Araştırma Makalesi
BibTex RIS Kaynak Göster

Yardımcı gıda teknolojileri ile elmadan probiyotik atıştırmalık üretiminin ön çalışması

Yıl 2019, Cilt: 23 Sayı: 3, 324 - 334, 19.09.2019
https://doi.org/10.29050/harranziraat.499249

Öz


Probiyotik atıştırmalık model yiyeceği elma ve Lactobacillus rhamnosus GG (LGG) ile oluşturulmuştur. Üretimde kullanılan deney tasarımı (DoE) ve kurutucu tipleri ile dehidrasyon işlemi koşullarının etkileri optimizasyon ve son ürünün probiyotik yeterliliği ile değerlendirilmiştir. Elma küplerinin ultrason destekli ozmotik dehidrasyonu (US-OD) ile maksimum düzeyde su içeriğini azaltmak için Box-Behnken tarafından tasarlanan deneysel tasarım çerçevesinde deneyler yürütülmüştür. Deneysel tasarımın sükroz çözelti konsantrasyonu (% 40, 45, 50), elma ve çözelti oranı (1: 4, 1: 6, 1: 8 w w-1) ve ultrason uygulama süresi (10, 20, 30 dak) değişkenlerinin optimum değerleri belirlenmiştir. DoE metodolojisi, % 50 sükroz konsantrasyonu, 1:4 elma ve çözelti oranı ile 10,05 dakika koşullarında maksimum su kaybına ulaşıldığını ortaya koymuştur; sükroz konsantrasyonunu en etkili değişken olarak belirlemiştir; ve kuadratik modelin deneysel sonuçlar ile iyi bir uyum sağladığını (R2=0.929) ortaya çıkarmıştır. Optimize edilen koşullar altında üretilen elma örnekleri, 5 saat boyunca 37 °C sıcaklıkta konveksiyonel ve konvensiyonel kurutucularla kurutulmuştur. Sonuçlar, canlı kalan LGG hücre sayısının (106-107kob g-1) kurutulmuş ürünleri probiyotik olarak nitelendirmek için yeterli olduğunu göstermiştir.


Kaynakça

  • Amami, E., Khezami, W., Mezrigui, S., Badwaik, L.S., Bejar, A.K., Perez, C.T., Kechaou, N., 2017. Effect of Ultrasound-Assisted Osmotic Dehydration Pretreatment on the Convective Drying of Strawberry. Ultrasonics Sonochemistry, 36: 286–300.
  • Ambros, S., Foerst, P., Kulozik, U., 2018. Temperature-Controlled Microwave-Vacuum Drying of Lactic Acid Bacteria: Impact of Drying Conditions on Process and Product Characteristics. Journal of Food Engineering, 224: 80−87.
  • Anonymous, 2005. Merck Gıda Mikrobiyolojisi Uygulamaları. (Ed) Halkman, A. K., Başak Matbaacılık Ltd. Şti., Ankara, 358p.
  • AOAC, 1990. Official Methods of Analysis. Association of Analytical Communities, Arlington, VA.
  • Azarpazhooh, E., Ramaswamy, H.S., 2010. Microwave-Osmotic Dehydration of Apples under Continuous Flow Medium Spray Conditions: Comparison with Other Methods. Drying Technology, 28: 49–56.
  • Barman, N., Badwaik, L.S., 2017. Effect of Ultrasound and Centrifugal Force on Carambola (Averrhoa carambola L.) Slices during Osmotic Dehydration. Ultrasonics Sonochemistry, 34: 37–44.
  • Bellary, A.N., Rastogi, N.K., 2016. Ways And Means For The Infusion Of Bioactive Constituents In Solid Foods. Critical Reviews in Food Science and Nutrition, 56 (7): 1126−1145.
  • Betoret, N., Puente, L., Díaz, M.J., Pagán, M.J., García, M.J., Gras, M.L., Martínez-Monzó, J., Fito, P., 2003. Development of Probiotic-Enriched Dried Fruits by Vacuum Impregnation. Journal of Food Engineering, 56 (2–3): 273–277.
  • Broeckx, G., Vandenheuvel, D., Claes, I.J.J., Lebeer, S., Kiekens, F., 2016. Drying Techniques of Probiotic Bacteria as an Important Step Towards the Development of Novel Pharmabiotics. International Journal of Pharmaceutics, 505: 303–318.
  • Charalampopoulos, D., Wang, R., Pandiella, S.S., Webb, C., 2002. Application of Cereals and Cereal Components in Functional Foods: A Review. International Journal of Food Microbiology, 79: 131–141.
  • Chen, Z. Guo, X., Wu, T., 2016. A Novel Dehydration Technique for Carrot Slices Implementing Ultrasound and Vacuum Drying Methods. Ultrasonics Sonochemistry, 30: 28–34.
  • Chottanom, P., Pranin, T., Shopka, K., Nasinsorn, N., Itsaranuwat, P., 2016. Pulsed Vacuum Osmotic Dehydration of Cherry Tomatoes: Impact on Physicochemical Properties and Probiotics Entrapment. Agricultural Technology and Biological Sciences, 13 (3): 193–204.
  • Demirci, M., Sağdıç, O., Çavuş, M., Pehlivanoğlu, H., Çağlar, M.Y., Yılmaz, M.T., 2017. Prebiyotik Oligosakkaritlerin Kaynakları, Üretimleri ve Gıda Uygulamaları. European Journal of Science and Technology, 6 (10): 20–31.
  • Erdoğan, S.S., Demirci, M., 2014. Elmanin Fenolik Bileşen ve Lif Içeriği. Bahçe, 43 (1–2): 41–52.
  • Farnworth, E.R., 2007. Probiotics and Prebiotics in Handbook of Nutraceuticals and Functional Foods. (Ed) Wildman, R.E.C., 2nd ed. Taylor and Francis Group, LLC, USA. 335–347 pp.
  • Flores-Andrade, E., Pascual-Pineda, L.A., Alarcón-Elvira, F.G., Rascón-Díaz, M.P., Pimentel-González, D.J., Beristain, C.I., 2017. Effect of Vacuum on the Impregnation of Lactobacillus rhamnosus Microcapsules in Apple Slices using Double Emulsion. Journal of Food Engineering, 202: 18−24.
  • Garcia-Noguera, J., Oliveira, F.I.P., Gallão, M.I., Weller, C.L., Rodrigues, S., Fernandes, F.A.N., 2010. Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28: 294–303.
  • Grajek, W., Olejnik, A., Sip, A., 2005. Probiotics, Prebiotics and Antioxidants as Functional Foods. Acta Biochimica Polonica, 52 (3): 665–671.
  • Goula, A.M., Kokolaki, M., Daftsiou, E., 2017. Use of Ultrasound for Osmotic Dehydration. The Case of Potatoes. Food and Bioproducts Processing, 105: 157–170.
  • Hasler, C.M., 2002. Functional Foods: Benefits, Concerns and Challenges—A Position Paper from the American Council on Science and Health. Journal of Nutrition, 132: 3772–3781.
  • Klewicki, R., Uczciwek, M., 2008. Effect of Osmotic Dehydration in Fructose, Sucrose and Fructooligosaccharide Solutions on the Content of Saccharides in Plums and Apples and Their Energy Value. Agricultural and Food Science, 17 (4): 367–375.
  • Krasaekoopt, W., Suthanwong, B., 2008. Vacuum Impregnation of Probiotics in Fruit Piece and Their Survival during Refrigerated Storage. Natural Sciences, 42: 723–731.
  • Li, C., Li-ying, N., Da-jing, L., Chun-quan, L.,Ying-ping, L., Chun-ju, L., Jiang-feng, S., 2018. Effects of Different Drying Methods on Quality, Bacterial Viability and Storage Stability of Probiotic Enriched Apple Snacks. Journal of Integrative Agriculture, 17 (1): 247–255.
  • Mierzwa, D., Kowalski, S.J., Kroehnke, J., 2017. Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration. Food Technology and Biotechnology, 55 (2): 197–205.
  • Montgomery, C.D., 2001. Design and Analysis of Experiments. John Wiley and Sons, Inc., New York, USA, 752p.
  • Nowacka, M., Tylewicz, U., Romani, S., Rosa, M.D., Witrowa-Rajchert, D., 2017. Influence of Ultrasound-Assisted Osmotic Dehydration on the Main Quality Parameters of Kiwifruit. Innovative Food Science and Emerging Technologies, 41: 71–78.
  • Pimentel, T.C., Madrona, G.S., Prudencio, S.H., 2015. Probiotic Clarified Apple Juice with Oligofructose or Sucralose as Sugar Substitutes: Sensory Profile and Acceptability. LWT - Food Science and Technology, 62: 838−846.
  • Plaza, M., Cifuentes, A., Ibáñez, E., 2008. In The Search of New Functional Food Ingredients from Algae. Trends in Food Science and Technology, 19: 31−39.
  • Puente, L., Betoret, N., Cortés, M., 2009. Evolution of Probiotic Content and Color of Apples Impregnated with Lactic Acid Bacteria. Vitae, Revista De La Facultad De Química Farmacéutica, 16 (3): 297−303.
  • Sharma, S.K., Mulvaney, S.J., Rizvi, S.S.H., 2009. Food Process Engineering. John Wiley and Sons, Inc., New York, USA, 348p.
  • Ramya, V., Jain, N.K., 2017. A Review on Osmotic Dehydration of Fruits and Vegetables: An Integrated Approach. Journal of Food Process Engineering, 40: 1−22.
  • Rodrigues, S., Silva, L.C.A., Mulet, A., Cárcel, J.A., Fernandes, F.A.N., 2018. Development of Dried Probiotic Apple Cubes Incorporated with Lactobacillus casei NRRL B-442. Journal of Functional Foods, 41: 48–54.
  • Soares de Mendonça, K., Corrêa, J.L.G., Junqueira, J.R.J., Cirillo, M.A., Figueira, F.V., Carvalho, E.E.N.C., 2017. Influences of Convective and Vacuum Drying on the Quality Attributes of Osmo-Dried Pequi (Caryocar brasiliense Camb.) Slices. Food Chemistry, 224: 212–218.
  • Tripathi, M.K., Giri, S.K. 2014. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. Journal of Functional Foods, 9: 225–241.
  • Valík, L., Medveďová, A., Liptáková, D., 2008. Characterization of the Growth of Lactobacillus rhamnosus GG in Milk at Suboptimal Temperatures. Journal of Food and Nutrition Research, 47 (2): 60–67.
  • Zhou, M., Chen, Q., Bi, J., Wang, Y., Wu, X., 2017. Degradation Kinetics of cyanidin 3-O-Glucoside And Cyanidin 3-Orutinoside during Hot Air and Vacuum Drying in Mulberry (Morus alba L.) Fruit: A Comparative Study Based on Solid Food System. Food Chemistry, 229: 574–579.
  • Zielinska, M., Markowski, M. Effect of Microwave-Vacuum, Ultrasonication, and Freezing on Mass Transfer Kinetics and Diffusivity during Osmotic Dehydration of Cranberries. Drying Technology, DOI: 10.1080/07373937.2017.1390476.

A preliminary study of probiotic apple snack production with assisting food technologies

Yıl 2019, Cilt: 23 Sayı: 3, 324 - 334, 19.09.2019
https://doi.org/10.29050/harranziraat.499249

Öz


A probiotic snack model food was formed with apple and Lactobacillus rhamnosus GG (LGG). The effects of dehydration process conditions with design of experiment (DoE) and dryer types used in the production were evaluated through optimization and probiotic qualification of the final product. Experiments on ultrasound assisted osmotic dehydration (US-OD) of apple cubes designed by Box-Behnken were conducted to obtain the maximum water reduction. Optimum values of sucrose solution concentration (40, 45, 50%), apple and solution ratio (1:4, 1:6, 1:8 w w-1) and ultrasound application time (10, 20, 30 min) variables of the design were determined. The DoE methodology introduced the results that maximum water loss was reached at the conditions of 50% sucrose concentration, 1:4 apple and solution ratio and 10.05 min; sucrose concentration was the most effective variable; quadratic model submitted a good fitting (R2=0.929) with the experimental results. Apple samples produced under the optimized conditions were dried with convectional and conventional dryers at specific temperature, 37 °C during 5 hours. The results showed that the remaining number of viable LGG cells (106-107cfu g-1) was sufficient to qualify dried products as probiotic.


Kaynakça

  • Amami, E., Khezami, W., Mezrigui, S., Badwaik, L.S., Bejar, A.K., Perez, C.T., Kechaou, N., 2017. Effect of Ultrasound-Assisted Osmotic Dehydration Pretreatment on the Convective Drying of Strawberry. Ultrasonics Sonochemistry, 36: 286–300.
  • Ambros, S., Foerst, P., Kulozik, U., 2018. Temperature-Controlled Microwave-Vacuum Drying of Lactic Acid Bacteria: Impact of Drying Conditions on Process and Product Characteristics. Journal of Food Engineering, 224: 80−87.
  • Anonymous, 2005. Merck Gıda Mikrobiyolojisi Uygulamaları. (Ed) Halkman, A. K., Başak Matbaacılık Ltd. Şti., Ankara, 358p.
  • AOAC, 1990. Official Methods of Analysis. Association of Analytical Communities, Arlington, VA.
  • Azarpazhooh, E., Ramaswamy, H.S., 2010. Microwave-Osmotic Dehydration of Apples under Continuous Flow Medium Spray Conditions: Comparison with Other Methods. Drying Technology, 28: 49–56.
  • Barman, N., Badwaik, L.S., 2017. Effect of Ultrasound and Centrifugal Force on Carambola (Averrhoa carambola L.) Slices during Osmotic Dehydration. Ultrasonics Sonochemistry, 34: 37–44.
  • Bellary, A.N., Rastogi, N.K., 2016. Ways And Means For The Infusion Of Bioactive Constituents In Solid Foods. Critical Reviews in Food Science and Nutrition, 56 (7): 1126−1145.
  • Betoret, N., Puente, L., Díaz, M.J., Pagán, M.J., García, M.J., Gras, M.L., Martínez-Monzó, J., Fito, P., 2003. Development of Probiotic-Enriched Dried Fruits by Vacuum Impregnation. Journal of Food Engineering, 56 (2–3): 273–277.
  • Broeckx, G., Vandenheuvel, D., Claes, I.J.J., Lebeer, S., Kiekens, F., 2016. Drying Techniques of Probiotic Bacteria as an Important Step Towards the Development of Novel Pharmabiotics. International Journal of Pharmaceutics, 505: 303–318.
  • Charalampopoulos, D., Wang, R., Pandiella, S.S., Webb, C., 2002. Application of Cereals and Cereal Components in Functional Foods: A Review. International Journal of Food Microbiology, 79: 131–141.
  • Chen, Z. Guo, X., Wu, T., 2016. A Novel Dehydration Technique for Carrot Slices Implementing Ultrasound and Vacuum Drying Methods. Ultrasonics Sonochemistry, 30: 28–34.
  • Chottanom, P., Pranin, T., Shopka, K., Nasinsorn, N., Itsaranuwat, P., 2016. Pulsed Vacuum Osmotic Dehydration of Cherry Tomatoes: Impact on Physicochemical Properties and Probiotics Entrapment. Agricultural Technology and Biological Sciences, 13 (3): 193–204.
  • Demirci, M., Sağdıç, O., Çavuş, M., Pehlivanoğlu, H., Çağlar, M.Y., Yılmaz, M.T., 2017. Prebiyotik Oligosakkaritlerin Kaynakları, Üretimleri ve Gıda Uygulamaları. European Journal of Science and Technology, 6 (10): 20–31.
  • Erdoğan, S.S., Demirci, M., 2014. Elmanin Fenolik Bileşen ve Lif Içeriği. Bahçe, 43 (1–2): 41–52.
  • Farnworth, E.R., 2007. Probiotics and Prebiotics in Handbook of Nutraceuticals and Functional Foods. (Ed) Wildman, R.E.C., 2nd ed. Taylor and Francis Group, LLC, USA. 335–347 pp.
  • Flores-Andrade, E., Pascual-Pineda, L.A., Alarcón-Elvira, F.G., Rascón-Díaz, M.P., Pimentel-González, D.J., Beristain, C.I., 2017. Effect of Vacuum on the Impregnation of Lactobacillus rhamnosus Microcapsules in Apple Slices using Double Emulsion. Journal of Food Engineering, 202: 18−24.
  • Garcia-Noguera, J., Oliveira, F.I.P., Gallão, M.I., Weller, C.L., Rodrigues, S., Fernandes, F.A.N., 2010. Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28: 294–303.
  • Grajek, W., Olejnik, A., Sip, A., 2005. Probiotics, Prebiotics and Antioxidants as Functional Foods. Acta Biochimica Polonica, 52 (3): 665–671.
  • Goula, A.M., Kokolaki, M., Daftsiou, E., 2017. Use of Ultrasound for Osmotic Dehydration. The Case of Potatoes. Food and Bioproducts Processing, 105: 157–170.
  • Hasler, C.M., 2002. Functional Foods: Benefits, Concerns and Challenges—A Position Paper from the American Council on Science and Health. Journal of Nutrition, 132: 3772–3781.
  • Klewicki, R., Uczciwek, M., 2008. Effect of Osmotic Dehydration in Fructose, Sucrose and Fructooligosaccharide Solutions on the Content of Saccharides in Plums and Apples and Their Energy Value. Agricultural and Food Science, 17 (4): 367–375.
  • Krasaekoopt, W., Suthanwong, B., 2008. Vacuum Impregnation of Probiotics in Fruit Piece and Their Survival during Refrigerated Storage. Natural Sciences, 42: 723–731.
  • Li, C., Li-ying, N., Da-jing, L., Chun-quan, L.,Ying-ping, L., Chun-ju, L., Jiang-feng, S., 2018. Effects of Different Drying Methods on Quality, Bacterial Viability and Storage Stability of Probiotic Enriched Apple Snacks. Journal of Integrative Agriculture, 17 (1): 247–255.
  • Mierzwa, D., Kowalski, S.J., Kroehnke, J., 2017. Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration. Food Technology and Biotechnology, 55 (2): 197–205.
  • Montgomery, C.D., 2001. Design and Analysis of Experiments. John Wiley and Sons, Inc., New York, USA, 752p.
  • Nowacka, M., Tylewicz, U., Romani, S., Rosa, M.D., Witrowa-Rajchert, D., 2017. Influence of Ultrasound-Assisted Osmotic Dehydration on the Main Quality Parameters of Kiwifruit. Innovative Food Science and Emerging Technologies, 41: 71–78.
  • Pimentel, T.C., Madrona, G.S., Prudencio, S.H., 2015. Probiotic Clarified Apple Juice with Oligofructose or Sucralose as Sugar Substitutes: Sensory Profile and Acceptability. LWT - Food Science and Technology, 62: 838−846.
  • Plaza, M., Cifuentes, A., Ibáñez, E., 2008. In The Search of New Functional Food Ingredients from Algae. Trends in Food Science and Technology, 19: 31−39.
  • Puente, L., Betoret, N., Cortés, M., 2009. Evolution of Probiotic Content and Color of Apples Impregnated with Lactic Acid Bacteria. Vitae, Revista De La Facultad De Química Farmacéutica, 16 (3): 297−303.
  • Sharma, S.K., Mulvaney, S.J., Rizvi, S.S.H., 2009. Food Process Engineering. John Wiley and Sons, Inc., New York, USA, 348p.
  • Ramya, V., Jain, N.K., 2017. A Review on Osmotic Dehydration of Fruits and Vegetables: An Integrated Approach. Journal of Food Process Engineering, 40: 1−22.
  • Rodrigues, S., Silva, L.C.A., Mulet, A., Cárcel, J.A., Fernandes, F.A.N., 2018. Development of Dried Probiotic Apple Cubes Incorporated with Lactobacillus casei NRRL B-442. Journal of Functional Foods, 41: 48–54.
  • Soares de Mendonça, K., Corrêa, J.L.G., Junqueira, J.R.J., Cirillo, M.A., Figueira, F.V., Carvalho, E.E.N.C., 2017. Influences of Convective and Vacuum Drying on the Quality Attributes of Osmo-Dried Pequi (Caryocar brasiliense Camb.) Slices. Food Chemistry, 224: 212–218.
  • Tripathi, M.K., Giri, S.K. 2014. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. Journal of Functional Foods, 9: 225–241.
  • Valík, L., Medveďová, A., Liptáková, D., 2008. Characterization of the Growth of Lactobacillus rhamnosus GG in Milk at Suboptimal Temperatures. Journal of Food and Nutrition Research, 47 (2): 60–67.
  • Zhou, M., Chen, Q., Bi, J., Wang, Y., Wu, X., 2017. Degradation Kinetics of cyanidin 3-O-Glucoside And Cyanidin 3-Orutinoside during Hot Air and Vacuum Drying in Mulberry (Morus alba L.) Fruit: A Comparative Study Based on Solid Food System. Food Chemistry, 229: 574–579.
  • Zielinska, M., Markowski, M. Effect of Microwave-Vacuum, Ultrasonication, and Freezing on Mass Transfer Kinetics and Diffusivity during Osmotic Dehydration of Cranberries. Drying Technology, DOI: 10.1080/07373937.2017.1390476.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği, Ziraat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Derya Dursun Saydam 0000-0002-9858-6382

Rojda Dakak Bu kişi benim 0000-0003-2313-045X

Ali Çoşkun Dalgıç 0000-0001-6806-5917

Yayımlanma Tarihi 19 Eylül 2019
Gönderilme Tarihi 19 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 3

Kaynak Göster

APA Dursun Saydam, D., Dakak, R., & Dalgıç, A. Ç. (2019). A preliminary study of probiotic apple snack production with assisting food technologies. Harran Tarım Ve Gıda Bilimleri Dergisi, 23(3), 324-334. https://doi.org/10.29050/harranziraat.499249

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.