Araştırma Makalesi
BibTex RIS Kaynak Göster

Domates atıklarının asitle pıhtılaştırılmış taze peynirin fonksiyonel, işlevsel ve duyusal özelliklerini geliştirmedeki rolü

Yıl 2025, Cilt: 29 Sayı: 3, 549 - 561, 24.09.2025
https://doi.org/10.29050/harranziraat.1652328

Öz

Bu çalışma, kurutulmuş domates kabuğu ve çekirdek tozlarının taze asitli peynire dahil edilmesinin fizikokimyasal, besinsel ve duyusal özellikleri üzerindeki etkilerini araştırmayı amaçlamıştır. Bir kontrol (CC: kabuk ve çekirdek içermeyen) ve dört deney grubu (CP1-%1 kabuk and CP2-%5 kabuk ; CS1-%1 çekirdek ve CS2- %5 çekirdek) olmak üzere beş peynir örneği üretilmiştir. Örnekler +4°C'de muhafaza edilerek pH, toplam asitlik, kül, kuru madde, protein, toplam fenolik madde miktarı, antioksidan aktivite (DPPH, ABTS), flavonoid miktarı, renk (L*, a*, b*) ve duyusal özellikler açısından analiz edildi. Analizler sonucunda taze asitli peynirin pH'sının 4.53-6.01, titre edilebilir asiditesinin % 0.66-1.35 laktik asit ve kül değerlerinin %1.42-1.65 olduğu belirlendi. Domates çekirdeği ve kabuk tozu içeren peynir örneklerinin, CC örneklerine göre daha yüksek protein oranlarına sahip olduğu bulundu. En yüksek fenolik ve antioksidan içerik (60.84 mg GAE/100 g), DPPH (%13.49) ve ABTS (54.46 mg TEAC/100 g), %5 kabuk içeren CP2 peynirinde bulunmuştur. Domates tozu içeren peynirlerin flavonoid içerikleri kontrol peynirlerinden daha yüksek bulunmuştur. Kabuk tozu içeren peynirlerde a* (kırmızılık) ve b* (sarılık) değerleri artarken, L* (açıklık) değerleri kabuk konsantrasyonunun artmasıyla azalmıştır. Duyusal analiz sonuçlarına göre, tat, renk ve genel onay açısından en yüksek puan %5 kabuk tozu içeren taze asitli peynir örneklerinde belirlenmiştir. Domates kabuklarının peynir üretimine kattıkları besinsel ve duyusal özellikler sayesinde ticari potansiyele sahip olduğu görülmektedir.

Kaynakça

  • AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th ed.).
  • AOAC. (1990). Official Methods of Analysis, AOAC International. Gaithersburg, MD.
  • Apostolidis, E., Kwon, Y.-I., & Shetty, K. (2007). Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Science & Emerging Technologies, 8(1), 46–54. https://doi.org/10.1016/j.ifset.2006.06.001
  • Bakir, S., Capanoglu, E., Hall, R. D., & de Vos, R. C. H. (2020). Variation in secondary metabolites in a unique set of tomato accessions collected in Turkey. Food Chemistry, 317, 126406. https://doi.org/10.1016/j.foodchem.2020.126406
  • Bhatkar, N. S., Shirkole, S. S., Mujumdar, A. S., & Thorat, B. N. (2021). Drying of tomatoes and tomato processing waste: a critical review of the quality aspects. Drying Technology, 39(11), 1720–1744. https://doi.org/10.1080/07373937.2021.1910832
  • Briones-Labarca, V., Giovagnoli-Vicuña, C., & Cañas-Sarazúa, R. (2019). Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chemistry, 278, 751–759. https://doi.org/10.1016/j.foodchem.2018.11.106
  • Costa, C., Lucera, A., Marinelli, V., Del Nobile, M. A., & Conte, A. (2018). Influence of different by-products addition on sensory and physicochemical aspects of Primosale cheese. Journal of Food Science and Technology, 55(10), 4174–4183. https://doi.org/10.1007/s13197-018-3347-z
  • D’Ambra, K., Minelli, G., & Lo Fiego, D. Pietro. (2023). Effect of hazelnut skin and dry tomato peel on the oxidative stability, chemical and sensory properties of pork burgers during refrigerated storage. Food Packaging and Shelf Life, 38(June), 101107. https://doi.org/10.1016/j.fpsl.2023.101107
  • Difonzo, G., Antonino, C., Squeo, G., Caponio, F., & Faccia, M. (2023). Application of Agri-Food By-Products in Cheesemaking. Antioxidants, 12(3) https://doi.org/10.3390/antiox12030660
  • Food and Agriculture Organization. (2019). FAO statistical databases agriculture: Food balances (2010-2019). Retrieved from https://www.fao.org/faostat/en/#data/FBS
  • García Herrera, P., Sánchez-Mata, M. C., & Cámara, M. (2010). Nutritional characterization of tomato fiber as a useful ingredient for food industry. Innovative Food Science & Emerging Technologies, 11(4), 707–711. https://doi.org/10.1016/j.ifset.2010.07.005
  • Gebeyew, K. (2014). The Effect of Feeding Dried Tomato Pomace and Concentrate Feed on Body Weight Change, Carcass Parameter and Economic Feasibility on Hararghe Highland Sheep, Eastern Ethiopia. Journal of Veterinary Science & Technology, 06(02). https://doi.org/10.4172/2157-7579.1000217
  • Grassino, A. N., Halambek, J., Djaković, S., Rimac Brnčić, S., Dent, M., & Grabarić, Z. (2016). Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocolloids, 52, 265–274. https://doi.org/10.1016/j.foodhyd.2015.06.020
  • Guinee, T., Pudja, P., & Farkye, N. (1999). Fresh acid-curd cheese varieties. In Cheese: Chemistry, Physics and Microbiology: Volume 2: Major Cheese Groups (pp. 363-419). Springer.
  • IDF. (2004). Milk determination of nitrogen content ISO 8968-3-IDF 020-3. International Dairy Federation, Brussels, Belgium.
  • Isik, F., & Yapar, A. (2017). Effect of tomato seed supplementation on chemical and nutritional properties of tarhana. Journal of Food Measurement and Characterization, 11(2), 667–674. https://doi.org/10.1007/s11694-016-9436-7
  • J. Zhishen, T. Mengcheng, W. Jianming, Research on antioxidant activity of flavonoids from natural materials. Food Chem. 64, 555–559 (1999)
  • Kaboré, K., Konaté, K., Sanou, A., Dakuyo, R., Sama, H., Santara, B., Compaoré, E. W. R., & Dicko, M. H. (2022). Tomato By-Products, a Source of Nutrients for the Prevention and Reduction of Malnutrition. Nutrients, 14(14), 2871 https://doi.org/10.3390/nu14142871
  • Kaur, R., & Kaur, M. (2018). Microstructural, physicochemical, antioxidant, textural and quality characteristics of wheat muffins as influenced by partial replacement with ground flaxseed. LWT, 91, 278-285.
  • Kumar, M., Tomar, M., Bhuyan, D. J., Punia, S., Grasso, S., Sá, A. G. A., Carciofi, B. A. M., Arrutia, F., Changan, S., Radha, Singh, S., Dhumal, S., Senapathy, M., Satankar, V., Anitha, T., Sharma, A., Pandiselvam, R., Amarowicz, R., & Mekhemar, M. (2021). Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomedicine & Pharmacotherapy, 142, 112018. https://doi. org/10.1016/j.biopha.2021.112018
  • Lario, Y., Sendra, E., Garcıa-Pérez, J., Fuentes, C., Sayas-Barberá, E., Fernández-López, J., & Perez-Alvarez, J. A. (2004). Preparation of high dietary fiber powder from lemon juice by-products. Innovative Food Science & Emerging Technologies, 5(1), 113-117. https://doi.org/10.1016/j.ifset.2003.08.001
  • Lu, Z., Wang, J., Gao, R., Ye, F., & Zhao, G. (2019). Sustainable valorisation of tomato pomace: A comprehensive review. Trends in Food Science & Technology, 86, 172–187. https://doi.org/10.1016/j.tifs.2019.02.020
  • Macků, I., Buňka, F., Pavlínek, V., Leciánová, P., & Hrabě, J. (2008). The effect of pectin concentration on viscoelastic and sensory properties of processed cheese. International Journal of Food Science and Technology, 43(9), 1663-1670.
  • Marshall, R. T. (1992). Standard methods for the examination of dairy products. American Public Health Association. Washington D.C.
  • Mehta, D., Prasad, P., Sangwan, R. S., & Yadav, S. K. (2018). Tomato processing byproduct valorization in bread and muffin: improvement in physicochemical properties and shelf life stability. Journal of Food Science and Technology, 55(7), 2560–2568. https://doi.org/10.1007/s13197-018-3176-0
  • Rajan, A., Kumar, S., Sunil, C. K., Radhakrishnan, M., & Rawson, A. (2022). Recent advances in the utilization of industrial byproducts and wastes generated at different stages of tomato processing: Status report. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.17063
  • R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9– 10), 1231–1237
  • Ritota, M., & Manzi, P. (2020). Natural Preservatives from Plant in Cheese Making. Animals, 10(4), 749. https://doi.org/10.3390/ani10040749
  • Shan, B., Cai, Y.-Z., Brooks, J. D., & Corke, H. (2011). Potential Application of Spice and Herb Extracts as Natural Preservatives in Cheese. Journal of Medicinal Food, 14(3), 284–290. https://doi.org/10.1089/jmf.2010.0009
  • Samelis, J., Doulgeraki, A. I., Bikouli, V., Pappas, D., & Kakouri, A. (2021). Microbiological and metagenomic characterization of a retail delicatessen Galotyri-like fresh acid-curd cheese product. Fermentation, 7(2), 67.
  • Sarkar, A., & Kaul, P. (2014). Evaluation of Tomato Processing By‐Products: A Comparative Study in a Pilot Scale Setup. Journal of Food Process Engineering, 37(3), 299–307. https://doi.org/10.1111/jfpe.12086
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology (Vol. 299, pp. 152-178). Academic Press. https://doi.org/https://doi.org/10.1016/S0076-6879(99)99017-1
  • Soleimanian, Y., Ratti, C., Karim, A., Rodrigue, D., & Khalloufi, S. (2023). Simultaneous valorization of discarded tomato and whey through osmotic dehydration: Development of high value-added products, rheological characterizations, and mass transfer modeling. Journal of Food Engineering, 359, 111713. https://doi.org/10.1016/j.jfoodeng.2023. 111713
  • Solhi, P., Azadmard-Damirchi, S., Hesari, J., & Hamishehkar, H. (2020). Production of the processed cheese containing tomato powder and evaluation of its rheological, chemical and sensory characteristics. Journal of Food Science and Technology, 57(6), 2198–2205. https://doi.org/10.1007/s13197-020-04256-1
  • Souza da Costa, B., García, M. O., Muro, G. S., & Motilva, M. J. (2023). A comparative evaluation of the phenol and lycopene content of tomato by-products subjected to different drying methods. Lwt, 179(March). https://doi.org/10.1016/j.lwt.2023.114644
  • Szabo, K., Cătoi, A. F., & Vodnar, D. C. (2018). Bioactive Compounds Extracted from Tomato Processing by-Products as a Source of Valuable Nutrients. Plant Foods for Human Nutrition, 73(4), 268–277. https://doi.org/10.1007/s11130-018-0691-0
  • Tarchi, I., Boudalia, S., Ozogul, F., Câmara, J. S., Bhat, Z. F., Hassoun, A., Perestrelo, R., Bouaziz, M., Nurmilah, S., Cahyana, Y., & Aït-Kaddour, A. (2024). Valorization of agri-food waste and by-products in cheese and other dairy foods: An updated review. Food Bioscience, 58, 103751. https://doi.org/10.1016/j.fbio.2024.103751
  • Weyh, C., Krüger, K., Peeling, P., & Castell, L. (2022). The role of minerals in the optimal functioning of the immune system. Nutrients, 14(3), 644.
  • Valdez-Morales, M., Espinosa-Alonso, L. G., Espinoza-Torres, L. C., Delgado-Vargas, F., & Medina-Godoy, S. (2014). Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. Journal of Agricultural and Food Chemistry, 62(23), 5281–5289. https://doi.org/10.1021/jf5012374
  • Viuda-Martos, M., Sanchez-Zapata, E., Sayas-Barberá, E., Sendra, E., Pérez-Álvarez, J. A., & Fernández-López, J. (2014). Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its Application to Meat Products: A Review. Critical Reviews in Food Science and Nutrition, 54(8), 1032–1049. https://doi.org/10.1080/10408398.2011.623799

The role of tomato waste in enhancing nutritional, functional and sensory properties of fresh acid cheese

Yıl 2025, Cilt: 29 Sayı: 3, 549 - 561, 24.09.2025
https://doi.org/10.29050/harranziraat.1652328

Öz

This study aimed to investigate the effects of incorporating dried tomato peel and seed flours into fresh acid cheese on its physicochemical, nutritional, and sensory properties. Five cheese samples were produced, including one control (CC:without peel and seed) and four experimental groups (CP1-%1peel and CP2-%5 peel; CS1-%1 seed and CS2- %5 seed ). The samples were stored at +4 °C and analyzed for pH, total acidity, ash, dry matter, protein, total phenolic content, antioxidant activity (DPPH, ABTS), flavonoid content, color (L*, a*, b*), and sensory characteristics. As a result of the analyses, fresh acid cheese samples was identified to have pH 4.53-6.01, titratable acidity 0.66-1.35 % lactic acid and ash values 1.42-1.65%. Cheese samples containing tomato seed and peel powder were found to have higher protein ratio than CC samples. The highest phenolic and antioxidant content (60.84 mg GAE/100 g), DPPH (13.49%) and ABTS (54.46 mg TEAC/100 g) were found in CP2 cheese containing 5% peel. Flavonoid contents of cheeses containing tomato powder were higher than CC cheeses. Cheeses containing peel powder showed increased a* (redness) and b* (yellowness) values, while L* (lightness) values decreased with increasing peel concentration. According to the results of sensory analysis, the highest score for taste, color and general approval was identified for fresh acid cheese samples containing 5% peel powder. Tomato peel appears to have commercial potential thanks to the nutritional and sensory properties it adds to cheese production.

Kaynakça

  • AACC. (2000). Approved methods of the American Association of Cereal Chemists (10th ed.).
  • AOAC. (1990). Official Methods of Analysis, AOAC International. Gaithersburg, MD.
  • Apostolidis, E., Kwon, Y.-I., & Shetty, K. (2007). Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Science & Emerging Technologies, 8(1), 46–54. https://doi.org/10.1016/j.ifset.2006.06.001
  • Bakir, S., Capanoglu, E., Hall, R. D., & de Vos, R. C. H. (2020). Variation in secondary metabolites in a unique set of tomato accessions collected in Turkey. Food Chemistry, 317, 126406. https://doi.org/10.1016/j.foodchem.2020.126406
  • Bhatkar, N. S., Shirkole, S. S., Mujumdar, A. S., & Thorat, B. N. (2021). Drying of tomatoes and tomato processing waste: a critical review of the quality aspects. Drying Technology, 39(11), 1720–1744. https://doi.org/10.1080/07373937.2021.1910832
  • Briones-Labarca, V., Giovagnoli-Vicuña, C., & Cañas-Sarazúa, R. (2019). Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chemistry, 278, 751–759. https://doi.org/10.1016/j.foodchem.2018.11.106
  • Costa, C., Lucera, A., Marinelli, V., Del Nobile, M. A., & Conte, A. (2018). Influence of different by-products addition on sensory and physicochemical aspects of Primosale cheese. Journal of Food Science and Technology, 55(10), 4174–4183. https://doi.org/10.1007/s13197-018-3347-z
  • D’Ambra, K., Minelli, G., & Lo Fiego, D. Pietro. (2023). Effect of hazelnut skin and dry tomato peel on the oxidative stability, chemical and sensory properties of pork burgers during refrigerated storage. Food Packaging and Shelf Life, 38(June), 101107. https://doi.org/10.1016/j.fpsl.2023.101107
  • Difonzo, G., Antonino, C., Squeo, G., Caponio, F., & Faccia, M. (2023). Application of Agri-Food By-Products in Cheesemaking. Antioxidants, 12(3) https://doi.org/10.3390/antiox12030660
  • Food and Agriculture Organization. (2019). FAO statistical databases agriculture: Food balances (2010-2019). Retrieved from https://www.fao.org/faostat/en/#data/FBS
  • García Herrera, P., Sánchez-Mata, M. C., & Cámara, M. (2010). Nutritional characterization of tomato fiber as a useful ingredient for food industry. Innovative Food Science & Emerging Technologies, 11(4), 707–711. https://doi.org/10.1016/j.ifset.2010.07.005
  • Gebeyew, K. (2014). The Effect of Feeding Dried Tomato Pomace and Concentrate Feed on Body Weight Change, Carcass Parameter and Economic Feasibility on Hararghe Highland Sheep, Eastern Ethiopia. Journal of Veterinary Science & Technology, 06(02). https://doi.org/10.4172/2157-7579.1000217
  • Grassino, A. N., Halambek, J., Djaković, S., Rimac Brnčić, S., Dent, M., & Grabarić, Z. (2016). Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocolloids, 52, 265–274. https://doi.org/10.1016/j.foodhyd.2015.06.020
  • Guinee, T., Pudja, P., & Farkye, N. (1999). Fresh acid-curd cheese varieties. In Cheese: Chemistry, Physics and Microbiology: Volume 2: Major Cheese Groups (pp. 363-419). Springer.
  • IDF. (2004). Milk determination of nitrogen content ISO 8968-3-IDF 020-3. International Dairy Federation, Brussels, Belgium.
  • Isik, F., & Yapar, A. (2017). Effect of tomato seed supplementation on chemical and nutritional properties of tarhana. Journal of Food Measurement and Characterization, 11(2), 667–674. https://doi.org/10.1007/s11694-016-9436-7
  • J. Zhishen, T. Mengcheng, W. Jianming, Research on antioxidant activity of flavonoids from natural materials. Food Chem. 64, 555–559 (1999)
  • Kaboré, K., Konaté, K., Sanou, A., Dakuyo, R., Sama, H., Santara, B., Compaoré, E. W. R., & Dicko, M. H. (2022). Tomato By-Products, a Source of Nutrients for the Prevention and Reduction of Malnutrition. Nutrients, 14(14), 2871 https://doi.org/10.3390/nu14142871
  • Kaur, R., & Kaur, M. (2018). Microstructural, physicochemical, antioxidant, textural and quality characteristics of wheat muffins as influenced by partial replacement with ground flaxseed. LWT, 91, 278-285.
  • Kumar, M., Tomar, M., Bhuyan, D. J., Punia, S., Grasso, S., Sá, A. G. A., Carciofi, B. A. M., Arrutia, F., Changan, S., Radha, Singh, S., Dhumal, S., Senapathy, M., Satankar, V., Anitha, T., Sharma, A., Pandiselvam, R., Amarowicz, R., & Mekhemar, M. (2021). Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomedicine & Pharmacotherapy, 142, 112018. https://doi. org/10.1016/j.biopha.2021.112018
  • Lario, Y., Sendra, E., Garcıa-Pérez, J., Fuentes, C., Sayas-Barberá, E., Fernández-López, J., & Perez-Alvarez, J. A. (2004). Preparation of high dietary fiber powder from lemon juice by-products. Innovative Food Science & Emerging Technologies, 5(1), 113-117. https://doi.org/10.1016/j.ifset.2003.08.001
  • Lu, Z., Wang, J., Gao, R., Ye, F., & Zhao, G. (2019). Sustainable valorisation of tomato pomace: A comprehensive review. Trends in Food Science & Technology, 86, 172–187. https://doi.org/10.1016/j.tifs.2019.02.020
  • Macků, I., Buňka, F., Pavlínek, V., Leciánová, P., & Hrabě, J. (2008). The effect of pectin concentration on viscoelastic and sensory properties of processed cheese. International Journal of Food Science and Technology, 43(9), 1663-1670.
  • Marshall, R. T. (1992). Standard methods for the examination of dairy products. American Public Health Association. Washington D.C.
  • Mehta, D., Prasad, P., Sangwan, R. S., & Yadav, S. K. (2018). Tomato processing byproduct valorization in bread and muffin: improvement in physicochemical properties and shelf life stability. Journal of Food Science and Technology, 55(7), 2560–2568. https://doi.org/10.1007/s13197-018-3176-0
  • Rajan, A., Kumar, S., Sunil, C. K., Radhakrishnan, M., & Rawson, A. (2022). Recent advances in the utilization of industrial byproducts and wastes generated at different stages of tomato processing: Status report. Journal of Food Processing and Preservation, 46(11). https://doi.org/10.1111/jfpp.17063
  • R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9– 10), 1231–1237
  • Ritota, M., & Manzi, P. (2020). Natural Preservatives from Plant in Cheese Making. Animals, 10(4), 749. https://doi.org/10.3390/ani10040749
  • Shan, B., Cai, Y.-Z., Brooks, J. D., & Corke, H. (2011). Potential Application of Spice and Herb Extracts as Natural Preservatives in Cheese. Journal of Medicinal Food, 14(3), 284–290. https://doi.org/10.1089/jmf.2010.0009
  • Samelis, J., Doulgeraki, A. I., Bikouli, V., Pappas, D., & Kakouri, A. (2021). Microbiological and metagenomic characterization of a retail delicatessen Galotyri-like fresh acid-curd cheese product. Fermentation, 7(2), 67.
  • Sarkar, A., & Kaul, P. (2014). Evaluation of Tomato Processing By‐Products: A Comparative Study in a Pilot Scale Setup. Journal of Food Process Engineering, 37(3), 299–307. https://doi.org/10.1111/jfpe.12086
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology (Vol. 299, pp. 152-178). Academic Press. https://doi.org/https://doi.org/10.1016/S0076-6879(99)99017-1
  • Soleimanian, Y., Ratti, C., Karim, A., Rodrigue, D., & Khalloufi, S. (2023). Simultaneous valorization of discarded tomato and whey through osmotic dehydration: Development of high value-added products, rheological characterizations, and mass transfer modeling. Journal of Food Engineering, 359, 111713. https://doi.org/10.1016/j.jfoodeng.2023. 111713
  • Solhi, P., Azadmard-Damirchi, S., Hesari, J., & Hamishehkar, H. (2020). Production of the processed cheese containing tomato powder and evaluation of its rheological, chemical and sensory characteristics. Journal of Food Science and Technology, 57(6), 2198–2205. https://doi.org/10.1007/s13197-020-04256-1
  • Souza da Costa, B., García, M. O., Muro, G. S., & Motilva, M. J. (2023). A comparative evaluation of the phenol and lycopene content of tomato by-products subjected to different drying methods. Lwt, 179(March). https://doi.org/10.1016/j.lwt.2023.114644
  • Szabo, K., Cătoi, A. F., & Vodnar, D. C. (2018). Bioactive Compounds Extracted from Tomato Processing by-Products as a Source of Valuable Nutrients. Plant Foods for Human Nutrition, 73(4), 268–277. https://doi.org/10.1007/s11130-018-0691-0
  • Tarchi, I., Boudalia, S., Ozogul, F., Câmara, J. S., Bhat, Z. F., Hassoun, A., Perestrelo, R., Bouaziz, M., Nurmilah, S., Cahyana, Y., & Aït-Kaddour, A. (2024). Valorization of agri-food waste and by-products in cheese and other dairy foods: An updated review. Food Bioscience, 58, 103751. https://doi.org/10.1016/j.fbio.2024.103751
  • Weyh, C., Krüger, K., Peeling, P., & Castell, L. (2022). The role of minerals in the optimal functioning of the immune system. Nutrients, 14(3), 644.
  • Valdez-Morales, M., Espinosa-Alonso, L. G., Espinoza-Torres, L. C., Delgado-Vargas, F., & Medina-Godoy, S. (2014). Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. Journal of Agricultural and Food Chemistry, 62(23), 5281–5289. https://doi.org/10.1021/jf5012374
  • Viuda-Martos, M., Sanchez-Zapata, E., Sayas-Barberá, E., Sendra, E., Pérez-Álvarez, J. A., & Fernández-López, J. (2014). Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its Application to Meat Products: A Review. Critical Reviews in Food Science and Nutrition, 54(8), 1032–1049. https://doi.org/10.1080/10408398.2011.623799
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği, Gıda Sürdürülebilirliği, Gıda Teknolojileri
Bölüm Araştırma Makaleleri
Yazarlar

Elif Çakır 0000-0003-4343-3706

Hatice Bekiroğlu 0000-0003-3328-1550

Muhammet Ali Çakır 0000-0001-5066-1956

Osman Sağdıç 0000-0002-2063-1462

Erken Görünüm Tarihi 23 Eylül 2025
Yayımlanma Tarihi 24 Eylül 2025
Gönderilme Tarihi 5 Mart 2025
Kabul Tarihi 28 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 3

Kaynak Göster

APA Çakır, E., Bekiroğlu, H., Çakır, M. A., Sağdıç, O. (2025). The role of tomato waste in enhancing nutritional, functional and sensory properties of fresh acid cheese. Harran Tarım ve Gıda Bilimleri Dergisi, 29(3), 549-561. https://doi.org/10.29050/harranziraat.1652328

Derginin Tarandığı İndeksler

13435  19617   22065  13436  1344013445  13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.