Araştırma Makalesi
BibTex RIS Kaynak Göster

SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ

Yıl 2019, Cilt: 44 Sayı: 4, 742 - 757, 01.08.2019
https://doi.org/10.15237/gida.GD19081

Öz

Bu çalışmada, turşu üretiminde
kullanılabilecek starter kültürler geliştirmek amacı ile, seçilmiş endojen
(yerel) Lactobacillus plantarum (MF513, MF377, MF213) ve L. plantarum
MF513-Pediococcus ethanolidurans MF179 karışım suşları starter kültür
olarak kullanılmış; fermantasyon süresince ve 6 aylık depolama aşamasında
turşuların kimyasal, mikrobiyolojik, duyusal özellikleri değerlendirilmiştir.
Starter kültürlerin fermantasyon sonuna kadar stabilitelerini koruyup
koruyamadıkları, saf kültürlerin fermantasyonun başlangıcı ve bitimindeki hücre
protein profilleri (SDS-PAGE) karşılaştırılarak belirlenmiştir. Karışık kültür
kullanılarak üretilen turşularda en yüksek asitlik değerine (% 0.87)
fermantasyonun 20. gününde ulaşıldığı belirlenmiş ve pH değeri 3.26 olarak
ölçülmüştür. Kontrol örneğinde asitlik artışı starter kullanılan turşu
örneklerine kıyasla daha yavaş gerçekleşmiştir. L. plantarum suşlarının
fermantasyon sonuna kadar stabilitelerini korudukları ve ortamdaki baskın
mikroorganizmalar oldukları belirlenmiştir. Depolama sonrası en yüksek laktik
asit (1.62 g/100 mL) ve en düşük etil alkol (0.26 g/100 mL) miktarı MF513-MF179
suşlarının kullanıldığı turşu örneğinde ölçülmüştür. 

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Proje Numarası

108O491

Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) (Proje No. 108O491) tarafından desteklenmiştir.

Kaynakça

  • Akpinar-Bayizit, A., Ozcan-Yilsay, T., Yilmaz, L. (2007). Study on the use of yoghurt, whey, lactic acid and starter culture on carrot fermentation. Pol. J. Food. Nutr. Scı., 57(2): 147-150.
  • Aktan, N., Yücel, U., Kalkan, H. (1998). Turşu teknolojisi. Ege Üniversitesi Ege Meslek Yüksek Okulu Yayınları, 23, İzmir, Türkiye, 138 s.
  • Angelis, M., Corsetti, A., Tosti, N., Rossi, J., Corbo, M.R., Gorbetti, M. (2001). Characterization of non-starter lactic acid bacteria from Italian ewe cheeses based on phenotypic, genotypic, and cell wall protein analyses. Appl. Environ. Microbiol., 67(5): 2011-2020.
  • Anonymous (2005). Merck Gıda Mikrobiyolojisi Uygulamaları. Halkman, A.K. (ed). Başak Matbaacılık Ltd. Şti., Ankara, 358 s.
  • Anonymous (1993). Hıyar turşusu standardı, TS 11112. Türk Standartları Enstitüsü, Ankara.
  • Bağder Elmacı, S., Tokatlı, M., Dursun, D., Özçelik, F., Şanlıbaba, P. (2015). Phenotypic and genotypic identification of lactic acid bacteria isolated from traditional pickles of the Çubuk region in Turkey. Folia Microbiol, 60: 241-251.
  • Ballesteros, C., Palop, L., Sanchez, I. (1999). Influence of sodium chloride concentration on the controlled lactic acid fermentation of “Almagro” eggplants. Int. J. Food Microb., 53: 13–20.
  • Beganović, J., Kos, B., Pavunc, A.L., Uroić, K., Jokić, M., Šušković, J. (2014). Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiol. Res., 169(8): 623-632.
  • Bevilacqua, A., Altieri, C., Corbo, M.R., Sinigaglia, M., Ouoba, L.I.I. (2010). Characterization of lactic acid bacteria isolated from Italian Bella di Cerignola table olives: selection of potential multifunctional starter cultures. J. Food Sci., 75(8): 536-544.
  • Bonomo, M.G., Ricciardi, A., Zotta, T., Parente, E., Salzano, G. (2008). Molecular and technological characterization of lactic acid bacteria from traditional fermented sausages of Basilicata region (Southern Italy). Meat Sci, 80: 1238-1248.
  • Breidt, F., McFeeters, R. F., Perez-Diaz, I., Lee, C. (2013). Fermented vegetables. In Food Microbiology: Fundamentals and Frontiers. Doyle, M.P., Buchanan, R.L. (Ed.), ASM Press, Washington D.C., pp. 841-855.
  • Çetin, B. (2011). Production of probiotic mixed pickles (Turşu) and microbiological properties. Afr. J. Biotechnol., 10(66): 14926-14931.
  • Çon, A.H., Karasu, N. (2009). Determination of antogonostic starter cultures for pickle and olive fermentation processes. Czech. J. Food. Sci., 27(3): 185-193.
  • Daeschel, M.A., Fleming, H.P. (1987). Achieving pure culture cucumber fermentations. Review, A. Development in Industrial Microbiology Pierce. G.E. Society for Industrial Microbiology Arlington, V.A.,28: 141-148.
  • Daeschel, M.A., Andersson, R.E., Fleming, H.P. (1987). Microbial ecology of fermenting plant materials. FEMS Microbiol. Rev., 46: 357-367.
  • Daeschel, M.A., Fleming, H.P. (1984). Selection of lactic acid bacteria for use in vegetable fermentations. Food Microbiol., 1: 303-313.
  • Di Cagno, R., Coda, R., De Angelis, M., Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol., 33(1): 1-10.
  • Erten, H., Boyacı-Gündüz, C.P., Ağırman, B., Cabaroğlu, T. (2016). Fermentation, Pickling, and Turkish Table Olives. In: Handbook of Vegetable Preservation and Processing, Hui, Y.H., Evranuz, E.Ö., Bingöl, G., Erten, H., Jaramillo-Flores, M.E. CRC Press, Taylor&Francis Group, Boca Raton, pp. 209-230.
  • Essid, I., Medini, M., Hassouna, M. (2009). Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat. Meat Sci., 81: 203-208.
  • Etchells, J.L., Bell, T.A., Fleming, H.P., Kelling, R.E., Thompson, R.L. (1973). Suggested procedure of the controlled fermentation of commercially brined pickling cucumbers-The use of starter cultures and reduction of carbon dioxide accumulation. Pickle Pak. Sci., 3: 4-14.
  • Etchells, J.L., Fleming, H.P., Bell, T.A. (1975). Factor influencing the growth of lactic acid bacteria during brine fermentation of cucumbers; Lactic Acid Bacteria in Beverages and Food. Carr, J.G., Cutting, C.V., Whiting G.C. (Ed), Academic Press, New York, pp. 281-305. Fleming, H.P. (1982). Fermented vegetables, economic microbiology-Fermented foods, Rose, A.H. (ed), Academic Pres, London, pp. 228-258.
  • Fleming, H.P., Daeschel, M.A., McFeeters, R.F., Pierson, M.D. (1989). Butyric acid spoilage of fermented cucumbers. J. Food Sci., 54(3): 636-639.
  • Forouchi, E., Gunn, D.J. (1983). Some effects of metal ions on the estimation of reducing sugars in biological media. Biotechnol. Bioeng., 25: 1905-1911.
  • Gardner, N.J., Savard, T., Obermeier, P., Caldwell, G., Champagne, C.P. (2001). Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int. J. Food Microbiol., 64: 261-275.
  • Guillou, A.A., Floros, J.D., Cousin, M.A. (1992). Calcium chloride and potassium sorbate reduce sodium chloride used during natural cucumber fermentation and storage. J. Food Sci., 57: 1364-1368.
  • Gürgün, V., Halkman, A.K. (1988). Mikrobiyolojide sayım yöntemleri. Gıda Teknolojisi Derneği, Ankara, 146 s.
  • Harris, L.J. (1998). The microbiology of vegetable fermentations. In Microbiology of fermented foods. Springer, Boston, MA. pp. 45-72.
  • Holzapfel W. (2014) Advances in fermented foods and beverages : improving quality, technologies and health benefits. Woodhead Puplishing, Elsevier, 541p.
  • Hutkins, R.W. (2006). Microbiology and Technology of Fermented Foods. Blackwell Publishing, USA, pp. 233-259.
  • Josephsen, J., Jespersen, L. (2004). Starter Cultures and Fermented Products. In: Handbook of Food and Beverage Fermentation Technology, Hui, Y.H. (ed.), Marcel Dekker, New York, pp. 23-49.
  • Kabak, B., Dobson, A.D.W. (2011). An introduction to the traditional fermented foods and beverages of Turkey. Crit. Rev. Food Sci. Nutr., 51(3): 248-260.
  • Kamda, A.G.S., Ramos, C.L., Fokou, E. (2015). In vitro determination of volatile compound development during starter culture controlled fermentation of Cucurbitaceae cotyledons. Int. J. Food Microbiol., 192: 58–65.
  • Kamdee, S., Plengvidhya, V., Chokesajjawatee, N. (2014). Changes in lactic acid bacteria diversity during fermentation of sour pickled mustard green. KKU Res. J., 19: 26-33.
  • Karasu, N., Şimşek, Ö., Çon, A.H. (2010). Technological and probiotic characteristics of Lactobacillus plantarum strains isolated from traditionally produced fermented vegetables. Ann. Microbiol., 60: 227-234.
  • Kim, Y., Adachi, Y. (2007). Biological and genetic classification of canine intestinal lactic acid bacteria and bifidobacteria. Mic. Immunol., 51: 919-928.
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
  • Mäkimattila, E., Kahala, M., Joutsjoki, V. (2011). Characterization and electrotransformation of Lactobacillus plantarum and Lactobacillus paraplantarum isolated from fermented vegetables. World J. Microbiol. Biotechnol., 27: 371-379.
  • Mattos, F.R., Fasina, O.O., Reina, L.D., Fleming, H.P., Breidt, F., Damasceno, G.S., Passos F.V. (2005). Heat transfer and microbial kinetics modeling to determine the location of microorganisms within cucumber fruit. J. Food Sci., 70: 324-330.
  • McDonald, L.C., Fleming, H.P., Daeschel, M.A. (1991). Acidification effects on microbial populations during initation of cucumber fermentations. J. Food Sci., 56: 1353-1359.
  • McDonald, L.C., Fleming, H.P., Hassan, H.M. (1990). Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol., 56: 2120-2124.
  • Miyashita, M., Yukphan, P., Chaipitakchonlatarn, W., Malimas, T., Sugimoto, M., Yoshino, M. (2012). 16S rRNA gene sequence analysis of lactic acid bacteria isolated from fermented foods in Thailand. Microbiol. Cult. Coll., 28(1): 1-9.
  • Montet, D., Ray, R.C., Zakhia-Rozis, N. (2014). Lactic Acid Fermentation of Vegetables and Fruits. In Microorganisms and fermentation of traditional foods. Ray, R.C., Montet, D. (Ed.), CRC Press. pp.108-140.
  • Nguyen, D.T., Van Hoorde, K., Cnockaert, M., De Brandt, E., Aerts, M., Binh Thanh, L., (2013). A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int. J. Food. Microbiol., 163(1): 19-27.
  • Nilchian, Z., Sharifan, A., Rahimi, E., Mazid Abadi, N. (2016). Improvement of Fermented Cucumber Characteristics by Starter Culture of Lactobacillus plantarum, L. bulgaricus and S. thermophiles. J. Food Biosci. Technol., 6(2): 31-40.
  • Nout, M.J.R., Rombouts, F.M. (1992). Fermentative preservation of plant foods. J. App. Bacterio., 73; 13-147.
  • Ogabi, F., Pamir, M.H. (1973). Türk turşuları üzerinde araştırmalar, I. Çeşitli turşuların mikroflorasında bulunan laktik asit bakterileri. A.Ü. Ziraat Fakültesi Yıllığı, 3: 248-268.
  • Özçelik, F., İç, E. (2000). Hıyar Turşularmın Düşük Tuz Konsantrasyonlarında Depolanması Üzerine Bazı Koşulların Etkileri. Tarım Bilim. Derg., 6(4): 115-119.
  • Özer, C., Kalkan Yıldırım H. (2018). Production of pickles by mixed culture fermentation, The American J. of Chem. and App., 5: 57-68.
  • Peréz-Dıaz, I.M., Breidt, F., Buescher, R.W., Arroyo-López, F.N., Jiménez-Dıaz, R., Garrido-Fernández, A., Johanningsmeire, S.D. (2013). Fermented and acidified vegetables. Compendium of methods for the microbiological examination of foods, American Public Health Association, Washington DC, pp. 521-532.
  • Russo, P., Caggianiello, G., Arena, M.P., Fiocco, D., Capozzi, V., Spano, G. (2017). Lactic Acid Bacteria of Fermented Fruits and Vegetables. In: Lactic Acid Fermentation of Fruits and Vegetables, Paramithiotis, S. CRC Press, Taylor&Francis Group, Boca Raton, pp. 19-36.
  • Schillinger, U., Tamang, J. P., Tamang, B., Franz, C.M.A.P., Gores, M., Holzaphel, W.H. (2005). Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. Int. J. Food Microbiol., 105: 347-356.
  • Shinagawa, H., Nishiyama, R., Miyao, S., Kozaki, M. (1997). Organic acid composition and quality of Japanese “shibazuke" pickles. Food Sci. Technol. Int. Tokyo, 3(2): 170-172.
  • Smid, E.J., Kleerebezem, M. (2014). Production of aroma compounds in lactic fermentations. Annu. Rev. Food. Sci. Technol., 5: 313–326.
  • Swida, K.M., Binek, M. (2005). Selection of potentially probiotic Lactobacillus strains towards their inhibitory activity against poultry enteropathogenic bacteria. Polish J. of Mic., 54: 287-294.
  • Tokatlı, M., Dursun, D., Arslankoz, N., Şanlıbaba, P., Özçelik, F. (2012). Turşu üretiminde laktik asit bakterilerinin önemi. Akademik Gıda, 10(1): 70-76.
  • Tokatlı, M., Elmacı, S.B., İşleyen, N.A., Özçelik, F. (2017). Technological properties of lactic acid bacteria isolated from traditional pickles. The Journal of Food, 42(6): 693-707.
  • Tokatlı, M., Gülgör, G., Bağder Elmacı, S., Arslankoz İşleyen, N., Özçelik, F. (2015). In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. Biomed Res. Int., 1-8.
  • Tomlins, K.I., Baker, D.M., McDowell, I.J. (1990). HPLC method for the analysis of organic acids, sugars, and alcohol in extracts of fermenting cocoa beans. Chromatographia, 29(11-12): 557-561.
  • Wouters, D., Bernaert, N., Anno, N., Van Droogenbroeck, B., De Loose, M., Van Bockstaele, E., De Vuyst, L. (2013a). Application'and validation of autochthonous lactic acid bacteria starter cultures for controlled leek fermentations and their influence on the antioxidant properties of leek. Int. J. Food Microbiol., 165(2): 121-133.
  • Wouters, D., Grosu-Tudor, S., Zamfir, M., De Vuyst, L. (2013b). Applicability of Lactobacillus plantarum IMDO 788 as a starter culture to control vegetable fermentations. J. Sci. Food Agric., 93: 3352-3361.
  • Wu, C., Zheng, J., Huang, J., Zhou, R. (2014). Reduced nitrite and biogenic amine concentrations and improved flavor components of Chinese sauerkraut via co-culture of Lactobacillus plantarum and Zygosaccharomyces rouxii. Ann. Microbiol., 64: 847–857.
  • Xia, Y., Liu, X., Wang, G., Zhang, H., Xiong, Z., Sun, Y., Ai, L. (2017). Characterization and selection of Lactobacillus brevis starter for nitrite degradation of Chinese pickle. Food Control, 78: 126-131.

PICKLE PRODUCTION BY SELECTED INDIGENOUS LACTIC STARTER CULTURES

Yıl 2019, Cilt: 44 Sayı: 4, 742 - 757, 01.08.2019
https://doi.org/10.15237/gida.GD19081

Öz

In this study, in order to
develop starter cultures suitable for pickle production, the selected
indigenous cultures of Lactobacillus plantarum (MF513, MF377, MF213) and
mixed cultures of L. plantarum MF513-Pediococcus ethanolidurans
MF179 were used as starter cultures. The chemical, microbiological and sensory
properties of pickles were monitored during fermentation and 6 months of
storage. In order to determine whether the starter cultures preserved their
stability until the end of fermentation, the cell protein profiles (SDS-PAGE)
of pure cultures before fermentation were compared with that of after
fermentation. The highest acidity (0.87 %) was found to be reached in the
pickles produced by the addition of mixed starter cultures at the 20th day of
fermentation and the pH value was measured as 3.26. The acidity increase was
slower in control samples as compared with the starter culture-added pickle
samples. It was determined that L. plantarum strains preserved their
stability until the end of fermentation and were predominant microorganisms in
the environment. After storage, the highest lactic acid (1.62 g/100 mL) and the
lowest ethanol (0.26 g/100 mL) content was observed in the pickle samples
inoculated with MF513-MF179 strains. 

Proje Numarası

108O491

Kaynakça

  • Akpinar-Bayizit, A., Ozcan-Yilsay, T., Yilmaz, L. (2007). Study on the use of yoghurt, whey, lactic acid and starter culture on carrot fermentation. Pol. J. Food. Nutr. Scı., 57(2): 147-150.
  • Aktan, N., Yücel, U., Kalkan, H. (1998). Turşu teknolojisi. Ege Üniversitesi Ege Meslek Yüksek Okulu Yayınları, 23, İzmir, Türkiye, 138 s.
  • Angelis, M., Corsetti, A., Tosti, N., Rossi, J., Corbo, M.R., Gorbetti, M. (2001). Characterization of non-starter lactic acid bacteria from Italian ewe cheeses based on phenotypic, genotypic, and cell wall protein analyses. Appl. Environ. Microbiol., 67(5): 2011-2020.
  • Anonymous (2005). Merck Gıda Mikrobiyolojisi Uygulamaları. Halkman, A.K. (ed). Başak Matbaacılık Ltd. Şti., Ankara, 358 s.
  • Anonymous (1993). Hıyar turşusu standardı, TS 11112. Türk Standartları Enstitüsü, Ankara.
  • Bağder Elmacı, S., Tokatlı, M., Dursun, D., Özçelik, F., Şanlıbaba, P. (2015). Phenotypic and genotypic identification of lactic acid bacteria isolated from traditional pickles of the Çubuk region in Turkey. Folia Microbiol, 60: 241-251.
  • Ballesteros, C., Palop, L., Sanchez, I. (1999). Influence of sodium chloride concentration on the controlled lactic acid fermentation of “Almagro” eggplants. Int. J. Food Microb., 53: 13–20.
  • Beganović, J., Kos, B., Pavunc, A.L., Uroić, K., Jokić, M., Šušković, J. (2014). Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiol. Res., 169(8): 623-632.
  • Bevilacqua, A., Altieri, C., Corbo, M.R., Sinigaglia, M., Ouoba, L.I.I. (2010). Characterization of lactic acid bacteria isolated from Italian Bella di Cerignola table olives: selection of potential multifunctional starter cultures. J. Food Sci., 75(8): 536-544.
  • Bonomo, M.G., Ricciardi, A., Zotta, T., Parente, E., Salzano, G. (2008). Molecular and technological characterization of lactic acid bacteria from traditional fermented sausages of Basilicata region (Southern Italy). Meat Sci, 80: 1238-1248.
  • Breidt, F., McFeeters, R. F., Perez-Diaz, I., Lee, C. (2013). Fermented vegetables. In Food Microbiology: Fundamentals and Frontiers. Doyle, M.P., Buchanan, R.L. (Ed.), ASM Press, Washington D.C., pp. 841-855.
  • Çetin, B. (2011). Production of probiotic mixed pickles (Turşu) and microbiological properties. Afr. J. Biotechnol., 10(66): 14926-14931.
  • Çon, A.H., Karasu, N. (2009). Determination of antogonostic starter cultures for pickle and olive fermentation processes. Czech. J. Food. Sci., 27(3): 185-193.
  • Daeschel, M.A., Fleming, H.P. (1987). Achieving pure culture cucumber fermentations. Review, A. Development in Industrial Microbiology Pierce. G.E. Society for Industrial Microbiology Arlington, V.A.,28: 141-148.
  • Daeschel, M.A., Andersson, R.E., Fleming, H.P. (1987). Microbial ecology of fermenting plant materials. FEMS Microbiol. Rev., 46: 357-367.
  • Daeschel, M.A., Fleming, H.P. (1984). Selection of lactic acid bacteria for use in vegetable fermentations. Food Microbiol., 1: 303-313.
  • Di Cagno, R., Coda, R., De Angelis, M., Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol., 33(1): 1-10.
  • Erten, H., Boyacı-Gündüz, C.P., Ağırman, B., Cabaroğlu, T. (2016). Fermentation, Pickling, and Turkish Table Olives. In: Handbook of Vegetable Preservation and Processing, Hui, Y.H., Evranuz, E.Ö., Bingöl, G., Erten, H., Jaramillo-Flores, M.E. CRC Press, Taylor&Francis Group, Boca Raton, pp. 209-230.
  • Essid, I., Medini, M., Hassouna, M. (2009). Technological and safety properties of Lactobacillus plantarum strains isolated from a Tunisian traditional salted meat. Meat Sci., 81: 203-208.
  • Etchells, J.L., Bell, T.A., Fleming, H.P., Kelling, R.E., Thompson, R.L. (1973). Suggested procedure of the controlled fermentation of commercially brined pickling cucumbers-The use of starter cultures and reduction of carbon dioxide accumulation. Pickle Pak. Sci., 3: 4-14.
  • Etchells, J.L., Fleming, H.P., Bell, T.A. (1975). Factor influencing the growth of lactic acid bacteria during brine fermentation of cucumbers; Lactic Acid Bacteria in Beverages and Food. Carr, J.G., Cutting, C.V., Whiting G.C. (Ed), Academic Press, New York, pp. 281-305. Fleming, H.P. (1982). Fermented vegetables, economic microbiology-Fermented foods, Rose, A.H. (ed), Academic Pres, London, pp. 228-258.
  • Fleming, H.P., Daeschel, M.A., McFeeters, R.F., Pierson, M.D. (1989). Butyric acid spoilage of fermented cucumbers. J. Food Sci., 54(3): 636-639.
  • Forouchi, E., Gunn, D.J. (1983). Some effects of metal ions on the estimation of reducing sugars in biological media. Biotechnol. Bioeng., 25: 1905-1911.
  • Gardner, N.J., Savard, T., Obermeier, P., Caldwell, G., Champagne, C.P. (2001). Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int. J. Food Microbiol., 64: 261-275.
  • Guillou, A.A., Floros, J.D., Cousin, M.A. (1992). Calcium chloride and potassium sorbate reduce sodium chloride used during natural cucumber fermentation and storage. J. Food Sci., 57: 1364-1368.
  • Gürgün, V., Halkman, A.K. (1988). Mikrobiyolojide sayım yöntemleri. Gıda Teknolojisi Derneği, Ankara, 146 s.
  • Harris, L.J. (1998). The microbiology of vegetable fermentations. In Microbiology of fermented foods. Springer, Boston, MA. pp. 45-72.
  • Holzapfel W. (2014) Advances in fermented foods and beverages : improving quality, technologies and health benefits. Woodhead Puplishing, Elsevier, 541p.
  • Hutkins, R.W. (2006). Microbiology and Technology of Fermented Foods. Blackwell Publishing, USA, pp. 233-259.
  • Josephsen, J., Jespersen, L. (2004). Starter Cultures and Fermented Products. In: Handbook of Food and Beverage Fermentation Technology, Hui, Y.H. (ed.), Marcel Dekker, New York, pp. 23-49.
  • Kabak, B., Dobson, A.D.W. (2011). An introduction to the traditional fermented foods and beverages of Turkey. Crit. Rev. Food Sci. Nutr., 51(3): 248-260.
  • Kamda, A.G.S., Ramos, C.L., Fokou, E. (2015). In vitro determination of volatile compound development during starter culture controlled fermentation of Cucurbitaceae cotyledons. Int. J. Food Microbiol., 192: 58–65.
  • Kamdee, S., Plengvidhya, V., Chokesajjawatee, N. (2014). Changes in lactic acid bacteria diversity during fermentation of sour pickled mustard green. KKU Res. J., 19: 26-33.
  • Karasu, N., Şimşek, Ö., Çon, A.H. (2010). Technological and probiotic characteristics of Lactobacillus plantarum strains isolated from traditionally produced fermented vegetables. Ann. Microbiol., 60: 227-234.
  • Kim, Y., Adachi, Y. (2007). Biological and genetic classification of canine intestinal lactic acid bacteria and bifidobacteria. Mic. Immunol., 51: 919-928.
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
  • Mäkimattila, E., Kahala, M., Joutsjoki, V. (2011). Characterization and electrotransformation of Lactobacillus plantarum and Lactobacillus paraplantarum isolated from fermented vegetables. World J. Microbiol. Biotechnol., 27: 371-379.
  • Mattos, F.R., Fasina, O.O., Reina, L.D., Fleming, H.P., Breidt, F., Damasceno, G.S., Passos F.V. (2005). Heat transfer and microbial kinetics modeling to determine the location of microorganisms within cucumber fruit. J. Food Sci., 70: 324-330.
  • McDonald, L.C., Fleming, H.P., Daeschel, M.A. (1991). Acidification effects on microbial populations during initation of cucumber fermentations. J. Food Sci., 56: 1353-1359.
  • McDonald, L.C., Fleming, H.P., Hassan, H.M. (1990). Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol., 56: 2120-2124.
  • Miyashita, M., Yukphan, P., Chaipitakchonlatarn, W., Malimas, T., Sugimoto, M., Yoshino, M. (2012). 16S rRNA gene sequence analysis of lactic acid bacteria isolated from fermented foods in Thailand. Microbiol. Cult. Coll., 28(1): 1-9.
  • Montet, D., Ray, R.C., Zakhia-Rozis, N. (2014). Lactic Acid Fermentation of Vegetables and Fruits. In Microorganisms and fermentation of traditional foods. Ray, R.C., Montet, D. (Ed.), CRC Press. pp.108-140.
  • Nguyen, D.T., Van Hoorde, K., Cnockaert, M., De Brandt, E., Aerts, M., Binh Thanh, L., (2013). A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int. J. Food. Microbiol., 163(1): 19-27.
  • Nilchian, Z., Sharifan, A., Rahimi, E., Mazid Abadi, N. (2016). Improvement of Fermented Cucumber Characteristics by Starter Culture of Lactobacillus plantarum, L. bulgaricus and S. thermophiles. J. Food Biosci. Technol., 6(2): 31-40.
  • Nout, M.J.R., Rombouts, F.M. (1992). Fermentative preservation of plant foods. J. App. Bacterio., 73; 13-147.
  • Ogabi, F., Pamir, M.H. (1973). Türk turşuları üzerinde araştırmalar, I. Çeşitli turşuların mikroflorasında bulunan laktik asit bakterileri. A.Ü. Ziraat Fakültesi Yıllığı, 3: 248-268.
  • Özçelik, F., İç, E. (2000). Hıyar Turşularmın Düşük Tuz Konsantrasyonlarında Depolanması Üzerine Bazı Koşulların Etkileri. Tarım Bilim. Derg., 6(4): 115-119.
  • Özer, C., Kalkan Yıldırım H. (2018). Production of pickles by mixed culture fermentation, The American J. of Chem. and App., 5: 57-68.
  • Peréz-Dıaz, I.M., Breidt, F., Buescher, R.W., Arroyo-López, F.N., Jiménez-Dıaz, R., Garrido-Fernández, A., Johanningsmeire, S.D. (2013). Fermented and acidified vegetables. Compendium of methods for the microbiological examination of foods, American Public Health Association, Washington DC, pp. 521-532.
  • Russo, P., Caggianiello, G., Arena, M.P., Fiocco, D., Capozzi, V., Spano, G. (2017). Lactic Acid Bacteria of Fermented Fruits and Vegetables. In: Lactic Acid Fermentation of Fruits and Vegetables, Paramithiotis, S. CRC Press, Taylor&Francis Group, Boca Raton, pp. 19-36.
  • Schillinger, U., Tamang, J. P., Tamang, B., Franz, C.M.A.P., Gores, M., Holzaphel, W.H. (2005). Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. Int. J. Food Microbiol., 105: 347-356.
  • Shinagawa, H., Nishiyama, R., Miyao, S., Kozaki, M. (1997). Organic acid composition and quality of Japanese “shibazuke" pickles. Food Sci. Technol. Int. Tokyo, 3(2): 170-172.
  • Smid, E.J., Kleerebezem, M. (2014). Production of aroma compounds in lactic fermentations. Annu. Rev. Food. Sci. Technol., 5: 313–326.
  • Swida, K.M., Binek, M. (2005). Selection of potentially probiotic Lactobacillus strains towards their inhibitory activity against poultry enteropathogenic bacteria. Polish J. of Mic., 54: 287-294.
  • Tokatlı, M., Dursun, D., Arslankoz, N., Şanlıbaba, P., Özçelik, F. (2012). Turşu üretiminde laktik asit bakterilerinin önemi. Akademik Gıda, 10(1): 70-76.
  • Tokatlı, M., Elmacı, S.B., İşleyen, N.A., Özçelik, F. (2017). Technological properties of lactic acid bacteria isolated from traditional pickles. The Journal of Food, 42(6): 693-707.
  • Tokatlı, M., Gülgör, G., Bağder Elmacı, S., Arslankoz İşleyen, N., Özçelik, F. (2015). In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. Biomed Res. Int., 1-8.
  • Tomlins, K.I., Baker, D.M., McDowell, I.J. (1990). HPLC method for the analysis of organic acids, sugars, and alcohol in extracts of fermenting cocoa beans. Chromatographia, 29(11-12): 557-561.
  • Wouters, D., Bernaert, N., Anno, N., Van Droogenbroeck, B., De Loose, M., Van Bockstaele, E., De Vuyst, L. (2013a). Application'and validation of autochthonous lactic acid bacteria starter cultures for controlled leek fermentations and their influence on the antioxidant properties of leek. Int. J. Food Microbiol., 165(2): 121-133.
  • Wouters, D., Grosu-Tudor, S., Zamfir, M., De Vuyst, L. (2013b). Applicability of Lactobacillus plantarum IMDO 788 as a starter culture to control vegetable fermentations. J. Sci. Food Agric., 93: 3352-3361.
  • Wu, C., Zheng, J., Huang, J., Zhou, R. (2014). Reduced nitrite and biogenic amine concentrations and improved flavor components of Chinese sauerkraut via co-culture of Lactobacillus plantarum and Zygosaccharomyces rouxii. Ann. Microbiol., 64: 847–857.
  • Xia, Y., Liu, X., Wang, G., Zhang, H., Xiong, Z., Sun, Y., Ai, L. (2017). Characterization and selection of Lactobacillus brevis starter for nitrite degradation of Chinese pickle. Food Control, 78: 126-131.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Mehmet Tokatlı

Simel Bağder Elmacı

Nurdan Arslankoz İşleyen Bu kişi benim

Filiz Özçelik

Proje Numarası 108O491
Yayımlanma Tarihi 1 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 44 Sayı: 4

Kaynak Göster

APA Tokatlı, M., Bağder Elmacı, S., Arslankoz İşleyen, N., Özçelik, F. (2019). SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ. Gıda, 44(4), 742-757. https://doi.org/10.15237/gida.GD19081
AMA Tokatlı M, Bağder Elmacı S, Arslankoz İşleyen N, Özçelik F. SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ. GIDA. Ağustos 2019;44(4):742-757. doi:10.15237/gida.GD19081
Chicago Tokatlı, Mehmet, Simel Bağder Elmacı, Nurdan Arslankoz İşleyen, ve Filiz Özçelik. “SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ”. Gıda 44, sy. 4 (Ağustos 2019): 742-57. https://doi.org/10.15237/gida.GD19081.
EndNote Tokatlı M, Bağder Elmacı S, Arslankoz İşleyen N, Özçelik F (01 Ağustos 2019) SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ. Gıda 44 4 742–757.
IEEE M. Tokatlı, S. Bağder Elmacı, N. Arslankoz İşleyen, ve F. Özçelik, “SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ”, GIDA, c. 44, sy. 4, ss. 742–757, 2019, doi: 10.15237/gida.GD19081.
ISNAD Tokatlı, Mehmet vd. “SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ”. Gıda 44/4 (Ağustos 2019), 742-757. https://doi.org/10.15237/gida.GD19081.
JAMA Tokatlı M, Bağder Elmacı S, Arslankoz İşleyen N, Özçelik F. SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ. GIDA. 2019;44:742–757.
MLA Tokatlı, Mehmet vd. “SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ”. Gıda, c. 44, sy. 4, 2019, ss. 742-57, doi:10.15237/gida.GD19081.
Vancouver Tokatlı M, Bağder Elmacı S, Arslankoz İşleyen N, Özçelik F. SEÇİLMİŞ ENDOJEN LAKTİK STARTER KÜLTÜRLER İLE TURŞU ÜRETİMİ. GIDA. 2019;44(4):742-57.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/