Araştırma Makalesi
BibTex RIS Kaynak Göster

MW-HPCO2 sistemi ile elde edilen antep fıstığı kabuğu hidrolizatından Candida tropicalis 13803 kullanılarak ksilitol biyoüretimi

Yıl 2024, , 48 - 59, 22.07.2024
https://doi.org/10.56833/gidaveyem.1511298

Öz

Amaç: İkincil tarımsal kalıntılardan biyoteknolojik yolla ksilitol üretimi, sürdürülebilir ve çevresel bir amaç için umut verici bir yaklaşımdır. Lignoselülozik biyokütle, biyoyakıt ve biyokimyasal üretim için önemli bir hammaddedir. Erişilebilirliği, maliyet etkinliği, yenilenebilirliği ve çevre dostu olması onu fosil yakıtlara ve diğer geleneksel enerji ve kimyasal kaynaklarına karşı cazip bir alternatif haline getirmektedir.
Materyal ve yöntem: Bu çalışmada, Antep fıstığı kabuğundaki ksilanın ksiloza dönüşümü, yeni bir teknoloji olan mikrodalga destekli yüksek basınçlı CO2/H2O ile sağlanmıştır. Ksiloz bakımından zengin Antep fıstığı kabuğu hidrolizatı, ksilitol üretimi için Candida tropicalis ATCC 13803 tarafından kullanılmıştır. Erlenmayerde ksilitol üretimi için farklı ksiloz konsantrasyonları (50, 100 ve 150 g/L) kullanılmıştır.
Tartışma ve sonuç: HMF ve furfural, aktif kömür ile ksiloz bakımından zengin hidrolizattan tamamen uzaklaştırılmıştır. Maya performansındaki iyileşme, ksiloz konsantrasyonunun artması ile kısıtlanmıştır. Erlenmayerde fıstık kabuğu hidrolizatı kullanılarak C. tropicalis tarafından üretilen en yüksek ksilitol (65,15 g/L) ve 0,66 g/g maksimum verim 100 g/L ksiloz konsantrasyonu ile elde edilirken, 50 g/L ve 150 g/L ksiloz ile üretilen ksilitol sırasıyla 0,65 ve 0,37 g/g bulunmuştur. Hacimsel verimlilik 100 g/L ksilozda, 50 g/L ve 150 g/L ksiloz konsantrasyonlarına kıyasla sırasıyla 1,28 kat ve 1,84 kat daha yüksek bulunmuştur. Detoksifiye edilmiş fıstık kabuğu hidrolizatının 100 g/L ksilozdaki ksilitol üretim performansı (71,73 g/L) saf ksiloz ile neredeyse aynı bulunmuştur. Ancak, maya 150 g/L'de ksilozu tüketememiş ve ksilitol üretimi gerçekleşmemiştir.

Kaynakça

  • Ahuja, V., Kshirsagar, S., Ghosh, P., Sarkar, B., Sutar, A., More, S., and Dasgupta, D. (2022). Process development for detoxification of corncob hydrolysate using activated charcoal for xylitol production. Journal of Environmental Chemical Engineering, 10(1), 107097.
  • Arminda, M., Josúe, C., Cristina, D., Fabiana, S., and Yolanda, M. (2021). Use of activated carbons for detoxification of a lignocellulosic hydrolysate: Statistical optimisation. Journal of Environmental Management, 296, 113320.
  • Baptista, S. L., Carvalho, L. C., Romaní, A., and Domingues, L. (2020). Development of a sustainable bioprocess based on green technologies for xylitol production from corn cob, Industrial Crops and Products, 156, 112867.
  • Buhner, J., and Agblevor, F. A. (2004). Effect of detoxification of dilute-acid corn fiber hydrolysate on xylitol production, Applied Biochemistry and Biotechnology, 119, 13-30.
  • Carvalho, G. B., Mussatto, S. I., Cândido, E. J., and Almeida e Silva, J. B. (2006). Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(2), 152-157.
  • Chen, J., Zhang, B., Luo, L., Zhang, F., Yi, Y., Shan, Y., Liu, Y., Zhou, Y., Wang, X., and Lü, X. (2021). A review on recycling techniques for bioethanol production from lignocellulosic biomass. Renewable and sustainable energy reviews, 149, 111370.
  • Cheng, K. K., Zhang, J. A., Ling, H. Z., Ping, W. X., Huang, W., Ge, J. P., and Xu, J. M. (2009). Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochemical Engineering Journal, 43(2), 203-207.
  • De Albuquerque, T. L., da Silva Jr, I. J., de Macedo, G. R., and Rocha, M. V. P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochemistry, 49(11), 1779-1789.
  • Domínguez, J. M., Salgado, J. M., Rodríguez, N., and Cortés, S. (2012). Biotechnological production of xylitol from agro-industrial wastes. Food additive, 139-156.
  • Du, H., Ma, X., Jiang, M., Yan, P., Zhao, Y., and Zhang, Z. C. (2021). Efficient Ni/SiO2 catalyst derived from nickel phyllosilicate for xylose hydrogenation to xylitol. Catalysis Today, 365, 265-273.
  • Ergün, B. G., Laçın, K., Çaloğlu, B., and Binay, B. (2022). Second generation Pichia pastoris strain and bioprocess designs. Biotechnology for Biofuels and Bioproducts, 15(1), 150.
  • Felipe, M. G., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., and Manchilha, I. M. (1995). Effect of acetic acid on xylose fermentation to xylitol by Candida guilliermondii. Journal of Basic Microbiology, 35(3), 171-177.
  • Felipe Hernández-Pérez, A., de Arruda, P. V., Sene, L., da Silva, S. S., Kumar Chandel, A., and de Almeida Felipe, M. D. G. (2019). Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 39(7), 924-943.
  • Gurpilhares, D. B., Hasmann, F. A., Pessoa Jr, A., and Roberto, I. C. (2009). The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. Journal of Industrial Microbiology and Biotechnology, 36(1), 87.
  • Hazal, F., Özbek, H. N., Göğüş, F., and Yanik, D. K. (2023). Fıstık sert kabuğunun mikrodalga-CO₂ destekli hidroliz sistemi ile ksiloza hidrolizi. Gıda ve Yem Bilimi Teknolojisi Dergisi, (29), 38-45.
  • Hazal, F., Özbek, H. N., Göğüş, F., and Yanık, D. K. (2024). The green novel approach in hydrolysis of pistachio shell into xylose by microwave‐assisted high‐pressure CO2/H2O. Journal of the Science of Food and Agriculture, 104(1), 116-124.
  • Hoang, A. T., Nižetić, S., Ong, H. C., Mofijur, M., Ahmed, S. F., Ashok, B., and Chau, M. Q. (2021). Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere, 281, 130878.
  • Hoppert, L., Kölling, R., and Einfalt, D. (2022). Synergistic effects of inhibitors and osmotic stress during high gravity bioethanol production from steam-exploded lignocellulosic feedstocks. Biocatalysis and Agricultural Biotechnology, 43, 102414.
  • Hunt, A. J., Sin, E. H., Marriott, R., and Clark, J. H. (2010). Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem: Chemistry & Sustainability Energy & Materials, 3(3), 306-322.
  • Jin, L. Q., Zhao, N., Liu, Z. Q., Liao, C. J., Zheng, X. Y., and Zheng, Y. G. (2018). Enhanced production of xylose from corncob hydrolysis with oxalic acid as catalyst. Bioprocess and Biosystem Engineering, 41(1), 57-64.
  • Ko, B. S., Kim, J., and Kim, J. H. (2006). Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Applied and Environmental Microbiology, 72(6), 4207-4213.
  • Kumar, P., Kermanshahi‐pour, A., Brar, S. K., and Brooks, M. S. L. (2021). Conversion of lignocellulosic biomass to reducing sugars in high pressure and supercritical fluids: Greener alternative for biorefining of renewables. Advanced Sustainable Systems, 5(4), 2000275.
  • Lee, J. M., Venditti, R. A., Jameel, H., and Kenealy, W. R. (2011). Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass and Bioenergy, 35(1), 626-636.
  • Li, M., Meng, X., Diao, E., and Du, F. (2012). Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two‐stage fed‐batch fermentation process. Journal of Chemical Technology & Biotechnology, 87(3), 387-392.
  • Manaf, S. F. A., Luthfi, A. A. I., Tan, J. P., Abdul, P. M., and Jamali, N. S. (2023). Kinetic study and model of fermentation parameters affected growth and xylitol production in bioreactor by Kluyveromyces marxianus ATCC 36,907. Biomass Conversion and Biorefinery, 13(8), 7247-7263.
  • Mankar, A. R., Pandey, A., Modak, A., and Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235.
  • Misra, S., Raghuwanshi, S., and Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92(2), 1596-1601.
  • Morais, A. R., da Costa Lopes, A. M., and Bogel-Łukasik, R. (2015). Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chemical reviews, 115(1), 3-27.
  • Morais Junior, W. G., Pacheco, T. F., Trichez, D., Almeida, J. R., and Gonçalves, S. B. 2019. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast, 36(5), 349-361.
  • Mujtaba, M., Fraceto, L. F., Fazeli, M., Mukherjee, S., Savassa, S. M., de Medeiros, G. A., Santo Pereira, A. E., Mancini, S. D., Lipponen, J., and Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815.
  • Mussatto, S. I., and Roberto, I. C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer's spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochemistry, 43(5), 540-546.
  • Narisetty, V., Castro, E., Durgapal, S., Coulon, F., Jacob, S., Kumar, D., Kumar Awasthi, M., Pant, K. K., Parameswaran, B., and Kumar, V. (2021). High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates. Bioresource Technology, 342, 126005.
  • Okolie, J. A., Nanda, S., Dalai, A. K., and Kozinski, J. A. (2021). Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization, 12, 2145-2169.
  • Özbek, H. N., Yanık, D. K., Fadıloğlu, S., Çavdar, H. K., and Göğüş, F. (2018). Microwave-assisted extraction of non-polar compounds from pistachio hull and characterization of extracts. Grasas y Aceites, 69(3), e260-e260.
  • Prakash, G., Varma, A. J., Prabhune, A., Shouche, Y., and Rao, M. (2011). Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology, 102(3), 3304-3308.
  • Queiroz, S. S., Jofre, F. M., Mussatto, S. I., and Maria das Graças, A. F. (2022). Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess. Renewable and Sustainable Energy Reviews, 154, 111789.
  • Sasaki, C., Kurosumi, A., Yamashita, Y., Mtui, G., and Nakamura, Y. (2011). Xylitol production from dilute-acid hydrolysis of bean group shells. In Microorganisms In Industry And Environment: From Scientific and Industrial Research to Consumer Products (pp. 605-609).
  • Sasaki, M., and Ohsawa, K. (2021). Hydrolysis of lignocellulosic biomass in hot-compressed water with supercritical carbon dioxide. ACS omega, 6(22), 14252-14259.
  • Selvasekaran, P., and Chidambaram, R. (2021). Advances in formulation for the production of low-fat, fat-free, low-sugar, and sugar-free chocolates: An overview of the past decade. Trends in Food Science & Technology, 113, 315-334.
  • Sidana, A., and Yadav, S. K. (2022). Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. Journal of Cleaner Production, 335, 130286.
  • Sjulander, N., and Kikas, T. (2020). Origin, impact and control of lignocellulosic inhibitors in bioethanol production—A review. Energies, 13(18), 4751.
  • Suhartini, S., Rohma, N. A., Mardawati, E., Hidayat, N., and Melville, L. (2022). Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review. Renewable and Sustainable Energy Reviews, 154, 111817.
  • Özbek HN, Koçak Yanık D, Fadıloğlu S, and Göğüş F. (2020). Ultrasound-assisted alkaline pre-treatment and its sequential combination with microwave for fractionation of pistachio shell. Renewable Energy, 157, 637–46.
  • Özbek, H. N., Koçak Yanık, D., Fadıloğlu, S., and Göğüş, F. (2021). Effect of microwave‐assisted alkali pre‐treatment on fractionation of pistachio shell and enzymatic hydrolysis of cellulose‐rich residues. Journal of Chemical Technology & Biotechnology, 96(2), 521-531.
  • Tamburini, E., Costa, S., Marchetti, M. G., and Pedrini, P. (2015). Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules, 5(3), 1979-1989.
  • Vardhan, H., Sasmal, S., and Mohanty, K. (2024). Detoxification of areca nut acid hydrolysate and production of xylitol by Candida tropicalis (MTCC 6192). Preparative Biochemistry & Biotechnology, 54(1), 61-72.
  • Winkelhausen, E., and Kuzmanova, S. (1998). Microbial conversion of D-xylose to xylitol. Journal of fermentation and Bioengineering, 86(1), 1-14.
  • Xu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R., and Sun, W. (2019). Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Technology, 21(2), 341-347.
  • Zhang, J., Geng, A., Yao, C., Lu, Y., and Li, Q. (2012). Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource technology, 105, 134-141.
  • Zhang, J., Zhang, B., Wang, D., Gao, X., and Hong, J. (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresource Technology, 152, 192-201.
  • Zhang, C., Qin, J., Dai, Y., Mu, W., and Zhang, T. 2019. Atmospheric and room temperature plasma (ARTP) mutagenesis enables xylitol over-production with yeast Candida tropicalis. Journal of biotechnology, 296, 7-13.

Bioproduction of xylitol by Candida tropicalis 13803 from pistachio shell hydrolysate obtained through MW-HPCO2 system

Yıl 2024, , 48 - 59, 22.07.2024
https://doi.org/10.56833/gidaveyem.1511298

Öz

Objective: Biotechnological xylitol production from secondary agricultural residues is a promising approach for a sustainable and environmental purpose. Lignocellulosic biomass is a significant feedstock for biofuel and biochemical production. Its accessibility, cost-effectiveness, renewability, and environmental friendliness make it an attractive alternative to fossil fuels and other conventional sources of energy and chemicals.
Materials and methods: In this study, the conversion of xylan to xylose in a pistachio shell was provided with a novel technology of a microwave-assisted high-pressure CO2/H2O system. Xylose rich pistachio shell hydrolysate was utilized by Candida tropicalis ATCC 13803 for xylitol production. Different concentrations of xylose (50, 100, and 150 g/L) were employed for xylitol production in shake-flask.
Results and conclusion: HMF and furfural were completely removed from xylose-rich hydrolysate by activated charcoal. The improvement in yeast performance was limited with increasing xylose concentration. The highest xylitol produced by C. tropicalis from pistachio shell hydrolysate (65.15 g/L) and the maximum yield of xylitol 0.66 g/g with 100 g/L xylose were obtained in shake-flask whereas xylitol produced at 50 g/L and 150 g/L xylose were 0.65 and 0.37 g/g, respectively. Volumetric productivity at 100 g/L of xylose was 1.28 times and 1.84 times higher compared to xylose concentrations of 50 g/L and 150 g/L, respectively. Xylitol production performance (71.73 g/L) of detoxified pistachio shell hydrolysate at 100 g/L of xylose was almost identical to pure xylose. However, the yeast was not able to consume xylose at 150 g/L resulting in no xylitol production.

Kaynakça

  • Ahuja, V., Kshirsagar, S., Ghosh, P., Sarkar, B., Sutar, A., More, S., and Dasgupta, D. (2022). Process development for detoxification of corncob hydrolysate using activated charcoal for xylitol production. Journal of Environmental Chemical Engineering, 10(1), 107097.
  • Arminda, M., Josúe, C., Cristina, D., Fabiana, S., and Yolanda, M. (2021). Use of activated carbons for detoxification of a lignocellulosic hydrolysate: Statistical optimisation. Journal of Environmental Management, 296, 113320.
  • Baptista, S. L., Carvalho, L. C., Romaní, A., and Domingues, L. (2020). Development of a sustainable bioprocess based on green technologies for xylitol production from corn cob, Industrial Crops and Products, 156, 112867.
  • Buhner, J., and Agblevor, F. A. (2004). Effect of detoxification of dilute-acid corn fiber hydrolysate on xylitol production, Applied Biochemistry and Biotechnology, 119, 13-30.
  • Carvalho, G. B., Mussatto, S. I., Cândido, E. J., and Almeida e Silva, J. B. (2006). Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(2), 152-157.
  • Chen, J., Zhang, B., Luo, L., Zhang, F., Yi, Y., Shan, Y., Liu, Y., Zhou, Y., Wang, X., and Lü, X. (2021). A review on recycling techniques for bioethanol production from lignocellulosic biomass. Renewable and sustainable energy reviews, 149, 111370.
  • Cheng, K. K., Zhang, J. A., Ling, H. Z., Ping, W. X., Huang, W., Ge, J. P., and Xu, J. M. (2009). Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochemical Engineering Journal, 43(2), 203-207.
  • De Albuquerque, T. L., da Silva Jr, I. J., de Macedo, G. R., and Rocha, M. V. P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochemistry, 49(11), 1779-1789.
  • Domínguez, J. M., Salgado, J. M., Rodríguez, N., and Cortés, S. (2012). Biotechnological production of xylitol from agro-industrial wastes. Food additive, 139-156.
  • Du, H., Ma, X., Jiang, M., Yan, P., Zhao, Y., and Zhang, Z. C. (2021). Efficient Ni/SiO2 catalyst derived from nickel phyllosilicate for xylose hydrogenation to xylitol. Catalysis Today, 365, 265-273.
  • Ergün, B. G., Laçın, K., Çaloğlu, B., and Binay, B. (2022). Second generation Pichia pastoris strain and bioprocess designs. Biotechnology for Biofuels and Bioproducts, 15(1), 150.
  • Felipe, M. G., Vieira, D. C., Vitolo, M., Silva, S. S., Roberto, I. C., and Manchilha, I. M. (1995). Effect of acetic acid on xylose fermentation to xylitol by Candida guilliermondii. Journal of Basic Microbiology, 35(3), 171-177.
  • Felipe Hernández-Pérez, A., de Arruda, P. V., Sene, L., da Silva, S. S., Kumar Chandel, A., and de Almeida Felipe, M. D. G. (2019). Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Critical Reviews in Biotechnology, 39(7), 924-943.
  • Gurpilhares, D. B., Hasmann, F. A., Pessoa Jr, A., and Roberto, I. C. (2009). The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. Journal of Industrial Microbiology and Biotechnology, 36(1), 87.
  • Hazal, F., Özbek, H. N., Göğüş, F., and Yanik, D. K. (2023). Fıstık sert kabuğunun mikrodalga-CO₂ destekli hidroliz sistemi ile ksiloza hidrolizi. Gıda ve Yem Bilimi Teknolojisi Dergisi, (29), 38-45.
  • Hazal, F., Özbek, H. N., Göğüş, F., and Yanık, D. K. (2024). The green novel approach in hydrolysis of pistachio shell into xylose by microwave‐assisted high‐pressure CO2/H2O. Journal of the Science of Food and Agriculture, 104(1), 116-124.
  • Hoang, A. T., Nižetić, S., Ong, H. C., Mofijur, M., Ahmed, S. F., Ashok, B., and Chau, M. Q. (2021). Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere, 281, 130878.
  • Hoppert, L., Kölling, R., and Einfalt, D. (2022). Synergistic effects of inhibitors and osmotic stress during high gravity bioethanol production from steam-exploded lignocellulosic feedstocks. Biocatalysis and Agricultural Biotechnology, 43, 102414.
  • Hunt, A. J., Sin, E. H., Marriott, R., and Clark, J. H. (2010). Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem: Chemistry & Sustainability Energy & Materials, 3(3), 306-322.
  • Jin, L. Q., Zhao, N., Liu, Z. Q., Liao, C. J., Zheng, X. Y., and Zheng, Y. G. (2018). Enhanced production of xylose from corncob hydrolysis with oxalic acid as catalyst. Bioprocess and Biosystem Engineering, 41(1), 57-64.
  • Ko, B. S., Kim, J., and Kim, J. H. (2006). Production of xylitol from D-xylose by a xylitol dehydrogenase gene-disrupted mutant of Candida tropicalis. Applied and Environmental Microbiology, 72(6), 4207-4213.
  • Kumar, P., Kermanshahi‐pour, A., Brar, S. K., and Brooks, M. S. L. (2021). Conversion of lignocellulosic biomass to reducing sugars in high pressure and supercritical fluids: Greener alternative for biorefining of renewables. Advanced Sustainable Systems, 5(4), 2000275.
  • Lee, J. M., Venditti, R. A., Jameel, H., and Kenealy, W. R. (2011). Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass and Bioenergy, 35(1), 626-636.
  • Li, M., Meng, X., Diao, E., and Du, F. (2012). Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two‐stage fed‐batch fermentation process. Journal of Chemical Technology & Biotechnology, 87(3), 387-392.
  • Manaf, S. F. A., Luthfi, A. A. I., Tan, J. P., Abdul, P. M., and Jamali, N. S. (2023). Kinetic study and model of fermentation parameters affected growth and xylitol production in bioreactor by Kluyveromyces marxianus ATCC 36,907. Biomass Conversion and Biorefinery, 13(8), 7247-7263.
  • Mankar, A. R., Pandey, A., Modak, A., and Pant, K. K. (2021). Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresource Technology, 334, 125235.
  • Misra, S., Raghuwanshi, S., and Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92(2), 1596-1601.
  • Morais, A. R., da Costa Lopes, A. M., and Bogel-Łukasik, R. (2015). Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chemical reviews, 115(1), 3-27.
  • Morais Junior, W. G., Pacheco, T. F., Trichez, D., Almeida, J. R., and Gonçalves, S. B. 2019. Xylitol production on sugarcane biomass hydrolysate by newly identified Candida tropicalis JA2 strain. Yeast, 36(5), 349-361.
  • Mujtaba, M., Fraceto, L. F., Fazeli, M., Mukherjee, S., Savassa, S. M., de Medeiros, G. A., Santo Pereira, A. E., Mancini, S. D., Lipponen, J., and Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815.
  • Mussatto, S. I., and Roberto, I. C. (2008). Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer's spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochemistry, 43(5), 540-546.
  • Narisetty, V., Castro, E., Durgapal, S., Coulon, F., Jacob, S., Kumar, D., Kumar Awasthi, M., Pant, K. K., Parameswaran, B., and Kumar, V. (2021). High level xylitol production by Pichia fermentans using non-detoxified xylose-rich sugarcane bagasse and olive pits hydrolysates. Bioresource Technology, 342, 126005.
  • Okolie, J. A., Nanda, S., Dalai, A. K., and Kozinski, J. A. (2021). Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization, 12, 2145-2169.
  • Özbek, H. N., Yanık, D. K., Fadıloğlu, S., Çavdar, H. K., and Göğüş, F. (2018). Microwave-assisted extraction of non-polar compounds from pistachio hull and characterization of extracts. Grasas y Aceites, 69(3), e260-e260.
  • Prakash, G., Varma, A. J., Prabhune, A., Shouche, Y., and Rao, M. (2011). Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology, 102(3), 3304-3308.
  • Queiroz, S. S., Jofre, F. M., Mussatto, S. I., and Maria das Graças, A. F. (2022). Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess. Renewable and Sustainable Energy Reviews, 154, 111789.
  • Sasaki, C., Kurosumi, A., Yamashita, Y., Mtui, G., and Nakamura, Y. (2011). Xylitol production from dilute-acid hydrolysis of bean group shells. In Microorganisms In Industry And Environment: From Scientific and Industrial Research to Consumer Products (pp. 605-609).
  • Sasaki, M., and Ohsawa, K. (2021). Hydrolysis of lignocellulosic biomass in hot-compressed water with supercritical carbon dioxide. ACS omega, 6(22), 14252-14259.
  • Selvasekaran, P., and Chidambaram, R. (2021). Advances in formulation for the production of low-fat, fat-free, low-sugar, and sugar-free chocolates: An overview of the past decade. Trends in Food Science & Technology, 113, 315-334.
  • Sidana, A., and Yadav, S. K. (2022). Recent developments in lignocellulosic biomass pretreatment with a focus on eco-friendly, non-conventional methods. Journal of Cleaner Production, 335, 130286.
  • Sjulander, N., and Kikas, T. (2020). Origin, impact and control of lignocellulosic inhibitors in bioethanol production—A review. Energies, 13(18), 4751.
  • Suhartini, S., Rohma, N. A., Mardawati, E., Hidayat, N., and Melville, L. (2022). Biorefining of oil palm empty fruit bunches for bioethanol and xylitol production in Indonesia: A review. Renewable and Sustainable Energy Reviews, 154, 111817.
  • Özbek HN, Koçak Yanık D, Fadıloğlu S, and Göğüş F. (2020). Ultrasound-assisted alkaline pre-treatment and its sequential combination with microwave for fractionation of pistachio shell. Renewable Energy, 157, 637–46.
  • Özbek, H. N., Koçak Yanık, D., Fadıloğlu, S., and Göğüş, F. (2021). Effect of microwave‐assisted alkali pre‐treatment on fractionation of pistachio shell and enzymatic hydrolysis of cellulose‐rich residues. Journal of Chemical Technology & Biotechnology, 96(2), 521-531.
  • Tamburini, E., Costa, S., Marchetti, M. G., and Pedrini, P. (2015). Optimized production of xylitol from xylose using a hyper-acidophilic Candida tropicalis. Biomolecules, 5(3), 1979-1989.
  • Vardhan, H., Sasmal, S., and Mohanty, K. (2024). Detoxification of areca nut acid hydrolysate and production of xylitol by Candida tropicalis (MTCC 6192). Preparative Biochemistry & Biotechnology, 54(1), 61-72.
  • Winkelhausen, E., and Kuzmanova, S. (1998). Microbial conversion of D-xylose to xylitol. Journal of fermentation and Bioengineering, 86(1), 1-14.
  • Xu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R., and Sun, W. (2019). Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Technology, 21(2), 341-347.
  • Zhang, J., Geng, A., Yao, C., Lu, Y., and Li, Q. (2012). Xylitol production from D-xylose and horticultural waste hemicellulosic hydrolysate by a new isolate of Candida athensensis SB18. Bioresource technology, 105, 134-141.
  • Zhang, J., Zhang, B., Wang, D., Gao, X., and Hong, J. (2014) Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresource Technology, 152, 192-201.
  • Zhang, C., Qin, J., Dai, Y., Mu, W., and Zhang, T. 2019. Atmospheric and room temperature plasma (ARTP) mutagenesis enables xylitol over-production with yeast Candida tropicalis. Journal of biotechnology, 296, 7-13.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Bilimleri (Diğer)
Bölüm Özgün Araştırmalar
Yazarlar

Filiz Hazal 0000-0003-4923-0774

Hatice Neval Özbek 0000-0001-6543-4086

Murat Yilmaztekin 0000-0002-5667-9169

Fahrettin Göğüş 0000-0002-8610-5297

Derya Koçak Yanık 0000-0003-3866-899X

Yayımlanma Tarihi 22 Temmuz 2024
Gönderilme Tarihi 21 Mart 2024
Kabul Tarihi 14 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Hazal, F., Özbek, H. N., Yilmaztekin, M., Göğüş, F., vd. (2024). Bioproduction of xylitol by Candida tropicalis 13803 from pistachio shell hydrolysate obtained through MW-HPCO2 system. Gıda Ve Yem Bilimi Teknolojisi Dergisi(32), 48-59. https://doi.org/10.56833/gidaveyem.1511298

by-nc-nd.png?resize=300%2C105&ssl=1
Gıda ve Yem Bilimi-Teknolojisi Dergisi  CC BY-NC-ND 4.0 lisansı altında lisanslanmıştır
 Journal of Food and Feed Science-Technology is licensed under CC BY-NC-ND 4.0