Yıl 2019, Cilt 44 , Sayı 6, Sayfalar 1092 - 1105 2019-10-06

MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS
ÜZÜM, NAR VE KARA HAVUÇ SULARININ FARKLI YÖNTEMLERLE KONSANTRASYONUNUN MATEMATİKSEL MODELLENMESİ

Cüneyt Dinçer [1] , İhsan Burak Çam [2] , Mehmet Torun [3] , Handan Başünal Gülmez [4] , Ayhan TOPUZ [5]


In the present study, grape, pomegranate and black carrot juices were concentrated to 65 °Brix (Bx) from initial concentrations of 15.93, 13.91 and 11.23 °Bx respectively. The concentration kinetics of the juices were investigated using a rotary vacuum evaporator at 80°C, a microwave vacuum evaporator at 180 W and 300 W and osmotic distillation (OD) at room temperature. Experimental data were compared according to three statistical parameters: the correlation coefficient (R2), reduced chi-squared (χ2) value, and root mean-square error (RMSE), with values predicted by 13 models. Midilli model exhibited a better fit for the concentration kinetics (R2 ≥ 0.9990; χ2 ≤ 0.4588; RMSE ≤ 0.5350) than the other models, in general. This model was followed by the logarithmic, Page and two-term exponential models. The logarithmic model exhibited slightly better fitting for the thermal concentration method than Midilli model. The lowest energy consumption (1.334-1.540 kWh) was determined for the OD technique.

Bu çalışmada başlangıç °Briks değerleri sırasıyla 15.93, 13.91 ve 11.23 olan üzüm, nar ve siyah havuç suları 65 °Briks değerine kadar konsantre edilmiştir. Meyve sularının konsantrasyon kinetik değerleri rotary vakum evoparatörde 80 ˚C’de, mikrodalga vakum evaporatörde 180 ve 300 W’da, ozmotik distilasyonda ise oda sıcaklığında çalışılarak belirlenmiştir. Elde edilen deneysel verilerin 13 farklı modele uygunluğu, korelasyon katsayısı (R2), azaltılmış ki-kare (χ2) değeri ve hata kareler ortalamasının karekökü (RMSE) olmak üzere 3 istatistiksel parametreye göre karşılaştırılmıştır. Konsantrasyon kinetiği açısından Midilli modeli (R2 ≥ 0.9990; χ2 ≤ 0.4588; RMSE ≤ 0.5350) diğer modellerden genel olarak daha uyumlu bulunmuş olup, bu modeli logaritmik, Page ve iki terimli eksponansiyel modelleri izlemiştir. Termal konsantrasyon yöntemi için logaritmik modelin Midilli modeline göre daha uyumlu olduğu görülmüştür. En düşük enerji tüketimi (1.334-1.540 kWh) ise ozmotik distilasyon tekniğinde belirlenmiştir.  

  • 1. Jiao B, Cassano A, Drioli E. Recent advances on membrane processes for the concentration of fruit juices: a review. J. Food Eng. 2004; 63(3), 303-324. https://doi.org/10.1016/j.jfoodeng.2003.08.003
  • 2. Bánvölgyi S, Horváth S, Stefanovits-Bányai É, Békássy-Molnár E, Vatai G. Integrated membrane process for blackcurrant (Ribes nigrum L.) juice concentration. Desalination 2009; 241(1-3), 281-287. https://doi.org/10.1016/j.desal.2007.11.088
  • 3. Dincer C, Tontul I, Topuz A A comparative study of black mulberry juice concentrates by thermal evaporation and osmotic distillation as influenced by storage. Innovative Food Sci. Emerg. Technol. 2016; 38, 57-64. https://doi.org/10.1016/j.ifset.2016.09.012
  • 4. Bozkir H, Baysal T. Concentration of apple juice using a vacuum microwave evaporator as a novel technique: Determination of quality characteristics. J. Food Process Eng. 2017; 40(5), e12535. https://doi.org/10.1111/jfpe.12535
  • 5. Assawarachan R, Noomhorm A. Effect of operating condition on the kinetic of color change of concentrated pineapple juice by microwave vacuum evaporation. J. Food Agric. Environ, 2008; 6(3&4), 47-53.
  • 6. Assawarachan R, Noomhorm A. Mathematical models for vacuum‐microwave concentration behavior of pineapple juice. J. Food Process Eng, 2011; 34(5), 1485-1505. https://doi.org/10.1111/j.1745-4530.2009.00536.x
  • 7. Fazaeli M, Hojjatpanah G, Emam-Djomeh Z. Effects of heating method and conditions on the evaporation rate and quality attributes of black mulberry (Morus nigra) juice concentrate. J. Food Sci. Technol. 2013; 50(1), 35-43. https://doi.org/10.1007/s13197-011-0246-y
  • 8. Fazaeli M, Yousefi S, Emam-Djomeh Z. Investigation on the effects of microwave and conventional heating methods on the phytochemicals of pomegranate (Punica granatum L.) and black mulberry juices. Food Res. Int. 2013; 50(2), 568-573. https://doi.org/10.1016/j.foodres.2011.03.043
  • 9. Yousefi S, Emam-Djomeh Z, Mousavi S M A, Askari G R. Comparing the effects of microwave and conventional heating methods on the evaporation rate and quality attributes of pomegranate (Punica granatum L.) juice concentrate. Food Bioprocess Technol. 2012; 5(4), 1328-1339. https://doi.org/10.1007/s11947-011-0603-x
  • 10. Assawarachan R, Noomhorm A. Changes in color and rheological behavior of pineapple concentrate through various evaporation methods. Int. J. Agric. Biol. Eng. 2010; 3(1), 74-84.
  • 11. Yaldýz O, Ertekýn C. Thin layer solar drying of some vegetables. Drying Technol. 2001; 19(3-4), 583-597. https://doi.org/10.1081/DRT-100103936
  • 12. Delgado T, Pereira J A, Baptista P, Casal S, Ramalhosa E. Shell's influence on drying kinetics, color and volumetric shrinkage of Castanea sativa Mill. fruits. Food Res. Int. 2014; 55, 426-435. https://doi.org/10.1016/j.foodres.2013.11.043
  • 13. Demiray E, Tulek Y. Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat Mass Transfer. 2014; 50(6), 779-786. https://doi.org/10.1007/s00231-013-1286-9
  • 14. Malekjani N, Emam-Djomeh Z, Hashemabadi S H, Askari G R. Modeling Thin Layer Drying Kinetics, Moisture Diffusivity and Activation Energy of Hazelnuts during Microwave-Convective Drying. Int. J. Food Eng. 2018;14(2). https://doi.org/10.1515/ijfe-2017-0100
  • 15. Karabacak, A. Ö., Suna, S., Tamer, C. E., Çopur, Ö. U. Effects of oven, microwave and vacuum drying on drying characteristics, colour, total phenolic content and antioxidant capacity of celery slices. Qual. Assur. Saf. Crops Food 2018; 10(2), 193-205. https://doi.org/10.3920/QAS2017.1197
  • 16. Goula A M, Tzika A, Adamopoulos K G. Kinetic Models of Evaporation and Total Phenolics Degradation during Pomegranate Juice Concentration. Int. J. Food Eng 20104; 10(3), 383-392. https://doi.org/10.1515/ijfe-2014-0016
  • 17. Kırca A, Özkan M, Cemeroglu B. Stability of black carrot anthocyanins in various fruit juices and nectars. Food Chem. 2006; 97(4), 598-605. https://doi.org/10.1016/j.foodchem.2005.05.036
  • 18. Tajchakavit S, Boye J I, Bélanger D, Couture R. Kinetics of haze formation and factors influencing the development of haze in clarified apple juice. Food Res. Int. 2001; 34(5), 431-440. https://doi.org/10.1016/S0963-9969(00)00188-5
  • 19. Cissé M, Vaillant F, Bouquet S, Pallet D, Lutin F, Reynes M, Dornier M. Athermal concentration by osmotic evaporation of roselle extract, apple and grape juices and impact on quality. Innovative Food Sci. Emerg. Technol. 2011; 12(3), 352-360. https://doi.org/10.1016/j.ifset.2011.02.009
  • 20. Onsekizoglu P. Production of high quality clarified pomegranate juice concentrate by membrane processes. J. Membr. Sci. 2013; 442, 264-271. https://doi.org/10.1016/j.memsci.2013.03.061
  • 21. Romero J, Rios G M, Sanchez J, Bocquet S, Savedra A. Modeling heat and mass transfer in osmotic evaporation process. AlChE J. 2003; 49(2), 300-308. https://doi.org/10.1002/aic.690490203
  • 22. Valdés H, Romero J, Saavedra A, Plaza A, Bubnovich V. Concentration of noni juice by means of osmotic distillation. J. Membr. Sci. 2009; 330(1-2), 205-213. https://doi.org/10.1016/j.memsci.2008.12.053
  • 23. Onsekizoglu Bagci P. Potential of membrane distillation for production of high quality fruit juice concentrate. Crit. Rev. Food Sci. Nutr. 2015; 55(8), 1098-1113. https://doi.org/10.1080/10408398.2012.685116
  • 24. Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Drying Technol. 2002; 20(7), 1503-1513. https://doi.org/10.1081/DRT-120005864
  • 25. Swain S, Samuel D V K, Bal L M, Kar A, Sahoo G P. Modeling of microwave assisted drying of osmotically pretreated red sweet pepper (Capsicum annum L.). Food Sci. Biotechnol. 2012; 21(4), 969-978. https://doi.org/10.1007/s10068-012-0127-9
  • 26. Vega‐Gálvez A, Lemus‐Mondaca R, Bilbao‐Sainz C, Yagnam F, Rojas A. Mass transfer kinetics during convective drying of red pepper var. Hungarian (Capsicum annuum L.): mathematical modeling and evaluation of kinetic parameters. J. Food Process Eng. 2008; 31(1), 120-137. https://doi.org/10.1111/j.1745-4530.2007.00145.x
Birincil Dil en
Konular Fen
Yayımlanma Tarihi 2019
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-9160-4242
Yazar: Cüneyt Dinçer (Sorumlu Yazar)
Kurum: Akdeniz Üniverstesi
Ülke: Turkey


Orcid: 0000-0002-0120-1096
Yazar: İhsan Burak Çam

Orcid: 0000-0002-6287-2993
Yazar: Mehmet Torun
Kurum: Akdeniz Üniversitesi
Ülke: Turkey


Orcid: 0000-0001-8473-9723
Yazar: Handan Başünal Gülmez

Orcid: 0000-0002-6610-9143
Yazar: Ayhan TOPUZ

Destekleyen Kurum Akdeniz University
Proje Numarası FBA-2017-2810
Teşekkür This work was partially supported by The Scientific Research Projects Coordination Unit of Akdeniz University (Antalya, Turkey) (Project Number: FBA-2017-2810)
Tarihler

Yayımlanma Tarihi : 6 Ekim 2019

Bibtex @araştırma makalesi { gida569170, journal = {Gıda}, issn = {1300-3070}, eissn = {1309-6273}, address = {}, publisher = {Gıda Teknolojisi Derneği}, year = {2019}, volume = {44}, pages = {1092 - 1105}, doi = {10.15237/gida.GD19080}, title = {MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS}, key = {cite}, author = {Dinçer, Cüneyt and Çam, İhsan Burak and Torun, Mehmet and Başünal Gülmez, Handan and TOPUZ, Ayhan} }
APA Dinçer, C , Çam, İ , Torun, M , Başünal Gülmez, H , TOPUZ, A . (2019). MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS. Gıda , 44 (6) , 1092-1105 . DOI: 10.15237/gida.GD19080
MLA Dinçer, C , Çam, İ , Torun, M , Başünal Gülmez, H , TOPUZ, A . "MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS". Gıda 44 (2019 ): 1092-1105 <https://dergipark.org.tr/tr/pub/gida/issue/49361/569170>
Chicago Dinçer, C , Çam, İ , Torun, M , Başünal Gülmez, H , TOPUZ, A . "MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS". Gıda 44 (2019 ): 1092-1105
RIS TY - JOUR T1 - MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS AU - Cüneyt Dinçer , İhsan Burak Çam , Mehmet Torun , Handan Başünal Gülmez , Ayhan TOPUZ Y1 - 2019 PY - 2019 N1 - doi: 10.15237/gida.GD19080 DO - 10.15237/gida.GD19080 T2 - Gıda JF - Journal JO - JOR SP - 1092 EP - 1105 VL - 44 IS - 6 SN - 1300-3070-1309-6273 M3 - doi: 10.15237/gida.GD19080 UR - https://doi.org/10.15237/gida.GD19080 Y2 - 2019 ER -
EndNote %0 Gıda MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS %A Cüneyt Dinçer , İhsan Burak Çam , Mehmet Torun , Handan Başünal Gülmez , Ayhan TOPUZ %T MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS %D 2019 %J Gıda %P 1300-3070-1309-6273 %V 44 %N 6 %R doi: 10.15237/gida.GD19080 %U 10.15237/gida.GD19080
ISNAD Dinçer, Cüneyt , Çam, İhsan Burak , Torun, Mehmet , Başünal Gülmez, Handan , TOPUZ, Ayhan . "MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS". Gıda 44 / 6 (Ekim 2019): 1092-1105 . https://doi.org/10.15237/gida.GD19080
AMA Dinçer C , Çam İ , Torun M , Başünal Gülmez H , TOPUZ A . MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS. GIDA. 2019; 44(6): 1092-1105.
Vancouver Dinçer C , Çam İ , Torun M , Başünal Gülmez H , TOPUZ A . MATHEMATICAL MODELING OF CONCENTRATIONS OF GRAPE, POMEGRANATE AND BLACK CARROT JUICES BY VARIOUS METHODS. Gıda. 2019; 44(6): 1105-1092.