Araştırma Makalesi
BibTex RIS Kaynak Göster

Matematiksel İletişim Becerisi Ölçeğinin Geliştirilmesi

Yıl 2025, Cilt: 13 Sayı: 25, 575 - 601

Öz

Bu çalışma, ortaöğretim öğrencilerinin matematiksel iletişim becerilerini değerlendirebilecek bir ölçek geliştirmeyi amaçlamaktadır. Matematiksel iletişim; okuma, yazma, dinleme ve konuşma boyutlarını kapsayan çok boyutlu bir beceri olarak ele alınmıştır. Ölçek geliştirme sürecinde 442 lise öğrencisine uygulama yapılmış, veriler açıklayıcı ve doğrulayıcı faktör analizleriyle değerlendirilmiştir. Tek faktörlü yapıya sahip olan ölçek, toplam varyansın %48’ini açıklamış ve yüksek iç tutarlılık katsayısı (Cronbach Alfa: 0,96) elde edilmiştir. Bulgular, matematiksel iletişim becerilerinin bütüncül bir yapı olarak ele alınması gerektiğini vurgulamaktadır. Ölçek, öğrencilerin güçlü yönlerini ve gelişime açık alanlarını belirleyerek, öğretmenlerin hedefe yönelik stratejiler geliştirmesine yardımcı olabilir. Bu çalışma, matematiksel iletişim becerilerinin eğitimin her aşamasında önemini desteklemekte ve bu becerilerin etkili değerlendirilmesine yönelik önemli bir araç sunmaktadır.

Kaynakça

  • Angriani, A. D., Dewi, R., Nur, F., & Halimah, A. (2020). The development of test instruments to measure students' mathematical communication skills. Journal of Physics: Conference Series, 1539(1), 012081.
  • Ary, D., Jacobs, L.C., & Razavieh, A. (2002). Introduction to research in education. Wadsworth/ Thomson Learning.
  • Ata Baran, A., & Kabael, T. (2021). An investigation of eighth grade students’ mathematical communication competency and affective characteristics. The Journal of Educational Research, 114(4), 367–380. https://doi.org/10.1080/00220671.2021.1948382
  • Ayre, C. & Scally, A. J. (2014). Critical values for Lawshe’s content validity ratio: revisiting the original methods of calculation. Measurement and Evaluation in Counseling and Development, 47 (1), 79–86.
  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.
  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness-of-fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606.
  • Boaler, J. (2002). Experiencing school mathematics: Traditional and reform approaches to teaching and their impact on student learning. Lawrence Erlbaum Associates Inc.
  • Bozdoğan, A. E., & Uzoğlu, M. (2012). The development of a scale of attitudes toward tablet PC. Mevlana International Journal of Education, 2(2), 85-95.
  • Brendefur, J., & Frykholm, J. (2000). Promoting mathematical communication in the classroom: Two preservice teachers' conceptions and practices. Journal of Mathematics Teacher Education, 3, 125-153. https://doi.org/10.1023/A:1009965804661
  • Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258.
  • Büyüköztürk, Ş. (2005). Anket geliştirme. Türk Eğitim Bilimleri Dergisi, 3(2), 133–151.
  • Büyüköztürk, Ş., Kılıç, Ç. E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2012). Bilimsel araştırma yöntemleri (11.Baskı). Pegem Yayınları.
  • Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming (2nd ed.). Routledge.
  • Cai, J., Jakabcsin, M. S., & Lane, S. (1996). Assessing students' mathematical communication. School Science and Mathematics, 96(5), 238-246.
  • Cao, W., Yu, Z. (2023) Exploring learning outcomes, communication, anxiety, and motivation in learning communities: A systematic review. Humanities and Social Sciences Communications, 10(1), 1-13. https://doi.org/10.1057/s41599-023-02325-2
  • Chapin, S. H., O'Connor, C., & Anderson, N. C. (2003). Classroom discussions: Using math talk to help students learn, Grades K-6. Math Solutions Publications.
  • Cobb, P., & Yackel, E. (1998). A constructivist perspective on the culture of the mathematics classroom. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The Culture of the Mathematics Classroom (pp. 158-190). Cambridge University Press.
  • Cooke, B. D., & Buchholz, D. (2005). Mathematical communication in the classroom: A teacher makes a difference. Early Childhood Education Journal, 32(6), 365–369. https://doi.org/10.1007/s10643-005-0007-5
  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103–131. https://doi.org/10.1007/s10649-006-0400-z
  • Genç, M., & Özdemir, A. (2023). Teachers’ thoughts on the role of mathematical communication in special education, 3(1), 1-22
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson.
  • Hebert, M. A. & Powell, S. R. (2016). Examining fourth-grade mathematics writing: Features of organization, mathematics vocabulary, and mathematical representations. Reading and Writing, 29, 1511–1537. https://doi.org/10.1007/s11145-016-9649-5
  • Hoelter, J. W. (1983). The analysis of covariance structures: Goodness-of-fit indices. Sociological Methods & Research, 11(3), 325–344.
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. The Electronic Journal of Business Research Methods, 6(1), 53–60.
  • Hoyles, C. (1985). What is the point of group discussion in mathematics?. Educational Studies in Mathematics, 16(2), 205–214. https://doi.org/10.1007/BF02400938
  • Jung, M., & Reifel, S. (2011). Promoting children's communication: A kindergarten teacher's conception and practice of effective mathematics instruction. Journal of Research in Childhood Education, 25(2), 194–210. https://doi.org/10.1080/02568543.2011.555496
  • Kalinec-Craig, C. A. (2017). The rights of the learner: A framework for promoting equity through formative assessment in mathematics education. Democracy and Education, 25 (2), Article 5.
  • Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. National Academy Press.
  • Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Press.
  • Kostos, K., & Shin, E. (2010). Using math journals to enhance second graders' communication of mathematical thinking. Early Childhood Education Journal, 38(3), 223–231. https://doi.org/10.1007/s10643-010-0390-4
  • Kutluca, T., Alpay, F. N. & Kutluca, S. (2015). 8. sınıf öğrencilerinin matematik kaygı düzeylerine etki eden faktörlerin incelenmesi. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 25, 202-214.
  • Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
  • Lomibao, L. S., Luna, C. A., & Namoco, R. A. (2016). The influence of mathematical communication on students’ mathematics performance and anxiety. American Journal of Educational Research, 4(5), 378–382. https://doi.org/10.12691/education-4-5-3
  • Millî Eğitim Bakanlığı. (2024). Türkiye yüzyılı maarif modeli: Ortaokul matematik öğretim programı. MEB Yayınları.
  • Morgan, C. (2016). Communicating mathematically. In S. Johnston-Wilder, P. Johnston-Wilder, D. Pimm & C. Lee (Eds.), Learning to teach mathematics in the secondary school (pp. 146-161). Routledge. https://doi.org/10.4324/9781315672175
  • National Council of Teachers of Mathematics. (NCTM). (2000). Principles and standards for school mathematics. NCTM.
  • Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy (pp. 35–55). Springer. https://doi.org/10.1007/978-3-319-10121-7_2
  • O’Halloran, K. L. (2015). The language of learning mathematics: A multimodal perspective. The Journal of Mathematical Behavior, 40, 63–74. https://doi.org/10.1016/j.jmathb.2014.09.002
  • Organisation for Economic Co-operation and Development. (OECD). (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. OECD Publishing.
  • Organization for Economic Cooperation and Development. (OECD). (2023). PISA 2023 mathematics framework. OECD Publishing.
  • Österholm, M. (2006). Characterizing reading comprehension of mathematical texts. Educational Studies in Mathematics, 63, 325-346.
  • Özpınar, İ. (2012). 6-8. sınıflar matematik öğretim programında yer alan becerileri ölçmeye yönelik ölçek geliştirme çalışması [Yayımlanmamış doktora tezi]. Karadeniz Teknik Üniversitesi.
  • Polit, D. F., & Beck, C. T. (2006). The content validity index: Are you sure you know what's being reported? Critique and recommendations. Research in Nursing & Health, 29(5), 489–497. https://doi.org/10.1002/nur.20147
  • Pugalee, D. K. (2001). Writing, mathematics, and metacognition: Looking for connections through students' work in mathematical problem solving. School Science and Mathematics, 101(5), 236–245. https://doi.org/10.1111/j.1949-8594.2001.tb18026.x
  • Rustam, A., & Ramlan, A.M. (2017). Analysis of mathematical communication skills of junior high school students of coastal Kolaka. Journal of Mathematics Education, 2(2), 45–51.
  • Sammons, L. (2018). Teaching students to communicate mathematically. ASCD Publishing. Schmidt, W. H. (2004). A vision for mathematics. Educational Leadership, 61(5), 6–11.
  • Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics, 46(1), 13-57. https://doi.org/10.1023/A:1014097416157
  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge University Press. https://doi.org/10.1017/CBO9780511499944
  • Sjöblom, M., & Meaney, T. (2021). “I am part of the group, the others listen to me”: Theorising productive listening in mathematical group work. Educational Studies in Mathematics, 107(3), 565-581. https://doi.org/10.1007/s10649-021-10051-2
  • Stigler, J. W., & Hiebert, J. (2004). Improving mathematics teaching. Educational Leadership, 61(5), 12–17.
  • Syaiful, S., Muslim, M., Huda, N., Mukminin, A., & Habibi, A. (2019). Communication skills and mathematical problem solving ability among junior high schools students through problem-based learning. International Journal of Scientific & Technology Research, 8(11), 1048-1060.
  • Turner, R., Blum, W. & Niss, M. (2015). Using competencies to explain mathematical item demand: A work in progress. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 85-115). Springer.
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
  • Wilson, B. (2009). Mathematical communication through written and oral expression. University of Nebraska.
  • Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-Majd, H., & Nikanfar, A. R. (2015). Design and implementation content validity study: Development of an instrument for measuring patient-centered communication. Journal of Caring Sciences, 4(2), 165–178. https://doi.org/10.15171/jcs.2015.017
  • Zeybek, Z., & Açıl, E. (2018). Yedinci sınıf öğrencilerinin matematiksel ifade becerilerinin incelenmesinde yazma aktiviteleri: Öğrenci günlükleri. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 9(3), 476-512. https://doi.org/10.16949/turkbilmat.367513

Development of Mathematical Communication Skills Scale

Yıl 2025, Cilt: 13 Sayı: 25, 575 - 601

Öz

This study aims to develop a scale that can assess secondary school students' mathematical communication skills. Mathematical communication is considered as a multidimensional skill that includes reading, writing, listening and speaking. During the scale development process, 442 high school students were administered the scale and the data were evaluated with explanatory and confirmatory factor analyses. The scale, which had a single-factor structure, explained 48% of the total variance and a high internal consistency coefficient (Cronbach's Alpha: 0.96) was obtained. The findings emphasize that mathematical communication skills should be considered as a holistic construct. The scale can help teachers develop targeted strategies by identifying students' strengths and areas for improvement. This study supports the importance of mathematical communication skills at every stage of education and provides an important tool for effective assessment of these skills.

Kaynakça

  • Angriani, A. D., Dewi, R., Nur, F., & Halimah, A. (2020). The development of test instruments to measure students' mathematical communication skills. Journal of Physics: Conference Series, 1539(1), 012081.
  • Ary, D., Jacobs, L.C., & Razavieh, A. (2002). Introduction to research in education. Wadsworth/ Thomson Learning.
  • Ata Baran, A., & Kabael, T. (2021). An investigation of eighth grade students’ mathematical communication competency and affective characteristics. The Journal of Educational Research, 114(4), 367–380. https://doi.org/10.1080/00220671.2021.1948382
  • Ayre, C. & Scally, A. J. (2014). Critical values for Lawshe’s content validity ratio: revisiting the original methods of calculation. Measurement and Evaluation in Counseling and Development, 47 (1), 79–86.
  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246.
  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness-of-fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606.
  • Boaler, J. (2002). Experiencing school mathematics: Traditional and reform approaches to teaching and their impact on student learning. Lawrence Erlbaum Associates Inc.
  • Bozdoğan, A. E., & Uzoğlu, M. (2012). The development of a scale of attitudes toward tablet PC. Mevlana International Journal of Education, 2(2), 85-95.
  • Brendefur, J., & Frykholm, J. (2000). Promoting mathematical communication in the classroom: Two preservice teachers' conceptions and practices. Journal of Mathematics Teacher Education, 3, 125-153. https://doi.org/10.1023/A:1009965804661
  • Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258.
  • Büyüköztürk, Ş. (2005). Anket geliştirme. Türk Eğitim Bilimleri Dergisi, 3(2), 133–151.
  • Büyüköztürk, Ş., Kılıç, Ç. E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2012). Bilimsel araştırma yöntemleri (11.Baskı). Pegem Yayınları.
  • Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming (2nd ed.). Routledge.
  • Cai, J., Jakabcsin, M. S., & Lane, S. (1996). Assessing students' mathematical communication. School Science and Mathematics, 96(5), 238-246.
  • Cao, W., Yu, Z. (2023) Exploring learning outcomes, communication, anxiety, and motivation in learning communities: A systematic review. Humanities and Social Sciences Communications, 10(1), 1-13. https://doi.org/10.1057/s41599-023-02325-2
  • Chapin, S. H., O'Connor, C., & Anderson, N. C. (2003). Classroom discussions: Using math talk to help students learn, Grades K-6. Math Solutions Publications.
  • Cobb, P., & Yackel, E. (1998). A constructivist perspective on the culture of the mathematics classroom. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The Culture of the Mathematics Classroom (pp. 158-190). Cambridge University Press.
  • Cooke, B. D., & Buchholz, D. (2005). Mathematical communication in the classroom: A teacher makes a difference. Early Childhood Education Journal, 32(6), 365–369. https://doi.org/10.1007/s10643-005-0007-5
  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103–131. https://doi.org/10.1007/s10649-006-0400-z
  • Genç, M., & Özdemir, A. (2023). Teachers’ thoughts on the role of mathematical communication in special education, 3(1), 1-22
  • Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson.
  • Hebert, M. A. & Powell, S. R. (2016). Examining fourth-grade mathematics writing: Features of organization, mathematics vocabulary, and mathematical representations. Reading and Writing, 29, 1511–1537. https://doi.org/10.1007/s11145-016-9649-5
  • Hoelter, J. W. (1983). The analysis of covariance structures: Goodness-of-fit indices. Sociological Methods & Research, 11(3), 325–344.
  • Hooper, D., Coughlan, J., & Mullen, M. (2008). Structural equation modelling: Guidelines for determining model fit. The Electronic Journal of Business Research Methods, 6(1), 53–60.
  • Hoyles, C. (1985). What is the point of group discussion in mathematics?. Educational Studies in Mathematics, 16(2), 205–214. https://doi.org/10.1007/BF02400938
  • Jung, M., & Reifel, S. (2011). Promoting children's communication: A kindergarten teacher's conception and practice of effective mathematics instruction. Journal of Research in Childhood Education, 25(2), 194–210. https://doi.org/10.1080/02568543.2011.555496
  • Kalinec-Craig, C. A. (2017). The rights of the learner: A framework for promoting equity through formative assessment in mathematics education. Democracy and Education, 25 (2), Article 5.
  • Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. National Academy Press.
  • Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Press.
  • Kostos, K., & Shin, E. (2010). Using math journals to enhance second graders' communication of mathematical thinking. Early Childhood Education Journal, 38(3), 223–231. https://doi.org/10.1007/s10643-010-0390-4
  • Kutluca, T., Alpay, F. N. & Kutluca, S. (2015). 8. sınıf öğrencilerinin matematik kaygı düzeylerine etki eden faktörlerin incelenmesi. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 25, 202-214.
  • Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
  • Lomibao, L. S., Luna, C. A., & Namoco, R. A. (2016). The influence of mathematical communication on students’ mathematics performance and anxiety. American Journal of Educational Research, 4(5), 378–382. https://doi.org/10.12691/education-4-5-3
  • Millî Eğitim Bakanlığı. (2024). Türkiye yüzyılı maarif modeli: Ortaokul matematik öğretim programı. MEB Yayınları.
  • Morgan, C. (2016). Communicating mathematically. In S. Johnston-Wilder, P. Johnston-Wilder, D. Pimm & C. Lee (Eds.), Learning to teach mathematics in the secondary school (pp. 146-161). Routledge. https://doi.org/10.4324/9781315672175
  • National Council of Teachers of Mathematics. (NCTM). (2000). Principles and standards for school mathematics. NCTM.
  • Niss, M. (2015). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy (pp. 35–55). Springer. https://doi.org/10.1007/978-3-319-10121-7_2
  • O’Halloran, K. L. (2015). The language of learning mathematics: A multimodal perspective. The Journal of Mathematical Behavior, 40, 63–74. https://doi.org/10.1016/j.jmathb.2014.09.002
  • Organisation for Economic Co-operation and Development. (OECD). (2013). PISA 2012 assessment and analytical framework: Mathematics, reading, science, problem solving and financial literacy. OECD Publishing.
  • Organization for Economic Cooperation and Development. (OECD). (2023). PISA 2023 mathematics framework. OECD Publishing.
  • Österholm, M. (2006). Characterizing reading comprehension of mathematical texts. Educational Studies in Mathematics, 63, 325-346.
  • Özpınar, İ. (2012). 6-8. sınıflar matematik öğretim programında yer alan becerileri ölçmeye yönelik ölçek geliştirme çalışması [Yayımlanmamış doktora tezi]. Karadeniz Teknik Üniversitesi.
  • Polit, D. F., & Beck, C. T. (2006). The content validity index: Are you sure you know what's being reported? Critique and recommendations. Research in Nursing & Health, 29(5), 489–497. https://doi.org/10.1002/nur.20147
  • Pugalee, D. K. (2001). Writing, mathematics, and metacognition: Looking for connections through students' work in mathematical problem solving. School Science and Mathematics, 101(5), 236–245. https://doi.org/10.1111/j.1949-8594.2001.tb18026.x
  • Rustam, A., & Ramlan, A.M. (2017). Analysis of mathematical communication skills of junior high school students of coastal Kolaka. Journal of Mathematics Education, 2(2), 45–51.
  • Sammons, L. (2018). Teaching students to communicate mathematically. ASCD Publishing. Schmidt, W. H. (2004). A vision for mathematics. Educational Leadership, 61(5), 6–11.
  • Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as communicating to learn more about mathematical learning. Educational Studies in Mathematics, 46(1), 13-57. https://doi.org/10.1023/A:1014097416157
  • Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge University Press. https://doi.org/10.1017/CBO9780511499944
  • Sjöblom, M., & Meaney, T. (2021). “I am part of the group, the others listen to me”: Theorising productive listening in mathematical group work. Educational Studies in Mathematics, 107(3), 565-581. https://doi.org/10.1007/s10649-021-10051-2
  • Stigler, J. W., & Hiebert, J. (2004). Improving mathematics teaching. Educational Leadership, 61(5), 12–17.
  • Syaiful, S., Muslim, M., Huda, N., Mukminin, A., & Habibi, A. (2019). Communication skills and mathematical problem solving ability among junior high schools students through problem-based learning. International Journal of Scientific & Technology Research, 8(11), 1048-1060.
  • Turner, R., Blum, W. & Niss, M. (2015). Using competencies to explain mathematical item demand: A work in progress. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy: The PISA experience (pp. 85-115). Springer.
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.
  • Wilson, B. (2009). Mathematical communication through written and oral expression. University of Nebraska.
  • Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-Majd, H., & Nikanfar, A. R. (2015). Design and implementation content validity study: Development of an instrument for measuring patient-centered communication. Journal of Caring Sciences, 4(2), 165–178. https://doi.org/10.15171/jcs.2015.017
  • Zeybek, Z., & Açıl, E. (2018). Yedinci sınıf öğrencilerinin matematiksel ifade becerilerinin incelenmesinde yazma aktiviteleri: Öğrenci günlükleri. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 9(3), 476-512. https://doi.org/10.16949/turkbilmat.367513
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Matematik Eğitimi
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Akıncı 0000-0003-2096-7617

Murat Genç 0000-0003-4525-7507

İlhan Karataş 0000-0001-5906-2132

Özgür Murat Çolakoğlu 0000-0001-7258-4007

Nurbanu Yılmaz 0000-0003-3622-4041

Erken Görünüm Tarihi 10 Mart 2025
Yayımlanma Tarihi
Gönderilme Tarihi 19 Ocak 2025
Kabul Tarihi 4 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 25

Kaynak Göster

APA Akıncı, M., Genç, M., Karataş, İ., Çolakoğlu, Ö. M., vd. (2025). Matematiksel İletişim Becerisi Ölçeğinin Geliştirilmesi. Journal of Computer and Education Research, 13(25), 575-601.

Creative Commons Lisansı


Bu eser Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.


Değerli Yazarlar,

JCER dergisi 2018 yılından itibaren yayımlanacak sayılarda yazarlarından ORCID bilgilerini isteyecektir. Bu konuda hassasiyet göstermeniz önemle rica olunur.

Önemli: "Yazar adından yapılan yayın/atıf taramalarında isim benzerlikleri, soyadı değişikliği, Türkçe harf içeren isimler, farklı yazımlar, kurum değişiklikleri gibi durumlar sorun oluşturabilmektedir. Bu nedenle araştırmacıların tanımlayıcı kimlik/numara (ID) edinmeleri önem taşımaktadır. ULAKBİM TR Dizin sistemlerinde tanımlayıcı ID bilgilerine yer verilecektir.

Standardizasyonun sağlanabilmesi ve YÖK ile birlikte yürütülecek ortak çalışmalarda ORCID kullanılacağı için, TR Dizin’de yer alan veya yer almak üzere başvuran dergilerin, yazarlardan ORCID bilgilerini talep etmeleri ve dergide/makalelerde bu bilgiye yer vermeleri tavsiye edilmektedir. ORCID, Open Researcher ve Contributor ID'nin kısaltmasıdır.  ORCID, Uluslararası Standart Ad Tanımlayıcı (ISNI) olarak da bilinen ISO Standardı (ISO 27729) ile uyumlu 16 haneli bir numaralı bir URI'dir. http://orcid.org adresinden bireysel ORCID için ücretsiz kayıt oluşturabilirsiniz. "