Derleme
PDF EndNote BibTex RIS Kaynak Göster

THE USE OF WATER ASSISTED UV-C SYSTEM IN THE DECONTAMINATION OF FRUITS AND VEGETABLES

Yıl 2021, Cilt 46, Sayı 5, 1069 - 1080, 05.08.2021
https://doi.org/10.15237/gida.GD21086

Öz

In recent years, demand for minimally processed fresh fruits and vegetables has been increasing. Non-thermal methods are applied to maintain freshness of these foods and to ensure microbiological safety. As a non-thermal technology and alternative to chlorine, UV-C light is used to inactivate microorganisms on the surface of foods. However, the effectiveness of this application is limited due to certain factors such as surface properties of food and low penetration depth of UV-C. Studies on the combined use of UV-C with water, called water assisted UV-C (WUV-C), have been carried out to minimize the effect of these factors. Studies have shown that WUV-C treatment is more effective for the decontamination of microorganisms inoculated onto the surface of food compared to the UV-C system. In this study, the investigations on the use of WUV-C system for decontamination of fresh fruits and vegetables were reviewed.

Kaynakça

  • Abadias, M., Colás-Medà, P., Viñas, I., Bobo, G., Aguiló-Aguayo, I. (2021). Application of an innovative water-assisted ultraviolet C light technology for the inactivation of microorganisms in tomato processing industries. Food Microbiol, 94: 103631, doi: 10.1016/j.fm.2020.103631.
  • Adhikari, A., Syamaladevi, R. M., Killinger, K., Sablani, S. S. (2015). Ultraviolet-C light inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on organic fruit surfaces. Int J Food Microbiol, 210: 136-142, doi: 10.1016/j.ijfoodmicro.2015.06.018.
  • Alegre, I., Vi, I., Usall, J., Teixidˇ, N., Figge, M. J., Abadias, M. (2013). Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiol, 34(2): 390-399, doi: 10.1016/j.fm.2013.01.013.
  • Alenyorege, E. A., Ma, H., Ayim, I., Aheto, J. H., Hong, C., Zhou, C. (2019). Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite. LWT-Food Sci Technol, 101: 410-418, doi: 10.1016/j.lwt.2018.11.048.
  • Bermúdez-Aguirre, D., Barbosa-Cánovas, G. V. (2013). Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control, 29(1): 82-90, doi: 10.1016/j.foodcont.2012.05.073.
  • Birmpa, A., Sfika, V., Vantarakis, A. (2013). Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. Int J Food Microbiol, 167(1): 96-102, doi: 10.1016/j.ijfoodmicro.2013.06.005.
  • Butot, S., Cantergiani, F., Moser, M., Jean, J., Lima, A., Michot, L., Zuber, S. (2018). UV-C inactivation of foodborne bacterial and viral pathogens and surrogates on fresh and frozen berries. Int J Food Microbiol, 275: 8-16, doi: 10.1016/j.ijfoodmicro.2018.03.016.
  • Castro-Ibáñez, I., Gil, M. I., Allende, A. (2017). Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT-Food Sci Technol, 85: 284-292, doi: 10.1016/j.lwt.2016.11.073.
  • Chen, A. J., Luo, W., Luo, Y. B., Zhu, B. Z. (2018). Combined treatment of ultraviolet‐C and L. plantarum on Salmonella enteritidis and quality control of fresh‐cut apple. J Food Process Preserv, 42(1): e13349, doi: 10.1111/jfpp.13349.
  • Collazo, C., Charles, F., Aguiló-Aguayo, I., Marín-Sáez, J., Lafarga, T., Abadias, M., Viñas, I. (2019b). Decontamination of Listeria innocua from fresh-cut broccoli using UV-C applied in water or peroxyacetic acid, and dry-pulsed light. Innov Food Sci Emerg Technol, 52: 438-449, doi: 10.1016/j.ifset.2019.02.004.
  • Collazo, C., Lafarga, T., Aguiló-Aguayo, I., Marín-Sáez, J., Abadias, M., Viñas, I. (2018). Decontamination of fresh-cut broccoli with a water–assisted UV-C technology and its combination with peroxyacetic acid. Food Control, 93: 92-100, doi: 10.1016/j.foodcont.2018.05.046.
  • Collazo, C., Noguera, V., Aguiló-Aguayo, I., Abadias, M., Colás-Medà, P., Nicolau, I., Viñas, I. (2019a). Assessing water-assisted UV-C light and its combination with peroxyacetic acid and Pseudomonas graminis CPA-7 for the inactivation and inhibition of Listeria monocytogenes and Salmonella enterica in fresh-cut ‘Iceberg’ lettuce and baby spinach leaves. Int J Food Microbiol, 297: 11-20, doi: 10.1016/j.ijfoodmicro.2019.02.024.
  • Condurso, C., Cincotta, F., Tripodi, G., Merlino, M., Giarratana, F., Verzera, A. (2020). A new approach for the shelf-life definition of minimally processed carrots. Postharvest Biol Technol, 163: 111138, doi: 10.1016/j.postharvbio.2020.111138.
  • FDA, (2000). Ultraviolet radiation for the prosessing and treatment of food. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=179.39 (Erişim tarihi: 13 Ocak 2021).
  • Giovenzana, V., Beghi, R., Civelli, R., Guidetti, R. (2015). Optical techniques for rapid quality monitoring along minimally processed fruit and vegetable chain. Trends Food Sci Technol, 46(2): 331-338, doi: 10.1016/j.tifs.2015.10.006.
  • Gogo, E. O., Opiyo, A. M., Hassenberg, K., Ulrichs, C., Huyskens-Keil, S. (2017). Postharvest UV-C treatment for extending shelf life and improving nutritional quality of African indigenous leafy vegetables. Postharvest Biol Technol, 129:107-117, doi:10.1016/j.postharvbio.2017.03.019.
  • Graça, A., Santo, D., Quintas, C., Nunes, C. (2017). Growth of Escherichia coli, Salmonella enterica and Listeria spp., and their inactivation using ultraviolet energy and electrolyzed water, on ‘Rocha’ fresh-cut pears. Food Control, 77: 41-49, doi: 10.1016/j.foodcont.2017.01.017.
  • Guo, S., Huang, R., Chen, H. (2017). Application of water-assisted ultraviolet light in combination of chlorine and hydrogen peroxide to inactivate Salmonella on fresh produce. Int J Food Microbiol, 257: 101-109, doi: 10.1016/j.ijfoodmicro.2017.06.017.
  • Huang, R., Chen, H. (2019). Comparison of Water‐Assisted Decontamination Systems of Pulsed Light and Ultraviolet for Salmonella Inactivation on Blueberry, Tomato, and Lettuce. J Food Sci, 84(5): 1145-1150, doi: 10.1111/1750-3841.14510.
  • Huang, R., Chen, H. (2020). Use of 254 nm ultraviolet light for decontamination of fresh produce and wash water. Food Control, 109: 106926, doi: 10.1016/j.foodcont.2019.106926.
  • Huang, R., de Vries, D., Chen, H. (2018). Strategies to enhance fresh produce decontamination using combined treatments of ultraviolet, washing and disinfectants. Int J Food Microbiol, 283: 37-44,doi: 10.1016/j.ijfoodmicro.2018.06.014.
  • Iglesias, M. B., López, M. L., Echeverría, G., Viñas, I., Zudaire, L., Abadias, M. (2018). Evaluation of biocontrol capacity of Pseudomonas graminis CPA-7 against foodborne pathogens on fresh-cut pear and its effect on fruit volatile compounds. Food Microbiol, 76: 226-236, doi: 10.1016/j.fm.2018.04.007.
  • Jeong, Y. J., Ha, J. W. (2019). Combined treatment of UV-A radiation and acetic acid to control foodborne pathogens on spinach and characterization of their synergistic bactericidal mechanisms. Food Control, 106: 106698, doi: 10.1016/j.foodcont.2019.06.024.
  • Joshi, K., Mahendran, R., Alagusundaram, K., Norton, T., Tiwari, B. K. (2013). Novel disinfectants for fresh produce. Trends Food Sci Technol, 34(1): 54-61, doi:10.1016/j.tifs.2013.08.008.
  • Khan, I., Tango, C. N., Miskeen, S., Lee, B. H., Oh, D. H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety–A review. Food Control, 73: 1426-1444, doi: 10.1016/j.foodcont.2016.11.010.
  • Kim, H. G., Song, K. B. (2017). Combined treatment with chlorine dioxide gas, fumaric acid, and ultraviolet-C light for inactivating Escherichia coli O157: H7 and Listeria monocytogenes inoculated on plums. Food Control, 71: 371-375, doi: 10.1016/j.ifset.2017.06.015.
  • Kuan, C. H., Lim, L. W. K., Ting, T. W., Rukayadi, Y., Ahmad, S. H., Radzi, C. W. J. W. M., Kuan, C. S. (2017). Simulation of decontamination and transmission of Escherichia coli O157: H7, Salmonella Enteritidis, and Listeria monocytogenes during handling of raw vegetables in domestic kitchens. Food Control, 80: 395-400, doi: 10.1016/j.foodcont.2017.05.029.
  • Leng, J., Mukhopadhyay, S., Sokorai, K., Ukuku, D. O., Fan, X., Olanya, M., Juneja, V. (2020). Inactivation of Salmonella in cherry tomato stem scars and quality preservation by pulsed light treatment and antimicrobial wash. Food Control, 110: 107005, doi: 10.1016/j.foodcont.2019.107005.
  • Li, K., Weidhaas, J., Lemonakis, L., Khouryieh, H., Stone, M., Jones, L., Shen, C. (2017). Microbiological quality and safety of fresh produce in West Virginia and Kentucky farmers’ markets and validation of a post-harvest washing practice with antimicrobials to inactivate Salmonella and Listeria monocytogenes. Food Control, 79: 101-108, doi: 10.1016/j.foodcont.2017.03.031
  • Lim, W., Harrison, M. A. (2016). Effectiveness of UV light as a means to reduce Salmonella contamination on tomatoes and food contact surfaces. Food Control, 66: 166-173, doi: 10.1016/j.foodcont.2016.01.043.
  • Lippman, B., Yao, S., Huang, R., Chen, H. (2020). Evaluation of the combined treatment of ultraviolet light and peracetic acid as an alternative to chlorine washing for lettuce decontamination. Int J Food Microbiol, 323: 108590, doi: 10.1016/j.ijfoodmicro.2020.108590.
  • Liu, C., Huang, Y., Chen, H. (2015b). Inactivation of Escherichia coli O157: H7 and Salmonella enterica on blueberries in water using ultraviolet light. J Food Sci, 80(7): M1532-M1537, doi: 10.1111/1750-3841.12910.
  • Liu, C., Li, X., Chen, H. (2015a). Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries. Int J Food Microbiol, 214: 18-23, doi: 10.1016/j.ijfoodmicro.2015.07.023.
  • Ma, L., Zhang, M., Bhandari, B., Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci Technol, 64: 23-38, doi: 10.1016/j.tifs.2017.03.005.
  • Meireles, A., Giaouris, E., Simões, M. (2016). Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res Int, 82: 71-85, doi: 10.1016/j.foodres.2016.01.021.
  • Mostafidi, M., Sanjabi, M. R., Shirkhan, F., Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci Technol, 103: 321-332, doi: 10.1016/j.tifs.2020.07.009.
  • Ngnitcho, P. F. K., Khan, I., Tango, C. N., Hussain, M. S., Oh, D. H. (2017). Inactivation of bacterial pathogens on lettuce, sprouts, and spinach using hurdle technology. Innov Food Sci Emerg Technol, 43: 68-76, doi: 10.1016/j.ifset.2017.07.033.
  • Nicolau-Lapeña, I., Abadias, M., Viñas, I., Bobo, G., Lafarga, T., Ribas-Agustí, A., Aguiló-Aguayo, I. (2020). Water UV-C treatment alone or in combination with peracetic acid: A technology to maintain safety and quality of strawberries. Int J Food Microbiol, 335: 108887, doi: 10.1016/j.ijfoodmicro.2020.108887.
  • Oliveira, M., Abadias, M., Colás-Medà, P., Usall, J., Viñas, I. (2015). Biopreservative methods to control the growth of foodborne pathogens on fresh-cut lettuce. Int J Food Microbiol, 214: 4-11, doi: 10.1016/j.ijfoodmicro.2015.07.015.
  • Ortiz-Solà, J., Abadias, I., Colás-Medà, P., Anguera, M., Viñas, I. (2021). Inactivation of Salmonella enterica, Listeria monocytogenes and murine norovirus (MNV-1) on fresh strawberries by conventional and water-assisted ultraviolet light (UV-C). Postharvest Biol Technol, 174: 111447, doi: 10.1016/j.postharvbio.2020.111447.
  • Ortiz-Solà, J., Abadias, M., Colás-Medà, P., Sánchez, G., Bobo, G., Viñas, I. (2020). Evaluation of a sanitizing washing step with different chemical disinfectants for the strawberry processing industry. Int J Food Microbiol, 334: 108810, doi: 10.1016/j.ijfoodmicro.2020.108810.
  • Pablos, C., Romero, A., de Diego, A., Vargas, C., Bascón, I., Pérez-Rodríguez, F., Marugán, J. (2018). Novel antimicrobial agents as alternative to chlorine with potential applications in the fruit and vegetable processing industry. Int J Food Microbiol, 285: 92-97, doi: 10.1016/j.ijfoodmicro.2018.07.029.
  • Park, J. B., Kang, J. H., Song, K. B. (2018). Combined treatment of cinnamon bark oil emulsion washing and ultraviolet-C irradiation improves microbial safety of fresh-cut red chard. LWT-Food Sci Technol, 93: 109-115, doi: 10.1016/j.lwt.2018.03.035.
  • Pedrós-Garrido, S., Condón-Abanto, S., Clemente, I., Beltrán, J. A., Lyng, J. G., Bolton, D., Whyte, P. (2018). Efficacy of ultraviolet light (UV-C) and pulsed light (PL) for the microbiological decontamination of raw salmon (Salmo salar) and food contact surface materials. Innov Food Sci Emerg Technol, 50: 124-131, doi: 10.1016/j.ifset.2018.10.001.
  • Prakash, A., Baskaran, R., Paramasivam, N., Vadivel, V. (2018). Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res Int, 111: 509-523, doi: 10.1016/j.foodres.2018.05.066.
  • Ramos, B., Miller, F. A., Brandão, T. R., Teixeira, P., Silva, C. L. (2013). Fresh fruits and vegetables-An overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol, 20: 1-15, doi: 10.1016/j.ifset.2013.07.002.
  • Seong, J. Y., Kwon, K. H., Oh, S. W. (2017). Combined effect of aerosolized malic acid and UV‐C for the inactivation of Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on fresh‐cut lettuce. J Food Saf, 37(4): e12359, doi: 10.1111/jfs.12359
  • Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K. H., Bhardwaj, N. (2020). UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chem Eng J, 128084, doi: 10.1016/j.cej.2020.128084.
  • Siroli, L., Patrignani, F., Serrazanetti, D. I., Gardini, F., Lanciotti, R. (2015). Innovative strategies based on the use of bio-control agents to improve the safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci Technol, 46(2):302-310, doi: 10.1016/j.tifs.2015.04.014.
  • Yüksel, Ç., Atalay, D., Erge, H. S. (2020). Yenilebilir Kaplamaların Taze Kesilmiş Meyve ve Sebzelerde Kullanımı. GIDA, 45(2), 340-355, doi: 10.15237/gida.GD19144

MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI

Yıl 2021, Cilt 46, Sayı 5, 1069 - 1080, 05.08.2021
https://doi.org/10.15237/gida.GD21086

Öz

Minimal işlem görmüş taze meyve ve sebzelere olan talep son yıllarda artmaktadır. Bu gıdaların taze özelliklerinin korunmasında ve mikrobiyolojik açıdan güvenliğinin sağlanmasında termal olmayan yöntemler uygulanmaktadır. Klora alternatif ve termal olmayan bir teknoloji olan UV-C ışık, gıdaların yüzeyindeki mikroorganizmaların inaktivasyonunda kullanılmaktadır. Ancak, gıdanın yüzey özellikleri ve UV-C ışığın penetrasyon derinliğinin düşük olması gibi faktörler nedeniyle bu uygulamanın etkinliği sınırlıdır. Bu faktörlerin etkisinin en aza indirilmesi için, su destekli UV-C (WUV-C) olarak adlandırılan UV-C ışığın su ile kombine edilerek kullanımı konusunda çalışmalar yürütülmektedir. Yapılan çalışmalarda, WUV-C işleminin, UV-C sistemine kıyasla gıda yüzeyine inoküle edilen mikroorganizmaların dekontaminasyonunda daha etkili olduğu tespit edilmiştir. Bu çalışmada, su destekli UV-C sisteminin taze meyve ve sebzelerin dekontaminasyonunda kullanımı konusunda yapılan araştırmalar incelenmiştir.

Kaynakça

  • Abadias, M., Colás-Medà, P., Viñas, I., Bobo, G., Aguiló-Aguayo, I. (2021). Application of an innovative water-assisted ultraviolet C light technology for the inactivation of microorganisms in tomato processing industries. Food Microbiol, 94: 103631, doi: 10.1016/j.fm.2020.103631.
  • Adhikari, A., Syamaladevi, R. M., Killinger, K., Sablani, S. S. (2015). Ultraviolet-C light inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on organic fruit surfaces. Int J Food Microbiol, 210: 136-142, doi: 10.1016/j.ijfoodmicro.2015.06.018.
  • Alegre, I., Vi, I., Usall, J., Teixidˇ, N., Figge, M. J., Abadias, M. (2013). Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiol, 34(2): 390-399, doi: 10.1016/j.fm.2013.01.013.
  • Alenyorege, E. A., Ma, H., Ayim, I., Aheto, J. H., Hong, C., Zhou, C. (2019). Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite. LWT-Food Sci Technol, 101: 410-418, doi: 10.1016/j.lwt.2018.11.048.
  • Bermúdez-Aguirre, D., Barbosa-Cánovas, G. V. (2013). Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control, 29(1): 82-90, doi: 10.1016/j.foodcont.2012.05.073.
  • Birmpa, A., Sfika, V., Vantarakis, A. (2013). Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. Int J Food Microbiol, 167(1): 96-102, doi: 10.1016/j.ijfoodmicro.2013.06.005.
  • Butot, S., Cantergiani, F., Moser, M., Jean, J., Lima, A., Michot, L., Zuber, S. (2018). UV-C inactivation of foodborne bacterial and viral pathogens and surrogates on fresh and frozen berries. Int J Food Microbiol, 275: 8-16, doi: 10.1016/j.ijfoodmicro.2018.03.016.
  • Castro-Ibáñez, I., Gil, M. I., Allende, A. (2017). Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT-Food Sci Technol, 85: 284-292, doi: 10.1016/j.lwt.2016.11.073.
  • Chen, A. J., Luo, W., Luo, Y. B., Zhu, B. Z. (2018). Combined treatment of ultraviolet‐C and L. plantarum on Salmonella enteritidis and quality control of fresh‐cut apple. J Food Process Preserv, 42(1): e13349, doi: 10.1111/jfpp.13349.
  • Collazo, C., Charles, F., Aguiló-Aguayo, I., Marín-Sáez, J., Lafarga, T., Abadias, M., Viñas, I. (2019b). Decontamination of Listeria innocua from fresh-cut broccoli using UV-C applied in water or peroxyacetic acid, and dry-pulsed light. Innov Food Sci Emerg Technol, 52: 438-449, doi: 10.1016/j.ifset.2019.02.004.
  • Collazo, C., Lafarga, T., Aguiló-Aguayo, I., Marín-Sáez, J., Abadias, M., Viñas, I. (2018). Decontamination of fresh-cut broccoli with a water–assisted UV-C technology and its combination with peroxyacetic acid. Food Control, 93: 92-100, doi: 10.1016/j.foodcont.2018.05.046.
  • Collazo, C., Noguera, V., Aguiló-Aguayo, I., Abadias, M., Colás-Medà, P., Nicolau, I., Viñas, I. (2019a). Assessing water-assisted UV-C light and its combination with peroxyacetic acid and Pseudomonas graminis CPA-7 for the inactivation and inhibition of Listeria monocytogenes and Salmonella enterica in fresh-cut ‘Iceberg’ lettuce and baby spinach leaves. Int J Food Microbiol, 297: 11-20, doi: 10.1016/j.ijfoodmicro.2019.02.024.
  • Condurso, C., Cincotta, F., Tripodi, G., Merlino, M., Giarratana, F., Verzera, A. (2020). A new approach for the shelf-life definition of minimally processed carrots. Postharvest Biol Technol, 163: 111138, doi: 10.1016/j.postharvbio.2020.111138.
  • FDA, (2000). Ultraviolet radiation for the prosessing and treatment of food. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=179.39 (Erişim tarihi: 13 Ocak 2021).
  • Giovenzana, V., Beghi, R., Civelli, R., Guidetti, R. (2015). Optical techniques for rapid quality monitoring along minimally processed fruit and vegetable chain. Trends Food Sci Technol, 46(2): 331-338, doi: 10.1016/j.tifs.2015.10.006.
  • Gogo, E. O., Opiyo, A. M., Hassenberg, K., Ulrichs, C., Huyskens-Keil, S. (2017). Postharvest UV-C treatment for extending shelf life and improving nutritional quality of African indigenous leafy vegetables. Postharvest Biol Technol, 129:107-117, doi:10.1016/j.postharvbio.2017.03.019.
  • Graça, A., Santo, D., Quintas, C., Nunes, C. (2017). Growth of Escherichia coli, Salmonella enterica and Listeria spp., and their inactivation using ultraviolet energy and electrolyzed water, on ‘Rocha’ fresh-cut pears. Food Control, 77: 41-49, doi: 10.1016/j.foodcont.2017.01.017.
  • Guo, S., Huang, R., Chen, H. (2017). Application of water-assisted ultraviolet light in combination of chlorine and hydrogen peroxide to inactivate Salmonella on fresh produce. Int J Food Microbiol, 257: 101-109, doi: 10.1016/j.ijfoodmicro.2017.06.017.
  • Huang, R., Chen, H. (2019). Comparison of Water‐Assisted Decontamination Systems of Pulsed Light and Ultraviolet for Salmonella Inactivation on Blueberry, Tomato, and Lettuce. J Food Sci, 84(5): 1145-1150, doi: 10.1111/1750-3841.14510.
  • Huang, R., Chen, H. (2020). Use of 254 nm ultraviolet light for decontamination of fresh produce and wash water. Food Control, 109: 106926, doi: 10.1016/j.foodcont.2019.106926.
  • Huang, R., de Vries, D., Chen, H. (2018). Strategies to enhance fresh produce decontamination using combined treatments of ultraviolet, washing and disinfectants. Int J Food Microbiol, 283: 37-44,doi: 10.1016/j.ijfoodmicro.2018.06.014.
  • Iglesias, M. B., López, M. L., Echeverría, G., Viñas, I., Zudaire, L., Abadias, M. (2018). Evaluation of biocontrol capacity of Pseudomonas graminis CPA-7 against foodborne pathogens on fresh-cut pear and its effect on fruit volatile compounds. Food Microbiol, 76: 226-236, doi: 10.1016/j.fm.2018.04.007.
  • Jeong, Y. J., Ha, J. W. (2019). Combined treatment of UV-A radiation and acetic acid to control foodborne pathogens on spinach and characterization of their synergistic bactericidal mechanisms. Food Control, 106: 106698, doi: 10.1016/j.foodcont.2019.06.024.
  • Joshi, K., Mahendran, R., Alagusundaram, K., Norton, T., Tiwari, B. K. (2013). Novel disinfectants for fresh produce. Trends Food Sci Technol, 34(1): 54-61, doi:10.1016/j.tifs.2013.08.008.
  • Khan, I., Tango, C. N., Miskeen, S., Lee, B. H., Oh, D. H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety–A review. Food Control, 73: 1426-1444, doi: 10.1016/j.foodcont.2016.11.010.
  • Kim, H. G., Song, K. B. (2017). Combined treatment with chlorine dioxide gas, fumaric acid, and ultraviolet-C light for inactivating Escherichia coli O157: H7 and Listeria monocytogenes inoculated on plums. Food Control, 71: 371-375, doi: 10.1016/j.ifset.2017.06.015.
  • Kuan, C. H., Lim, L. W. K., Ting, T. W., Rukayadi, Y., Ahmad, S. H., Radzi, C. W. J. W. M., Kuan, C. S. (2017). Simulation of decontamination and transmission of Escherichia coli O157: H7, Salmonella Enteritidis, and Listeria monocytogenes during handling of raw vegetables in domestic kitchens. Food Control, 80: 395-400, doi: 10.1016/j.foodcont.2017.05.029.
  • Leng, J., Mukhopadhyay, S., Sokorai, K., Ukuku, D. O., Fan, X., Olanya, M., Juneja, V. (2020). Inactivation of Salmonella in cherry tomato stem scars and quality preservation by pulsed light treatment and antimicrobial wash. Food Control, 110: 107005, doi: 10.1016/j.foodcont.2019.107005.
  • Li, K., Weidhaas, J., Lemonakis, L., Khouryieh, H., Stone, M., Jones, L., Shen, C. (2017). Microbiological quality and safety of fresh produce in West Virginia and Kentucky farmers’ markets and validation of a post-harvest washing practice with antimicrobials to inactivate Salmonella and Listeria monocytogenes. Food Control, 79: 101-108, doi: 10.1016/j.foodcont.2017.03.031
  • Lim, W., Harrison, M. A. (2016). Effectiveness of UV light as a means to reduce Salmonella contamination on tomatoes and food contact surfaces. Food Control, 66: 166-173, doi: 10.1016/j.foodcont.2016.01.043.
  • Lippman, B., Yao, S., Huang, R., Chen, H. (2020). Evaluation of the combined treatment of ultraviolet light and peracetic acid as an alternative to chlorine washing for lettuce decontamination. Int J Food Microbiol, 323: 108590, doi: 10.1016/j.ijfoodmicro.2020.108590.
  • Liu, C., Huang, Y., Chen, H. (2015b). Inactivation of Escherichia coli O157: H7 and Salmonella enterica on blueberries in water using ultraviolet light. J Food Sci, 80(7): M1532-M1537, doi: 10.1111/1750-3841.12910.
  • Liu, C., Li, X., Chen, H. (2015a). Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries. Int J Food Microbiol, 214: 18-23, doi: 10.1016/j.ijfoodmicro.2015.07.023.
  • Ma, L., Zhang, M., Bhandari, B., Gao, Z. (2017). Recent developments in novel shelf life extension technologies of fresh-cut fruits and vegetables. Trends Food Sci Technol, 64: 23-38, doi: 10.1016/j.tifs.2017.03.005.
  • Meireles, A., Giaouris, E., Simões, M. (2016). Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res Int, 82: 71-85, doi: 10.1016/j.foodres.2016.01.021.
  • Mostafidi, M., Sanjabi, M. R., Shirkhan, F., Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci Technol, 103: 321-332, doi: 10.1016/j.tifs.2020.07.009.
  • Ngnitcho, P. F. K., Khan, I., Tango, C. N., Hussain, M. S., Oh, D. H. (2017). Inactivation of bacterial pathogens on lettuce, sprouts, and spinach using hurdle technology. Innov Food Sci Emerg Technol, 43: 68-76, doi: 10.1016/j.ifset.2017.07.033.
  • Nicolau-Lapeña, I., Abadias, M., Viñas, I., Bobo, G., Lafarga, T., Ribas-Agustí, A., Aguiló-Aguayo, I. (2020). Water UV-C treatment alone or in combination with peracetic acid: A technology to maintain safety and quality of strawberries. Int J Food Microbiol, 335: 108887, doi: 10.1016/j.ijfoodmicro.2020.108887.
  • Oliveira, M., Abadias, M., Colás-Medà, P., Usall, J., Viñas, I. (2015). Biopreservative methods to control the growth of foodborne pathogens on fresh-cut lettuce. Int J Food Microbiol, 214: 4-11, doi: 10.1016/j.ijfoodmicro.2015.07.015.
  • Ortiz-Solà, J., Abadias, I., Colás-Medà, P., Anguera, M., Viñas, I. (2021). Inactivation of Salmonella enterica, Listeria monocytogenes and murine norovirus (MNV-1) on fresh strawberries by conventional and water-assisted ultraviolet light (UV-C). Postharvest Biol Technol, 174: 111447, doi: 10.1016/j.postharvbio.2020.111447.
  • Ortiz-Solà, J., Abadias, M., Colás-Medà, P., Sánchez, G., Bobo, G., Viñas, I. (2020). Evaluation of a sanitizing washing step with different chemical disinfectants for the strawberry processing industry. Int J Food Microbiol, 334: 108810, doi: 10.1016/j.ijfoodmicro.2020.108810.
  • Pablos, C., Romero, A., de Diego, A., Vargas, C., Bascón, I., Pérez-Rodríguez, F., Marugán, J. (2018). Novel antimicrobial agents as alternative to chlorine with potential applications in the fruit and vegetable processing industry. Int J Food Microbiol, 285: 92-97, doi: 10.1016/j.ijfoodmicro.2018.07.029.
  • Park, J. B., Kang, J. H., Song, K. B. (2018). Combined treatment of cinnamon bark oil emulsion washing and ultraviolet-C irradiation improves microbial safety of fresh-cut red chard. LWT-Food Sci Technol, 93: 109-115, doi: 10.1016/j.lwt.2018.03.035.
  • Pedrós-Garrido, S., Condón-Abanto, S., Clemente, I., Beltrán, J. A., Lyng, J. G., Bolton, D., Whyte, P. (2018). Efficacy of ultraviolet light (UV-C) and pulsed light (PL) for the microbiological decontamination of raw salmon (Salmo salar) and food contact surface materials. Innov Food Sci Emerg Technol, 50: 124-131, doi: 10.1016/j.ifset.2018.10.001.
  • Prakash, A., Baskaran, R., Paramasivam, N., Vadivel, V. (2018). Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: A review. Food Res Int, 111: 509-523, doi: 10.1016/j.foodres.2018.05.066.
  • Ramos, B., Miller, F. A., Brandão, T. R., Teixeira, P., Silva, C. L. (2013). Fresh fruits and vegetables-An overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol, 20: 1-15, doi: 10.1016/j.ifset.2013.07.002.
  • Seong, J. Y., Kwon, K. H., Oh, S. W. (2017). Combined effect of aerosolized malic acid and UV‐C for the inactivation of Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on fresh‐cut lettuce. J Food Saf, 37(4): e12359, doi: 10.1111/jfs.12359
  • Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K. H., Bhardwaj, N. (2020). UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chem Eng J, 128084, doi: 10.1016/j.cej.2020.128084.
  • Siroli, L., Patrignani, F., Serrazanetti, D. I., Gardini, F., Lanciotti, R. (2015). Innovative strategies based on the use of bio-control agents to improve the safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci Technol, 46(2):302-310, doi: 10.1016/j.tifs.2015.04.014.
  • Yüksel, Ç., Atalay, D., Erge, H. S. (2020). Yenilebilir Kaplamaların Taze Kesilmiş Meyve ve Sebzelerde Kullanımı. GIDA, 45(2), 340-355, doi: 10.15237/gida.GD19144

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Bilimi ve Teknolojisi
Bölüm Makaleler
Yazarlar

Gülten GÜNDÜZ> (Sorumlu Yazar)
EGE ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, GIDA MÜHENDİSLİĞİ BÖLÜMÜ
0000-0002-5878-7411
Türkiye


Özge GÜLERYÜZ>
EGE ÜNİVERSİTESİ, FEN BİLİMLERİ ENSTİTÜSÜ, GIDA MÜHENDİSLİĞİ (YL) (TEZLİ)
0000-0002-7989-6342
Türkiye

Yayımlanma Tarihi 5 Ağustos 2021
Yayınlandığı Sayı Yıl 2021, Cilt 46, Sayı 5

Kaynak Göster

Bibtex @derleme { gida927251, journal = {Gıda}, issn = {1300-3070}, eissn = {1309-6273}, address = {}, publisher = {Gıda Teknolojisi Derneği}, year = {2021}, volume = {46}, number = {5}, pages = {1069 - 1080}, doi = {10.15237/gida.GD21086}, title = {MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI}, key = {cite}, author = {Gündüz, Gülten and Güleryüz, Özge} }
APA Gündüz, G. & Güleryüz, Ö. (2021). MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI . Gıda , 46 (5) , 1069-1080 . DOI: 10.15237/gida.GD21086
MLA Gündüz, G. , Güleryüz, Ö. "MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI" . Gıda 46 (2021 ): 1069-1080 <https://dergipark.org.tr/tr/pub/gida/issue/64417/927251>
Chicago Gündüz, G. , Güleryüz, Ö. "MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI". Gıda 46 (2021 ): 1069-1080
RIS TY - JOUR T1 - MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI AU - GültenGündüz, ÖzgeGüleryüz Y1 - 2021 PY - 2021 N1 - doi: 10.15237/gida.GD21086 DO - 10.15237/gida.GD21086 T2 - Gıda JF - Journal JO - JOR SP - 1069 EP - 1080 VL - 46 IS - 5 SN - 1300-3070-1309-6273 M3 - doi: 10.15237/gida.GD21086 UR - https://doi.org/10.15237/gida.GD21086 Y2 - 2021 ER -
EndNote %0 Gıda MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI %A Gülten Gündüz , Özge Güleryüz %T MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI %D 2021 %J Gıda %P 1300-3070-1309-6273 %V 46 %N 5 %R doi: 10.15237/gida.GD21086 %U 10.15237/gida.GD21086
ISNAD Gündüz, Gülten , Güleryüz, Özge . "MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI". Gıda 46 / 5 (Ağustos 2021): 1069-1080 . https://doi.org/10.15237/gida.GD21086
AMA Gündüz G. , Güleryüz Ö. MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI. GIDA. 2021; 46(5): 1069-1080.
Vancouver Gündüz G. , Güleryüz Ö. MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI. Gıda. 2021; 46(5): 1069-1080.
IEEE G. Gündüz ve Ö. Güleryüz , "MEYVE VE SEBZELERİN DEKONTAMİNASYONUNDA SU DESTEKLİ UV-C SİSTEMİNİN KULLANILMASI", Gıda, c. 46, sayı. 5, ss. 1069-1080, Ağu. 2021, doi:10.15237/gida.GD21086

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/