 min, a solid concentration of 15% and a
microwave power of 360 W. The results showed that L* and a* values of the
extracts were highly correlated with TPC by a second-order polynomial.
Moreover, no significant difference was found in dielectric properties between
the groups. 

Kaynakça

  • Jacquemart, A.L. (1996). Biological Flora of the British Isles: Vaccinium uliginosum L. J Ecol, 84: 771–785.
  • Prior, R.L., Cao, G., Martin, A., Sofic, E., Mcewen, J., O’brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., Mainland, C.M. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem, 46: 2686-2693.
  • Giovanelli, G., Buratti, S. (2009). Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem, 112: 903-908.
  • Kislik, V.S. (2012). Engineering development of solvent extraction processes, solvent extraction. Elsevier, Amsterdam, Netherland, pp. 157-184.
  • Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., Chemat, F. (2015). Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry, 24: 72-79.
  • Ivanovic, J., Tadic, V., Dimitrijevic, S., Stamenic, M., Petrovic, S., Zizovic, I. (2014). Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Čačanska Bestrna”. Ind Crops Prod, 53: 274–281.
  • Chen, M., Zhao, Y., Yu, S. (2015). Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem, 172: 543-550.
  • Karabegovic, I.T., Stojicevic, S.S., Velickovic, D.T., Todorovic, Z.B., Nikolic, N.C., Lazic, M.L. (2014). The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Ind Crops Prod, 54: 142-148.
  • Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem, 166: 585–595.
  • Setyaningsih, W., Saputro, I.E., Palma, M., Barroso, C.G. (2015). Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains. Food Chem, 169: 141-149.
  • Gharekhani, M., Ghorbani, M., Rasoulnejad, N. (2012). Microwave-assisted extraction of phenolic and flavonoid compounds from Eucalyptus camaldulensis dehn leaves as compared with ultrasound-assisted extraction. Latin Am Appl Res, 42(3): 305-310.
  • Jokic, S., Cvjetko, M., Bozic, D., Fabek, S., Toth, N., Vorkapic-Furac, J., Redovnikovic, I.R. (2012). Optimisation of microwave-assisted extraction of phenolic compounds from broccoli and its antioxidant activity. Int J Food Sci Technol, 47(12): 2613-2619.
  • Krishnaswamy, K., Orsat, V., Gariepy, Y., Thangavel, K. (2013). Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food Bioprocess Technol, 6(2): 441-455.
  • Simic, V.M., Rajkovic, K.M., Stojicevic, S.S., Velickovic, D.T., Nikolic, N.C., Lazic, M.L., Karabegovic, I.T. (2016). Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Sep Purif Technol, 160: 89–97.
  • Sookjitsumran, W., Devahastin, S., Mujumdar, A.S., Chiewchan, N. (2016). Comparative evaluation of microwave-assisted extraction and preheated solvent extraction of bioactive compounds from a plant material: a case study with cabbages. Int J Food Sci Technol, 51(11): 2440-2449.
  • Ardestani, S.B., Sahari, M.A., Barzegar, M. (2016). Effect of extraction and processing conditions on anthocyanins of barberry. J Food Process Pres, 40(6): 1407-1420.
  • Zhou, Y., Zhao, X., Huang, H. (2015). Effects of pulsed electric fields on anthocyanin extraction yield of blueberry processing by-products. J Food Process Pres, 39: 1898–1904.
  • Zheng, X., Zu, X., Liu, C., Sun, Y., Lin, Z., Liu, H. (2013). Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Sep Purif Technol, 104: 17-25.
  • Routray, W., Orsat, V. (2014). MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind Crops Prod, 58: 36–45.
  • Routray, W., Orsat, V., Gariepy, Y. (2014). Effect of different drying methods on the microwave extraction of phenolic components and antioxidant activity of high bush blueberry leaves. Drying Technol, 32: 1888–1904.
  • Jakobek, L., Drenjancevic, M., Jukic, V., Šeruga, M. (2012). Phenolic acids, flavonols, anthocyanins and antiradical activity of ‘‘Nero”, ‘‘Viking”, ‘‘Galicianka” and wild chokeberries, Sci Hortic, 147: 56–63.
  • Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: Automation and comparison with manual methods. Am J Enol Vitic, 28: 49–55.
  • Sipahioglu, O., Barringer, S.A. (2003). Dielectric properties of vegetables and fruits as a function of temperature, ash and moisture content. J Food Sci, 68: 234–239.
  • Gao, Z.J., Lin, H., Xiao, H.W. (2008). Air-impingement de-shelling of chestnuts (C. mollisima): process parameter optimization. Int J Food Eng, 4(2): 15.
  • Wrolstad, R.E., Durst, R.W., Lee, J. (2005). Tracking color and pigment changes in anthocyanin products. Trends Food Sci Technol, 16: 423–428.
  • Yang, Z., Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innov Food Sci Emerg Technol, 11: 470-476.
  • Datta, A.K., Anantheswaran, R.C. (2001) Handbook of Microwave Technology and Applications. Marcel Dekker, Inc., NY, USA.

LİKAPADAN (Vaccinium arctostaphylos) TOPLAM FENOLİK BİLEŞİKLERİN MİKRODALGA DESTEKLİ EKSTRAKSİYONUNUN YANIT YÜZEY YÖNTEMİ İLE OPTİMİZASYONU

Yıl 2018, Cilt: 43 Sayı: 2, 264 - 272, 27.02.2018
https://doi.org/10.15237/gida.GD17087

Öz

Mikrodalga-destekli ektraksiyon (MAE), konvansiyonel
tekniklerle ile karşılaştırıldığında ekstraksiyon süresi ile solvent tüketimini
düşürürken, ekstrakt kalitesini arttırması nedeniyle yenilikçi bir yöntem
olarak son yıllarda yaygın bir şekilde kullanılmaktadır. Bu çalışmada,
mikrodalga gücü, katı konsantrasyonu ve ekstraksiyon süresinin, likapa
meyvesinin toplam fenolik içeriği (TPC), renk değerleri ve dielektrik
özellikleri üzerine etkisi incelenmiştir. Proses değişkenleri yanıt yüzey
yöntemi kullanılarak optimize edilmiştir. Likapadan en yüksek TPC, 360 W
mikrodalga gücü, %15 katı konsantrasyonu ve 3.5 dakika ekstraksiyon süresi
koşullarında elde edilmiştir. Sonuçlara bakıldığında, ekstrakların L* ve
a* 
değerleri, TPC ile ikinci dereceden
polinom ile yüksek korelasyon göstermiştir. Ayrıca, grupların dielektrik
özellikleri arasında anlamlı fark bulunamamıştır.

Kaynakça

  • Jacquemart, A.L. (1996). Biological Flora of the British Isles: Vaccinium uliginosum L. J Ecol, 84: 771–785.
  • Prior, R.L., Cao, G., Martin, A., Sofic, E., Mcewen, J., O’brien, C., Lischner, N., Ehlenfeldt, M., Kalt, W., Krewer, G., Mainland, C.M. (1998). Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem, 46: 2686-2693.
  • Giovanelli, G., Buratti, S. (2009). Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem, 112: 903-908.
  • Kislik, V.S. (2012). Engineering development of solvent extraction processes, solvent extraction. Elsevier, Amsterdam, Netherland, pp. 157-184.
  • Boukroufa, M., Boutekedjiret, C., Petigny, L., Rakotomanomana, N., Chemat, F. (2015). Bio-refinery of orange peels waste: a new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrasonics Sonochemistry, 24: 72-79.
  • Ivanovic, J., Tadic, V., Dimitrijevic, S., Stamenic, M., Petrovic, S., Zizovic, I. (2014). Antioxidant properties of the anthocyanin-containing ultrasonic extract from blackberry cultivar “Čačanska Bestrna”. Ind Crops Prod, 53: 274–281.
  • Chen, M., Zhao, Y., Yu, S. (2015). Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem, 172: 543-550.
  • Karabegovic, I.T., Stojicevic, S.S., Velickovic, D.T., Todorovic, Z.B., Nikolic, N.C., Lazic, M.L. (2014). The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Ind Crops Prod, 54: 142-148.
  • Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem, 166: 585–595.
  • Setyaningsih, W., Saputro, I.E., Palma, M., Barroso, C.G. (2015). Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains. Food Chem, 169: 141-149.
  • Gharekhani, M., Ghorbani, M., Rasoulnejad, N. (2012). Microwave-assisted extraction of phenolic and flavonoid compounds from Eucalyptus camaldulensis dehn leaves as compared with ultrasound-assisted extraction. Latin Am Appl Res, 42(3): 305-310.
  • Jokic, S., Cvjetko, M., Bozic, D., Fabek, S., Toth, N., Vorkapic-Furac, J., Redovnikovic, I.R. (2012). Optimisation of microwave-assisted extraction of phenolic compounds from broccoli and its antioxidant activity. Int J Food Sci Technol, 47(12): 2613-2619.
  • Krishnaswamy, K., Orsat, V., Gariepy, Y., Thangavel, K. (2013). Optimization of microwave-assisted extraction of phenolic antioxidants from grape seeds (Vitis vinifera). Food Bioprocess Technol, 6(2): 441-455.
  • Simic, V.M., Rajkovic, K.M., Stojicevic, S.S., Velickovic, D.T., Nikolic, N.C., Lazic, M.L., Karabegovic, I.T. (2016). Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Sep Purif Technol, 160: 89–97.
  • Sookjitsumran, W., Devahastin, S., Mujumdar, A.S., Chiewchan, N. (2016). Comparative evaluation of microwave-assisted extraction and preheated solvent extraction of bioactive compounds from a plant material: a case study with cabbages. Int J Food Sci Technol, 51(11): 2440-2449.
  • Ardestani, S.B., Sahari, M.A., Barzegar, M. (2016). Effect of extraction and processing conditions on anthocyanins of barberry. J Food Process Pres, 40(6): 1407-1420.
  • Zhou, Y., Zhao, X., Huang, H. (2015). Effects of pulsed electric fields on anthocyanin extraction yield of blueberry processing by-products. J Food Process Pres, 39: 1898–1904.
  • Zheng, X., Zu, X., Liu, C., Sun, Y., Lin, Z., Liu, H. (2013). Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Sep Purif Technol, 104: 17-25.
  • Routray, W., Orsat, V. (2014). MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind Crops Prod, 58: 36–45.
  • Routray, W., Orsat, V., Gariepy, Y. (2014). Effect of different drying methods on the microwave extraction of phenolic components and antioxidant activity of high bush blueberry leaves. Drying Technol, 32: 1888–1904.
  • Jakobek, L., Drenjancevic, M., Jukic, V., Šeruga, M. (2012). Phenolic acids, flavonols, anthocyanins and antiradical activity of ‘‘Nero”, ‘‘Viking”, ‘‘Galicianka” and wild chokeberries, Sci Hortic, 147: 56–63.
  • Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: Automation and comparison with manual methods. Am J Enol Vitic, 28: 49–55.
  • Sipahioglu, O., Barringer, S.A. (2003). Dielectric properties of vegetables and fruits as a function of temperature, ash and moisture content. J Food Sci, 68: 234–239.
  • Gao, Z.J., Lin, H., Xiao, H.W. (2008). Air-impingement de-shelling of chestnuts (C. mollisima): process parameter optimization. Int J Food Eng, 4(2): 15.
  • Wrolstad, R.E., Durst, R.W., Lee, J. (2005). Tracking color and pigment changes in anthocyanin products. Trends Food Sci Technol, 16: 423–428.
  • Yang, Z., Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innov Food Sci Emerg Technol, 11: 470-476.
  • Datta, A.K., Anantheswaran, R.C. (2001) Handbook of Microwave Technology and Applications. Marcel Dekker, Inc., NY, USA.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Diğer ID GD17087
Bölüm Makaleler
Yazarlar

Naciye Kutlu Kantar

Cansu Bıçak Bu kişi benim

Duygu Ekinci Bu kişi benim

Ezgi Kılıç Bu kişi benim

Naz Erdem Bu kişi benim

Aslı İşci Yakan

Özge Şakıyan Demirkol

Yayımlanma Tarihi 27 Şubat 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 43 Sayı: 2

Kaynak Göster

APA Kutlu Kantar, N., Bıçak, C., Ekinci, D., Kılıç, E., vd. (2018). APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY. Gıda, 43(2), 264-272. https://doi.org/10.15237/gida.GD17087
AMA Kutlu Kantar N, Bıçak C, Ekinci D, Kılıç E, Erdem N, İşci Yakan A, Şakıyan Demirkol Ö. APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY. GIDA. Şubat 2018;43(2):264-272. doi:10.15237/gida.GD17087
Chicago Kutlu Kantar, Naciye, Cansu Bıçak, Duygu Ekinci, Ezgi Kılıç, Naz Erdem, Aslı İşci Yakan, ve Özge Şakıyan Demirkol. “APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY”. Gıda 43, sy. 2 (Şubat 2018): 264-72. https://doi.org/10.15237/gida.GD17087.
EndNote Kutlu Kantar N, Bıçak C, Ekinci D, Kılıç E, Erdem N, İşci Yakan A, Şakıyan Demirkol Ö (01 Şubat 2018) APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY. Gıda 43 2 264–272.
IEEE N. Kutlu Kantar, C. Bıçak, D. Ekinci, E. Kılıç, N. Erdem, A. İşci Yakan, ve Ö. Şakıyan Demirkol, “APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY”, GIDA, c. 43, sy. 2, ss. 264–272, 2018, doi: 10.15237/gida.GD17087.
ISNAD Kutlu Kantar, Naciye vd. “APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY”. Gıda 43/2 (Şubat 2018), 264-272. https://doi.org/10.15237/gida.GD17087.
JAMA Kutlu Kantar N, Bıçak C, Ekinci D, Kılıç E, Erdem N, İşci Yakan A, Şakıyan Demirkol Ö. APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY. GIDA. 2018;43:264–272.
MLA Kutlu Kantar, Naciye vd. “APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY”. Gıda, c. 43, sy. 2, 2018, ss. 264-72, doi:10.15237/gida.GD17087.
Vancouver Kutlu Kantar N, Bıçak C, Ekinci D, Kılıç E, Erdem N, İşci Yakan A, Şakıyan Demirkol Ö. APPLICATION OF RESPONSE SURFACE METHODOLOGY TO OPTIMIZE MICROWAVE-ASSISTED EXTRACTION OF TOTAL PHENOLIC COMPOUNDS FROM CAUCASIAN WHORTLEBERRY. GIDA. 2018;43(2):264-72.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/